Merge branch 'fix-quaternion-convention' into 'development'

Fix quaternion convention

See merge request damask/DAMASK!123
This commit is contained in:
Vitesh 2020-01-15 00:10:53 +01:00
commit 44651e0c45
3 changed files with 46 additions and 34 deletions

View File

@ -26,7 +26,8 @@ class Rotation:
Convention 4: Euler angle triplets are implemented using the Bunge convention,
with the angular ranges as [0, 2π],[0, π],[0, 2π].
Convention 5: The rotation angle ω is limited to the interval [0, π].
Convention 6: P = -1 (as default).
Convention 6: the real part of a quaternion is positive, Re(q) > 0
Convention 7: P = -1 (as default).
Usage
-----

View File

@ -48,10 +48,7 @@ module quaternions
procedure, private :: pow_scal__
generic, public :: operator(**) => pow_quat__, pow_scal__
procedure, public :: abs__
procedure, public :: dot_product__
procedure, public :: exp__
procedure, public :: log__
procedure, public :: abs => abs__
procedure, public :: conjg => conjg__
procedure, public :: real => real__
procedure, public :: aimag => aimag__
@ -317,17 +314,17 @@ end function pow_scal__
!---------------------------------------------------------------------------------------------------
!> take exponential
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function exp__(self)
type(quaternion) elemental pure function exp__(a)
class(quaternion), intent(in) :: self
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(self))
absImag = norm2(aimag(a))
exp__ = merge(exp(self%w) * [ cos(absImag), &
self%x/absImag * sin(absImag), &
self%y/absImag * sin(absImag), &
self%z/absImag * sin(absImag)], &
exp__ = merge(exp(a%w) * [ cos(absImag), &
a%x/absImag * sin(absImag), &
a%y/absImag * sin(absImag), &
a%z/absImag * sin(absImag)], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
@ -337,17 +334,17 @@ end function exp__
!---------------------------------------------------------------------------------------------------
!> take logarithm
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function log__(self)
type(quaternion) elemental pure function log__(a)
class(quaternion), intent(in) :: self
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(self))
absImag = norm2(aimag(a))
log__ = merge([log(abs(self)), &
self%x/absImag * acos(self%w/abs(self)), &
self%y/absImag * acos(self%w/abs(self)), &
self%z/absImag * acos(self%w/abs(self))], &
log__ = merge([log(abs(a)), &
a%x/absImag * acos(a%w/abs(a)), &
a%y/absImag * acos(a%w/abs(a)), &
a%z/absImag * acos(a%w/abs(a))], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
@ -357,11 +354,11 @@ end function log__
!---------------------------------------------------------------------------------------------------
!> return norm
!---------------------------------------------------------------------------------------------------
real(pReal) elemental pure function abs__(a)
real(pReal) elemental pure function abs__(self)
class(quaternion), intent(in) :: a
class(quaternion), intent(in) :: self
abs__ = norm2([a%w,a%x,a%y,a%z])
abs__ = norm2([self%w,self%x,self%y,self%z])
end function abs__
@ -381,11 +378,11 @@ end function dot_product__
!---------------------------------------------------------------------------------------------------
!> take conjugate complex
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function conjg__(a)
type(quaternion) elemental pure function conjg__(self)
class(quaternion), intent(in) :: a
class(quaternion), intent(in) :: self
conjg__ = [a%w, -a%x, -a%y, -a%z]
conjg__ = [self%w,-self%x,-self%y,-self%z]
end function conjg__

View File

@ -42,7 +42,8 @@
! Convention 4: Euler angle triplets are implemented using the Bunge convention,
! with the angular ranges as [0, 2π],[0, π],[0, 2π]
! Convention 5: the rotation angle ω is limited to the interval [0, π]
! Convention 6: P = -1
! Convention 6: the real part of a quaternion is positive, Re(q) > 0
! Convention 7: P = -1
!---------------------------------------------------------------------------------------------------
module rotations
@ -77,6 +78,7 @@ module rotations
procedure, public :: rotTensor4
procedure, public :: rotTensor4sym
procedure, public :: misorientation
procedure, public :: standardize
end type rotation
public :: &
@ -92,7 +94,7 @@ contains
subroutine rotations_init
call quaternions_init
write(6,'(/,a)') ' <<<+- rotations init -+>>>'
write(6,'(/,a)') ' <<<+- rotations init -+>>>'; flush(6)
call unitTest
end subroutine rotations_init
@ -237,7 +239,6 @@ end subroutine fromMatrix
!---------------------------------------------------------------------------------------------------
!> @brief: Rotate a rotation
!> ToDo: completly untested
!---------------------------------------------------------------------------------------------------
pure elemental function rotRot__(self,R) result(rRot)
@ -245,10 +246,23 @@ pure elemental function rotRot__(self,R) result(rRot)
class(rotation), intent(in) :: self,R
rRot = rotation(self%q*R%q)
call rRot%standardize()
end function rotRot__
!---------------------------------------------------------------------------------------------------
!> @brief quaternion representation with positive q
!---------------------------------------------------------------------------------------------------
pure elemental subroutine standardize(self)
class(rotation), intent(inout) :: self
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed()
end subroutine standardize
!---------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief rotate a vector passively (default) or actively
@ -375,7 +389,7 @@ pure elemental function misorientation(self,other)
type(rotation) :: misorientation
class(rotation), intent(in) :: self, other
misorientation%q = conjg(self%q) * other%q !ToDo: this is the convention used in math
misorientation%q = other%q * conjg(self%q)
end function misorientation