Merge branch 'fix-quaternion-convention' into 'development'
Fix quaternion convention See merge request damask/DAMASK!123
This commit is contained in:
commit
44651e0c45
|
@ -26,7 +26,8 @@ class Rotation:
|
||||||
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
||||||
with the angular ranges as [0, 2π],[0, π],[0, 2π].
|
with the angular ranges as [0, 2π],[0, π],[0, 2π].
|
||||||
Convention 5: The rotation angle ω is limited to the interval [0, π].
|
Convention 5: The rotation angle ω is limited to the interval [0, π].
|
||||||
Convention 6: P = -1 (as default).
|
Convention 6: the real part of a quaternion is positive, Re(q) > 0
|
||||||
|
Convention 7: P = -1 (as default).
|
||||||
|
|
||||||
Usage
|
Usage
|
||||||
-----
|
-----
|
||||||
|
|
|
@ -48,10 +48,7 @@ module quaternions
|
||||||
procedure, private :: pow_scal__
|
procedure, private :: pow_scal__
|
||||||
generic, public :: operator(**) => pow_quat__, pow_scal__
|
generic, public :: operator(**) => pow_quat__, pow_scal__
|
||||||
|
|
||||||
procedure, public :: abs__
|
procedure, public :: abs => abs__
|
||||||
procedure, public :: dot_product__
|
|
||||||
procedure, public :: exp__
|
|
||||||
procedure, public :: log__
|
|
||||||
procedure, public :: conjg => conjg__
|
procedure, public :: conjg => conjg__
|
||||||
procedure, public :: real => real__
|
procedure, public :: real => real__
|
||||||
procedure, public :: aimag => aimag__
|
procedure, public :: aimag => aimag__
|
||||||
|
@ -317,17 +314,17 @@ end function pow_scal__
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> take exponential
|
!> take exponential
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
type(quaternion) elemental pure function exp__(self)
|
type(quaternion) elemental pure function exp__(a)
|
||||||
|
|
||||||
class(quaternion), intent(in) :: self
|
class(quaternion), intent(in) :: a
|
||||||
real(pReal) :: absImag
|
real(pReal) :: absImag
|
||||||
|
|
||||||
absImag = norm2(aimag(self))
|
absImag = norm2(aimag(a))
|
||||||
|
|
||||||
exp__ = merge(exp(self%w) * [ cos(absImag), &
|
exp__ = merge(exp(a%w) * [ cos(absImag), &
|
||||||
self%x/absImag * sin(absImag), &
|
a%x/absImag * sin(absImag), &
|
||||||
self%y/absImag * sin(absImag), &
|
a%y/absImag * sin(absImag), &
|
||||||
self%z/absImag * sin(absImag)], &
|
a%z/absImag * sin(absImag)], &
|
||||||
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
|
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
|
||||||
dNeq0(absImag))
|
dNeq0(absImag))
|
||||||
|
|
||||||
|
@ -337,17 +334,17 @@ end function exp__
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> take logarithm
|
!> take logarithm
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
type(quaternion) elemental pure function log__(self)
|
type(quaternion) elemental pure function log__(a)
|
||||||
|
|
||||||
class(quaternion), intent(in) :: self
|
class(quaternion), intent(in) :: a
|
||||||
real(pReal) :: absImag
|
real(pReal) :: absImag
|
||||||
|
|
||||||
absImag = norm2(aimag(self))
|
absImag = norm2(aimag(a))
|
||||||
|
|
||||||
log__ = merge([log(abs(self)), &
|
log__ = merge([log(abs(a)), &
|
||||||
self%x/absImag * acos(self%w/abs(self)), &
|
a%x/absImag * acos(a%w/abs(a)), &
|
||||||
self%y/absImag * acos(self%w/abs(self)), &
|
a%y/absImag * acos(a%w/abs(a)), &
|
||||||
self%z/absImag * acos(self%w/abs(self))], &
|
a%z/absImag * acos(a%w/abs(a))], &
|
||||||
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
|
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
|
||||||
dNeq0(absImag))
|
dNeq0(absImag))
|
||||||
|
|
||||||
|
@ -357,11 +354,11 @@ end function log__
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> return norm
|
!> return norm
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
real(pReal) elemental pure function abs__(a)
|
real(pReal) elemental pure function abs__(self)
|
||||||
|
|
||||||
class(quaternion), intent(in) :: a
|
class(quaternion), intent(in) :: self
|
||||||
|
|
||||||
abs__ = norm2([a%w,a%x,a%y,a%z])
|
abs__ = norm2([self%w,self%x,self%y,self%z])
|
||||||
|
|
||||||
end function abs__
|
end function abs__
|
||||||
|
|
||||||
|
@ -381,11 +378,11 @@ end function dot_product__
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> take conjugate complex
|
!> take conjugate complex
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
type(quaternion) elemental pure function conjg__(a)
|
type(quaternion) elemental pure function conjg__(self)
|
||||||
|
|
||||||
class(quaternion), intent(in) :: a
|
class(quaternion), intent(in) :: self
|
||||||
|
|
||||||
conjg__ = [a%w, -a%x, -a%y, -a%z]
|
conjg__ = [self%w,-self%x,-self%y,-self%z]
|
||||||
|
|
||||||
end function conjg__
|
end function conjg__
|
||||||
|
|
||||||
|
|
|
@ -42,7 +42,8 @@
|
||||||
! Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
! Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
||||||
! with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
! with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
||||||
! Convention 5: the rotation angle ω is limited to the interval [0, π]
|
! Convention 5: the rotation angle ω is limited to the interval [0, π]
|
||||||
! Convention 6: P = -1
|
! Convention 6: the real part of a quaternion is positive, Re(q) > 0
|
||||||
|
! Convention 7: P = -1
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
module rotations
|
module rotations
|
||||||
|
@ -77,6 +78,7 @@ module rotations
|
||||||
procedure, public :: rotTensor4
|
procedure, public :: rotTensor4
|
||||||
procedure, public :: rotTensor4sym
|
procedure, public :: rotTensor4sym
|
||||||
procedure, public :: misorientation
|
procedure, public :: misorientation
|
||||||
|
procedure, public :: standardize
|
||||||
end type rotation
|
end type rotation
|
||||||
|
|
||||||
public :: &
|
public :: &
|
||||||
|
@ -92,7 +94,7 @@ contains
|
||||||
subroutine rotations_init
|
subroutine rotations_init
|
||||||
|
|
||||||
call quaternions_init
|
call quaternions_init
|
||||||
write(6,'(/,a)') ' <<<+- rotations init -+>>>'
|
write(6,'(/,a)') ' <<<+- rotations init -+>>>'; flush(6)
|
||||||
call unitTest
|
call unitTest
|
||||||
|
|
||||||
end subroutine rotations_init
|
end subroutine rotations_init
|
||||||
|
@ -237,7 +239,6 @@ end subroutine fromMatrix
|
||||||
|
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> @brief: Rotate a rotation
|
!> @brief: Rotate a rotation
|
||||||
!> ToDo: completly untested
|
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
pure elemental function rotRot__(self,R) result(rRot)
|
pure elemental function rotRot__(self,R) result(rRot)
|
||||||
|
|
||||||
|
@ -245,10 +246,23 @@ pure elemental function rotRot__(self,R) result(rRot)
|
||||||
class(rotation), intent(in) :: self,R
|
class(rotation), intent(in) :: self,R
|
||||||
|
|
||||||
rRot = rotation(self%q*R%q)
|
rRot = rotation(self%q*R%q)
|
||||||
|
call rRot%standardize()
|
||||||
|
|
||||||
end function rotRot__
|
end function rotRot__
|
||||||
|
|
||||||
|
|
||||||
|
!---------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief quaternion representation with positive q
|
||||||
|
!---------------------------------------------------------------------------------------------------
|
||||||
|
pure elemental subroutine standardize(self)
|
||||||
|
|
||||||
|
class(rotation), intent(inout) :: self
|
||||||
|
|
||||||
|
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed()
|
||||||
|
|
||||||
|
end subroutine standardize
|
||||||
|
|
||||||
|
|
||||||
!---------------------------------------------------------------------------------------------------
|
!---------------------------------------------------------------------------------------------------
|
||||||
!> @author Marc De Graef, Carnegie Mellon University
|
!> @author Marc De Graef, Carnegie Mellon University
|
||||||
!> @brief rotate a vector passively (default) or actively
|
!> @brief rotate a vector passively (default) or actively
|
||||||
|
@ -375,7 +389,7 @@ pure elemental function misorientation(self,other)
|
||||||
type(rotation) :: misorientation
|
type(rotation) :: misorientation
|
||||||
class(rotation), intent(in) :: self, other
|
class(rotation), intent(in) :: self, other
|
||||||
|
|
||||||
misorientation%q = conjg(self%q) * other%q !ToDo: this is the convention used in math
|
misorientation%q = other%q * conjg(self%q)
|
||||||
|
|
||||||
end function misorientation
|
end function misorientation
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue