Merge branch 'development' into python-vtk-improvements
This commit is contained in:
commit
4426172c14
|
@ -1 +1 @@
|
||||||
v3.0.0-alpha5-638-g1ecbeb692
|
v3.0.0-alpha5-651-gd4f711416
|
||||||
|
|
|
@ -178,8 +178,9 @@ class ConfigMaterial(Config):
|
||||||
table : damask.Table
|
table : damask.Table
|
||||||
Table that contains material information.
|
Table that contains material information.
|
||||||
**kwargs
|
**kwargs
|
||||||
Keyword arguments where the key is the name and the value specifies
|
Keyword arguments where the key is the property name and
|
||||||
the label of the data column in the table.
|
the value specifies either the label of the data column in the table
|
||||||
|
or a constant value.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -211,8 +212,23 @@ class ConfigMaterial(Config):
|
||||||
homogenization: {}
|
homogenization: {}
|
||||||
phase: {}
|
phase: {}
|
||||||
|
|
||||||
|
>>> cm.from_table(t,O='qu',phase='phase',homogenization='single_crystal')
|
||||||
|
material:
|
||||||
|
- constituents:
|
||||||
|
- O: [0.19, 0.8, 0.24, -0.51]
|
||||||
|
v: 1.0
|
||||||
|
phase: Aluminum
|
||||||
|
homogenization: single_crystal
|
||||||
|
- constituents:
|
||||||
|
- O: [0.8, 0.19, 0.24, -0.51]
|
||||||
|
v: 1.0
|
||||||
|
phase: Steel
|
||||||
|
homogenization: single_crystal
|
||||||
|
homogenization: {}
|
||||||
|
phase: {}
|
||||||
|
|
||||||
"""
|
"""
|
||||||
kwargs_ = {k:table.get(v) for k,v in kwargs.items()}
|
kwargs_ = {k:table.get(v) if v in table.labels else np.atleast_2d([v]*len(table)).T for k,v in kwargs.items()}
|
||||||
|
|
||||||
_,idx = np.unique(np.hstack(list(kwargs_.values())),return_index=True,axis=0)
|
_,idx = np.unique(np.hstack(list(kwargs_.values())),return_index=True,axis=0)
|
||||||
idx = np.sort(idx)
|
idx = np.sort(idx)
|
||||||
|
|
|
@ -44,6 +44,13 @@ class Table:
|
||||||
return '\n'.join(['# '+c for c in self.comments])+'\n'+data_repr
|
return '\n'.join(['# '+c for c in self.comments])+'\n'+data_repr
|
||||||
|
|
||||||
|
|
||||||
|
def __eq__(self,
|
||||||
|
other: object) -> bool:
|
||||||
|
"""Compare to other Table."""
|
||||||
|
return NotImplemented if not isinstance(other,Table) else \
|
||||||
|
self.shapes == other.shapes and self.data.equals(other.data)
|
||||||
|
|
||||||
|
|
||||||
def __getitem__(self,
|
def __getitem__(self,
|
||||||
item: Union[slice, Tuple[slice, ...]]) -> 'Table':
|
item: Union[slice, Tuple[slice, ...]]) -> 'Table':
|
||||||
"""
|
"""
|
||||||
|
@ -75,20 +82,22 @@ class Table:
|
||||||
colB colA
|
colB colA
|
||||||
0 1 0
|
0 1 0
|
||||||
2 7 6
|
2 7 6
|
||||||
>>> tbl[1:2,'colB']
|
>>> tbl[[True,False,False,True],'colB']
|
||||||
colB
|
colB
|
||||||
1 4
|
0 1
|
||||||
2 7
|
3 10
|
||||||
|
|
||||||
"""
|
"""
|
||||||
item = (item,slice(None,None,None)) if isinstance(item,slice) else \
|
item_ = (item,slice(None,None,None)) if isinstance(item,(slice,np.ndarray)) else \
|
||||||
item if isinstance(item[0],slice) else \
|
(np.array(item),slice(None,None,None)) if isinstance(item,list) and np.array(item).dtype == np.bool_ else \
|
||||||
|
(np.array(item[0]),item[1]) if isinstance(item[0],list) else \
|
||||||
|
item if isinstance(item[0],(slice,np.ndarray)) else \
|
||||||
(slice(None,None,None),item)
|
(slice(None,None,None),item)
|
||||||
sliced = self.data.loc[item]
|
sliced = self.data.loc[item_]
|
||||||
cols = np.array(sliced.columns if isinstance(sliced,pd.core.frame.DataFrame) else [item[1]])
|
cols = np.array(sliced.columns if isinstance(sliced,pd.core.frame.DataFrame) else [item_[1]])
|
||||||
_,idx = np.unique(cols,return_index=True)
|
_,idx = np.unique(cols,return_index=True)
|
||||||
return self.__class__(data=sliced,
|
return self.__class__(data=sliced,
|
||||||
shapes = {k:self.shapes[k] for k in cols[np.sort(idx)]},
|
shapes={k:self.shapes[k] for k in cols[np.sort(idx)]},
|
||||||
comments=self.comments)
|
comments=self.comments)
|
||||||
|
|
||||||
|
|
||||||
|
@ -363,9 +372,9 @@ class Table:
|
||||||
label : str
|
label : str
|
||||||
Column label.
|
Column label.
|
||||||
data : numpy.ndarray
|
data : numpy.ndarray
|
||||||
New data.
|
Replacement data.
|
||||||
info : str, optional
|
info : str, optional
|
||||||
Human-readable information about the new data.
|
Human-readable information about the modified data.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -398,9 +407,9 @@ class Table:
|
||||||
label : str
|
label : str
|
||||||
Column label.
|
Column label.
|
||||||
data : numpy.ndarray
|
data : numpy.ndarray
|
||||||
Modified data.
|
New data.
|
||||||
info : str, optional
|
info : str, optional
|
||||||
Human-readable information about the modified data.
|
Human-readable information about the new data.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -476,7 +485,7 @@ class Table:
|
||||||
labels: Union[str, List[str]],
|
labels: Union[str, List[str]],
|
||||||
ascending: Union[bool, List[bool]] = True) -> 'Table':
|
ascending: Union[bool, List[bool]] = True) -> 'Table':
|
||||||
"""
|
"""
|
||||||
Sort table by values of given labels.
|
Sort table by data of given columns.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|
|
@ -96,6 +96,18 @@ class TestConfigMaterial:
|
||||||
for i,m in enumerate(c['material']):
|
for i,m in enumerate(c['material']):
|
||||||
assert m['homogenization'] == 1 and (m['constituents'][0]['O'] == [1,0,1,1]).all()
|
assert m['homogenization'] == 1 and (m['constituents'][0]['O'] == [1,0,1,1]).all()
|
||||||
|
|
||||||
|
def test_from_table_with_constant(self):
|
||||||
|
N = np.random.randint(3,10)
|
||||||
|
a = np.vstack((np.hstack((np.arange(N),np.arange(N)[::-1])),
|
||||||
|
np.ones(N*2),np.zeros(N*2),np.ones(N*2),np.ones(N*2),
|
||||||
|
np.ones(N*2),
|
||||||
|
)).T
|
||||||
|
t = Table(a,{'varying':1,'constant':4,'ones':1})
|
||||||
|
c = ConfigMaterial.from_table(t,**{'phase':'varying','O':'constant','homogenization':1})
|
||||||
|
assert len(c['material']) == N
|
||||||
|
for i,m in enumerate(c['material']):
|
||||||
|
assert m['homogenization'] == 1 and (m['constituents'][0]['O'] == [1,0,1,1]).all()
|
||||||
|
|
||||||
@pytest.mark.parametrize('N,n,kw',[
|
@pytest.mark.parametrize('N,n,kw',[
|
||||||
(1,1,{'phase':'Gold',
|
(1,1,{'phase':'Gold',
|
||||||
'O':[1,0,0,0],
|
'O':[1,0,0,0],
|
||||||
|
|
|
@ -59,10 +59,14 @@ class TestTable:
|
||||||
|
|
||||||
@pytest.mark.parametrize('N',[1,3,4])
|
@pytest.mark.parametrize('N',[1,3,4])
|
||||||
def test_slice(self,default,N):
|
def test_slice(self,default,N):
|
||||||
|
mask = np.random.choice([True,False],len(default))
|
||||||
assert len(default[:N]) == 1+N
|
assert len(default[:N]) == 1+N
|
||||||
assert len(default[:N,['F','s']]) == 1+N
|
assert len(default[:N,['F','s']]) == 1+N
|
||||||
|
assert len(default[mask,['F','s']]) == np.count_nonzero(mask)
|
||||||
|
assert default[mask,['F','s']] == default[mask][['F','s']] == default[['F','s']][mask]
|
||||||
|
assert default[np.logical_not(mask),['F','s']] != default[mask][['F','s']]
|
||||||
assert default[N:].get('F').shape == (len(default)-N,3,3)
|
assert default[N:].get('F').shape == (len(default)-N,3,3)
|
||||||
assert (default[:N,['v','s']].data == default['v','s'][:N].data).all().all()
|
assert default[:N,['v','s']].data.equals(default['v','s'][:N].data)
|
||||||
|
|
||||||
@pytest.mark.parametrize('mode',['str','path'])
|
@pytest.mark.parametrize('mode',['str','path'])
|
||||||
def test_write_read(self,default,tmp_path,mode):
|
def test_write_read(self,default,tmp_path,mode):
|
||||||
|
|
|
@ -31,7 +31,7 @@ module spectral_utilities
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! grid related information
|
! grid related information
|
||||||
real(pReal), protected, public :: wgt !< weighting factor 1/Nelems
|
real(pReal), protected, public :: wgt !< weighting factor 1/Nelems
|
||||||
integer, protected, public :: grid1Red !< cells(1)/2
|
integer, protected, public :: cells1Red !< cells(1)/2
|
||||||
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence
|
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -201,7 +201,7 @@ subroutine spectral_utilities_init
|
||||||
num_grid%get_asString('PETSc_options',defaultVal=''),err_PETSc)
|
num_grid%get_asString('PETSc_options',defaultVal=''),err_PETSc)
|
||||||
CHKERRQ(err_PETSc)
|
CHKERRQ(err_PETSc)
|
||||||
|
|
||||||
grid1Red = cells(1)/2 + 1
|
cells1Red = cells(1)/2 + 1
|
||||||
wgt = 1.0/real(product(cells),pReal)
|
wgt = 1.0/real(product(cells),pReal)
|
||||||
|
|
||||||
num%memory_efficient = num_grid%get_asInt('memory_efficient', defaultVal=1) > 0 ! ToDo: should be logical in YAML file
|
num%memory_efficient = num_grid%get_asInt('memory_efficient', defaultVal=1) > 0 ! ToDo: should be logical in YAML file
|
||||||
|
@ -265,8 +265,8 @@ subroutine spectral_utilities_init
|
||||||
gridFFTW = int(cells,C_INTPTR_T)
|
gridFFTW = int(cells,C_INTPTR_T)
|
||||||
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
|
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
|
||||||
PETSC_COMM_WORLD, local_K, local_K_offset)
|
PETSC_COMM_WORLD, local_K, local_K_offset)
|
||||||
allocate (xi1st (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
|
allocate (xi1st (3,cells1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
|
||||||
allocate (xi2nd (3,grid1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
|
allocate (xi2nd (3,cells1Red,cells(2),cells3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
|
||||||
|
|
||||||
tensorField = fftw_alloc_complex(tensorSize*alloc_local)
|
tensorField = fftw_alloc_complex(tensorSize*alloc_local)
|
||||||
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
|
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
|
||||||
|
@ -333,7 +333,7 @@ subroutine spectral_utilities_init
|
||||||
do j = 1, cells(2)
|
do j = 1, cells(2)
|
||||||
k_s(2) = j - 1
|
k_s(2) = j - 1
|
||||||
if (j > cells(2)/2 + 1) k_s(2) = k_s(2) - cells(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
|
if (j > cells(2)/2 + 1) k_s(2) = k_s(2) - cells(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
|
||||||
do i = 1, grid1Red
|
do i = 1, cells1Red
|
||||||
k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1
|
k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1
|
||||||
xi2nd(1:3,i,j,k-cells3Offset) = utilities_getFreqDerivative(k_s)
|
xi2nd(1:3,i,j,k-cells3Offset) = utilities_getFreqDerivative(k_s)
|
||||||
where(mod(cells,2)==0 .and. [i,j,k] == cells/2+1 .and. &
|
where(mod(cells,2)==0 .and. [i,j,k] == cells/2+1 .and. &
|
||||||
|
@ -347,7 +347,7 @@ subroutine spectral_utilities_init
|
||||||
if (num%memory_efficient) then ! allocate just single fourth order tensor
|
if (num%memory_efficient) then ! allocate just single fourth order tensor
|
||||||
allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal))
|
allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal))
|
||||||
else ! precalculation of gamma_hat field
|
else ! precalculation of gamma_hat field
|
||||||
allocate (gamma_hat(3,3,3,3,grid1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal))
|
allocate (gamma_hat(3,3,3,3,cells1Red,cells(2),cells3), source = cmplx(0.0_pReal,0.0_pReal,pReal))
|
||||||
endif
|
endif
|
||||||
|
|
||||||
end subroutine spectral_utilities_init
|
end subroutine spectral_utilities_init
|
||||||
|
@ -362,7 +362,7 @@ end subroutine spectral_utilities_init
|
||||||
subroutine utilities_updateGamma(C)
|
subroutine utilities_updateGamma(C)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness
|
real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness
|
||||||
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
|
complex(pReal), dimension(3,3) :: temp33_cmplx, xiDyad_cmplx
|
||||||
real(pReal), dimension(6,6) :: A, A_inv
|
real(pReal), dimension(6,6) :: A, A_inv
|
||||||
integer :: &
|
integer :: &
|
||||||
i, j, k, &
|
i, j, k, &
|
||||||
|
@ -373,26 +373,39 @@ subroutine utilities_updateGamma(C)
|
||||||
|
|
||||||
if (.not. num%memory_efficient) then
|
if (.not. num%memory_efficient) then
|
||||||
gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A
|
gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A
|
||||||
do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, grid1Red
|
!$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err)
|
||||||
|
do k = cells3Offset+1, cells3Offset+cells3; do j = 1, cells(2); do i = 1, cells1Red
|
||||||
if (any([i,j,k] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
if (any([i,j,k] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||||
do concurrent (l = 1:3, m = 1:3)
|
#ifndef __INTEL_COMPILER
|
||||||
|
do concurrent(l = 1:3, m = 1:3)
|
||||||
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
|
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
|
||||||
end do
|
end do
|
||||||
do concurrent(l = 1:3, m = 1:3)
|
do concurrent(l = 1:3, m = 1:3)
|
||||||
temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
|
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
|
||||||
end do
|
end do
|
||||||
A(1:3,1:3) = temp33_complex%re; A(4:6,4:6) = temp33_complex%re
|
#else
|
||||||
A(1:3,4:6) = temp33_complex%im; A(4:6,1:3) = -temp33_complex%im
|
forall(l = 1:3, m = 1:3) &
|
||||||
|
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
|
||||||
|
forall(l = 1:3, m = 1:3) &
|
||||||
|
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
|
||||||
|
#endif
|
||||||
|
A(1:3,1:3) = temp33_cmplx%re; A(4:6,4:6) = temp33_cmplx%re
|
||||||
|
A(1:3,4:6) = temp33_cmplx%im; A(4:6,1:3) = -temp33_cmplx%im
|
||||||
if (abs(math_det33(A(1:3,1:3))) > 1e-16) then
|
if (abs(math_det33(A(1:3,1:3))) > 1e-16) then
|
||||||
call math_invert(A_inv, err, A)
|
call math_invert(A_inv, err, A)
|
||||||
temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
|
temp33_cmplx = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
|
||||||
|
#ifndef __INTEL_COMPILER
|
||||||
do concurrent(l=1:3, m=1:3, n=1:3, o=1:3)
|
do concurrent(l=1:3, m=1:3, n=1:3, o=1:3)
|
||||||
gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_complex(l,n)* &
|
gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_cmplx(l,n) * xiDyad_cmplx(o,m)
|
||||||
conjg(-xi1st(o,i,j,k-cells3Offset))*xi1st(m,i,j,k-cells3Offset)
|
|
||||||
end do
|
end do
|
||||||
|
#else
|
||||||
|
forall(l=1:3, m=1:3, n=1:3, o=1:3) &
|
||||||
|
gamma_hat(l,m,n,o,i,j,k-cells3Offset) = temp33_cmplx(l,n) * xiDyad_cmplx(o,m)
|
||||||
|
#endif
|
||||||
end if
|
end if
|
||||||
end if
|
end if
|
||||||
end do; end do; end do
|
end do; end do; end do
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
endif
|
endif
|
||||||
|
|
||||||
end subroutine utilities_updateGamma
|
end subroutine utilities_updateGamma
|
||||||
|
@ -405,7 +418,7 @@ end subroutine utilities_updateGamma
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine utilities_FFTtensorForward
|
subroutine utilities_FFTtensorForward
|
||||||
|
|
||||||
tensorField_real(1:3,1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal
|
tensorField_real(1:3,1:3,cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
|
||||||
call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier)
|
call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier)
|
||||||
|
|
||||||
end subroutine utilities_FFTtensorForward
|
end subroutine utilities_FFTtensorForward
|
||||||
|
@ -429,7 +442,7 @@ end subroutine utilities_FFTtensorBackward
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine utilities_FFTscalarForward
|
subroutine utilities_FFTscalarForward
|
||||||
|
|
||||||
scalarField_real(cells(1)+1:grid1Red*2,:,:) = 0.0_pReal
|
scalarField_real(cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
|
||||||
call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier)
|
call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier)
|
||||||
|
|
||||||
end subroutine utilities_FFTscalarForward
|
end subroutine utilities_FFTscalarForward
|
||||||
|
@ -454,7 +467,7 @@ end subroutine utilities_FFTscalarBackward
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine utilities_FFTvectorForward
|
subroutine utilities_FFTvectorForward
|
||||||
|
|
||||||
vectorField_real(1:3,cells(1)+1:grid1Red*2,:,:) = 0.0_pReal
|
vectorField_real(1:3,cells(1)+1:cells1Red*2,:,:) = 0.0_pReal
|
||||||
call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier)
|
call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier)
|
||||||
|
|
||||||
end subroutine utilities_FFTvectorForward
|
end subroutine utilities_FFTvectorForward
|
||||||
|
@ -478,7 +491,7 @@ end subroutine utilities_FFTvectorBackward
|
||||||
subroutine utilities_fourierGammaConvolution(fieldAim)
|
subroutine utilities_fourierGammaConvolution(fieldAim)
|
||||||
|
|
||||||
real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution
|
real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution
|
||||||
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
|
complex(pReal), dimension(3,3) :: temp33_cmplx, xiDyad_cmplx
|
||||||
real(pReal), dimension(6,6) :: A, A_inv
|
real(pReal), dimension(6,6) :: A, A_inv
|
||||||
|
|
||||||
integer :: &
|
integer :: &
|
||||||
|
@ -493,38 +506,61 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! do the actual spectral method calculation (mechanical equilibrium)
|
! do the actual spectral method calculation (mechanical equilibrium)
|
||||||
memoryEfficient: if (num%memory_efficient) then
|
memoryEfficient: if (num%memory_efficient) then
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red
|
!$OMP PARALLEL DO PRIVATE(l,m,n,o,temp33_cmplx,xiDyad_cmplx,A,A_inv,err,gamma_hat)
|
||||||
|
do k = 1, cells3; do j = 1, cells(2); do i = 1, cells1Red
|
||||||
if (any([i,j,k+cells3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
if (any([i,j,k+cells3Offset] /= 1)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
||||||
|
#ifndef __INTEL_COMPILER
|
||||||
do concurrent(l = 1:3, m = 1:3)
|
do concurrent(l = 1:3, m = 1:3)
|
||||||
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
|
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
|
||||||
end do
|
end do
|
||||||
do concurrent(l = 1:3, m = 1:3)
|
do concurrent(l = 1:3, m = 1:3)
|
||||||
temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
|
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
|
||||||
end do
|
end do
|
||||||
A(1:3,1:3) = temp33_complex%re; A(4:6,4:6) = temp33_complex%re
|
#else
|
||||||
A(1:3,4:6) = temp33_complex%im; A(4:6,1:3) = -temp33_complex%im
|
forall(l = 1:3, m = 1:3) &
|
||||||
|
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
|
||||||
|
forall(l = 1:3, m = 1:3) &
|
||||||
|
temp33_cmplx(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
|
||||||
|
#endif
|
||||||
|
A(1:3,1:3) = temp33_cmplx%re; A(4:6,4:6) = temp33_cmplx%re
|
||||||
|
A(1:3,4:6) = temp33_cmplx%im; A(4:6,1:3) = -temp33_cmplx%im
|
||||||
if (abs(math_det33(A(1:3,1:3))) > 1e-16) then
|
if (abs(math_det33(A(1:3,1:3))) > 1e-16) then
|
||||||
call math_invert(A_inv, err, A)
|
call math_invert(A_inv, err, A)
|
||||||
temp33_complex = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
|
temp33_cmplx = cmplx(A_inv(1:3,1:3),A_inv(1:3,4:6),pReal)
|
||||||
|
#ifndef __INTEL_COMPILER
|
||||||
do concurrent(l=1:3, m=1:3, n=1:3, o=1:3)
|
do concurrent(l=1:3, m=1:3, n=1:3, o=1:3)
|
||||||
gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k)
|
gamma_hat(l,m,n,o,1,1,1) = temp33_cmplx(l,n)*xiDyad_cmplx(o,m)
|
||||||
end do
|
end do
|
||||||
|
do concurrent(l = 1:3, m = 1:3)
|
||||||
|
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
|
||||||
|
end do
|
||||||
|
#else
|
||||||
|
forall(l=1:3, m=1:3, n=1:3, o=1:3) &
|
||||||
|
gamma_hat(l,m,n,o,1,1,1) = temp33_cmplx(l,n)*xiDyad_cmplx(o,m)
|
||||||
|
forall(l = 1:3, m = 1:3) &
|
||||||
|
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
|
||||||
|
#endif
|
||||||
|
tensorField_fourier(1:3,1:3,i,j,k) = temp33_cmplx
|
||||||
else
|
else
|
||||||
gamma_hat(1:3,1:3,1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
tensorField_fourier(1:3,1:3,i,j,k) = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||||
end if
|
end if
|
||||||
do concurrent(l = 1:3, m = 1:3)
|
|
||||||
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
|
|
||||||
end do
|
|
||||||
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
|
|
||||||
end if
|
end if
|
||||||
end do; end do; end do
|
end do; end do; end do
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
else memoryEfficient
|
else memoryEfficient
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
|
!$OMP PARALLEL DO PRIVATE(l,m,temp33_cmplx)
|
||||||
|
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
|
||||||
|
#ifndef __INTEL_COMPILER
|
||||||
do concurrent(l = 1:3, m = 1:3)
|
do concurrent(l = 1:3, m = 1:3)
|
||||||
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * tensorField_fourier(1:3,1:3,i,j,k))
|
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k)*tensorField_fourier(1:3,1:3,i,j,k))
|
||||||
end do
|
end do
|
||||||
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
|
#else
|
||||||
|
forall(l = 1:3, m = 1:3) &
|
||||||
|
temp33_cmplx(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k)*tensorField_fourier(1:3,1:3,i,j,k))
|
||||||
|
#endif
|
||||||
|
tensorField_fourier(1:3,1:3,i,j,k) = temp33_cmplx
|
||||||
end do; end do; end do
|
end do; end do; end do
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
end if memoryEfficient
|
end if memoryEfficient
|
||||||
|
|
||||||
if (cells3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal)
|
if (cells3Offset == 0) tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal)
|
||||||
|
@ -544,12 +580,14 @@ subroutine utilities_fourierGreenConvolution(D_ref, mu_ref, Delta_t)
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! do the actual spectral method calculation
|
! do the actual spectral method calculation
|
||||||
do k = 1, cells3; do j = 1, cells(2) ;do i = 1, grid1Red
|
!$OMP PARALLEL DO PRIVATE(GreenOp_hat)
|
||||||
|
do k = 1, cells3; do j = 1, cells(2) ;do i = 1, cells1Red
|
||||||
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal) &
|
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal) &
|
||||||
/ (cmplx(mu_ref,0.0_pReal,pReal) + cmplx(Delta_t,0.0_pReal) &
|
/ (cmplx(mu_ref,0.0_pReal,pReal) + cmplx(Delta_t,0.0_pReal) &
|
||||||
* sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k))))
|
* sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k))))
|
||||||
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat
|
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat
|
||||||
enddo; enddo; enddo
|
enddo; enddo; enddo
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
|
|
||||||
end subroutine utilities_fourierGreenConvolution
|
end subroutine utilities_fourierGreenConvolution
|
||||||
|
|
||||||
|
@ -572,7 +610,7 @@ real(pReal) function utilities_divergenceRMS()
|
||||||
! calculating RMS divergence criterion in Fourier space
|
! calculating RMS divergence criterion in Fourier space
|
||||||
utilities_divergenceRMS = 0.0_pReal
|
utilities_divergenceRMS = 0.0_pReal
|
||||||
do k = 1, cells3; do j = 1, cells(2)
|
do k = 1, cells3; do j = 1, cells(2)
|
||||||
do i = 2, grid1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
do i = 2, cells1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||||
utilities_divergenceRMS = utilities_divergenceRMS &
|
utilities_divergenceRMS = utilities_divergenceRMS &
|
||||||
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again
|
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again
|
||||||
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2) & ! --> sum squared L_2 norm of vector
|
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2) & ! --> sum squared L_2 norm of vector
|
||||||
|
@ -584,10 +622,10 @@ real(pReal) function utilities_divergenceRMS()
|
||||||
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
|
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
|
||||||
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
|
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
|
||||||
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
|
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
|
||||||
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
|
+ sum( real(matmul(tensorField_fourier(1:3,1:3,cells1Red,j,k), &
|
||||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2) &
|
conjg(-xi1st(1:3,cells1Red,j,k))*rescaledGeom))**2) &
|
||||||
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
|
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,cells1Red,j,k), &
|
||||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2)
|
conjg(-xi1st(1:3,cells1Red,j,k))*rescaledGeom))**2)
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
if (cells(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of cells(1) == 1
|
if (cells(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of cells(1) == 1
|
||||||
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI)
|
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI)
|
||||||
|
@ -617,7 +655,7 @@ real(pReal) function utilities_curlRMS()
|
||||||
utilities_curlRMS = 0.0_pReal
|
utilities_curlRMS = 0.0_pReal
|
||||||
|
|
||||||
do k = 1, cells3; do j = 1, cells(2);
|
do k = 1, cells3; do j = 1, cells(2);
|
||||||
do i = 2, grid1Red - 1
|
do i = 2, cells1Red - 1
|
||||||
do l = 1, 3
|
do l = 1, 3
|
||||||
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
|
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
|
||||||
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
|
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
|
||||||
|
@ -640,12 +678,12 @@ real(pReal) function utilities_curlRMS()
|
||||||
utilities_curlRMS = utilities_curlRMS &
|
utilities_curlRMS = utilities_curlRMS &
|
||||||
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if cells(1) /= 1)
|
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if cells(1) /= 1)
|
||||||
do l = 1, 3
|
do l = 1, 3
|
||||||
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
|
curl_fourier = (+tensorField_fourier(l,3,cells1Red,j,k)*xi1st(2,cells1Red,j,k)*rescaledGeom(2) &
|
||||||
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
|
-tensorField_fourier(l,2,cells1Red,j,k)*xi1st(3,cells1Red,j,k)*rescaledGeom(3))
|
||||||
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
|
curl_fourier = (+tensorField_fourier(l,1,cells1Red,j,k)*xi1st(3,cells1Red,j,k)*rescaledGeom(3) &
|
||||||
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1))
|
-tensorField_fourier(l,3,cells1Red,j,k)*xi1st(1,cells1Red,j,k)*rescaledGeom(1))
|
||||||
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) &
|
curl_fourier = (+tensorField_fourier(l,2,cells1Red,j,k)*xi1st(1,cells1Red,j,k)*rescaledGeom(1) &
|
||||||
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
|
-tensorField_fourier(l,1,cells1Red,j,k)*xi1st(2,cells1Red,j,k)*rescaledGeom(2))
|
||||||
enddo
|
enddo
|
||||||
utilities_curlRMS = utilities_curlRMS &
|
utilities_curlRMS = utilities_curlRMS &
|
||||||
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if cells(1) /= 1)
|
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if cells(1) /= 1)
|
||||||
|
@ -736,9 +774,10 @@ subroutine utilities_fourierScalarGradient()
|
||||||
|
|
||||||
integer :: i, j, k
|
integer :: i, j, k
|
||||||
|
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
|
|
||||||
|
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
|
||||||
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg?
|
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) ! ToDo: no -conjg?
|
||||||
enddo; enddo; enddo
|
end do; end do; end do
|
||||||
|
|
||||||
end subroutine utilities_fourierScalarGradient
|
end subroutine utilities_fourierScalarGradient
|
||||||
|
|
||||||
|
@ -748,11 +787,9 @@ end subroutine utilities_fourierScalarGradient
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine utilities_fourierVectorDivergence()
|
subroutine utilities_fourierVectorDivergence()
|
||||||
|
|
||||||
integer :: i, j, k
|
|
||||||
|
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
|
scalarField_fourier(1:cells1Red,1:cells(2),1:cells3) = sum(vectorField_fourier(1:3,1:cells1Red,1:cells(2),1:cells3) &
|
||||||
scalarField_fourier(i,j,k) = sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
|
*conjg(-xi1st),1)
|
||||||
enddo; enddo; enddo
|
|
||||||
|
|
||||||
end subroutine utilities_fourierVectorDivergence
|
end subroutine utilities_fourierVectorDivergence
|
||||||
|
|
||||||
|
@ -764,11 +801,12 @@ subroutine utilities_fourierVectorGradient()
|
||||||
|
|
||||||
integer :: i, j, k, m, n
|
integer :: i, j, k, m, n
|
||||||
|
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
|
|
||||||
|
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
|
||||||
do m = 1, 3; do n = 1, 3
|
do m = 1, 3; do n = 1, 3
|
||||||
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
|
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
|
||||||
enddo; enddo
|
end do; end do
|
||||||
enddo; enddo; enddo
|
end do; end do; end do
|
||||||
|
|
||||||
end subroutine utilities_fourierVectorGradient
|
end subroutine utilities_fourierVectorGradient
|
||||||
|
|
||||||
|
@ -780,9 +818,10 @@ subroutine utilities_fourierTensorDivergence()
|
||||||
|
|
||||||
integer :: i, j, k
|
integer :: i, j, k
|
||||||
|
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1,grid1Red
|
|
||||||
|
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells1Red
|
||||||
vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k)))
|
vectorField_fourier(:,i,j,k) = matmul(tensorField_fourier(:,:,i,j,k),conjg(-xi1st(:,i,j,k)))
|
||||||
enddo; enddo; enddo
|
end do; end do; end do
|
||||||
|
|
||||||
end subroutine utilities_fourierTensorDivergence
|
end subroutine utilities_fourierTensorDivergence
|
||||||
|
|
||||||
|
@ -884,11 +923,10 @@ pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate)
|
||||||
real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: &
|
real(pReal), dimension(3,3,cells(1),cells(2),cells3) :: &
|
||||||
utilities_calculateRate
|
utilities_calculateRate
|
||||||
|
|
||||||
if (heterogeneous) then
|
|
||||||
utilities_calculateRate = (field-field0) / dt
|
utilities_calculateRate = merge((field-field0) / dt, &
|
||||||
else
|
spread(spread(spread(avRate,3,cells(1)),4,cells(2)),5,cells3), &
|
||||||
utilities_calculateRate = spread(spread(spread(avRate,3,cells(1)),4,cells(2)),5,cells3)
|
heterogeneous)
|
||||||
endif
|
|
||||||
|
|
||||||
end function utilities_calculateRate
|
end function utilities_calculateRate
|
||||||
|
|
||||||
|
@ -980,6 +1018,7 @@ end function utilities_getFreqDerivative
|
||||||
subroutine utilities_updateCoords(F)
|
subroutine utilities_updateCoords(F)
|
||||||
|
|
||||||
real(pReal), dimension(3,3,cells(1),cells(2),cells3), intent(in) :: F
|
real(pReal), dimension(3,3,cells(1),cells(2),cells3), intent(in) :: F
|
||||||
|
|
||||||
real(pReal), dimension(3, cells(1),cells(2),cells3) :: IPcoords
|
real(pReal), dimension(3, cells(1),cells(2),cells3) :: IPcoords
|
||||||
real(pReal), dimension(3, cells(1),cells(2),cells3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI)
|
real(pReal), dimension(3, cells(1),cells(2),cells3+2) :: IPfluct_padded ! Fluctuations of cell center displacement (padded along z for MPI)
|
||||||
real(pReal), dimension(3, cells(1)+1,cells(2)+1,cells3+1) :: nodeCoords
|
real(pReal), dimension(3, cells(1)+1,cells(2)+1,cells3+1) :: nodeCoords
|
||||||
|
@ -1010,20 +1049,23 @@ subroutine utilities_updateCoords(F)
|
||||||
1, 1, 1, &
|
1, 1, 1, &
|
||||||
0, 1, 1 ], [3,8])
|
0, 1, 1 ], [3,8])
|
||||||
|
|
||||||
|
|
||||||
step = geomSize/real(cells, pReal)
|
step = geomSize/real(cells, pReal)
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! integration in Fourier space to get fluctuations of cell center discplacements
|
! integration in Fourier space to get fluctuations of cell center discplacements
|
||||||
tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = F
|
tensorField_real(1:3,1:3,1:cells(1),1:cells(2),1:cells3) = F
|
||||||
call utilities_FFTtensorForward()
|
call utilities_FFTtensorForward()
|
||||||
|
|
||||||
do k = 1, cells3; do j = 1, cells(2); do i = 1, grid1Red
|
!$OMP PARALLEL DO
|
||||||
|
do k = 1, cells3; do j = 1, cells(2); do i = 1, cells1Red
|
||||||
if (any([i,j,k+cells3Offset] /= 1)) then
|
if (any([i,j,k+cells3Offset] /= 1)) then
|
||||||
vectorField_fourier(1:3,i,j,k) = matmul(tensorField_fourier(1:3,1:3,i,j,k),xi2nd(1:3,i,j,k)) &
|
vectorField_fourier(1:3,i,j,k) = matmul(tensorField_fourier(1:3,1:3,i,j,k),xi2nd(1:3,i,j,k)) &
|
||||||
/ sum(conjg(-xi2nd(1:3,i,j,k))*xi2nd(1:3,i,j,k)) * cmplx(wgt,0.0,pReal)
|
/ sum(conjg(-xi2nd(1:3,i,j,k))*xi2nd(1:3,i,j,k)) * cmplx(wgt,0.0,pReal)
|
||||||
else
|
else
|
||||||
vectorField_fourier(1:3,i,j,k) = cmplx(0.0,0.0,pReal)
|
vectorField_fourier(1:3,i,j,k) = cmplx(0.0,0.0,pReal)
|
||||||
endif
|
end if
|
||||||
enddo; enddo; enddo
|
end do; end do; end do
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
|
|
||||||
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
|
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
|
||||||
|
|
||||||
|
|
31
src/math.f90
31
src/math.f90
|
@ -262,9 +262,8 @@ pure function math_identity4th()
|
||||||
math_identity4th(i,j,k,l) = 0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
|
math_identity4th(i,j,k,l) = 0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,3; do j=1,3; do k=1,3; do l=1,3
|
forall(i=1:3, j=1:3, k=1:3, l=1:3) &
|
||||||
math_identity4th(i,j,k,l) = 0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
|
math_identity4th(i,j,k,l) = 0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
|
||||||
enddo; enddo; enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_identity4th
|
end function math_identity4th
|
||||||
|
@ -338,9 +337,7 @@ pure function math_outer(A,B)
|
||||||
math_outer(i,j) = A(i)*B(j)
|
math_outer(i,j) = A(i)*B(j)
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,size(A,1); do j=1,size(B,1)
|
forall(i=1:size(A,1), j=1:size(B,1)) math_outer(i,j) = A(i)*B(j)
|
||||||
math_outer(i,j) = A(i)*B(j)
|
|
||||||
enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_outer
|
end function math_outer
|
||||||
|
@ -387,9 +384,7 @@ pure function math_mul3333xx33(A,B)
|
||||||
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,3; do j=1,3
|
forall (i=1:3, j=1:3) math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
||||||
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
|
||||||
enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_mul3333xx33
|
end function math_mul3333xx33
|
||||||
|
@ -411,9 +406,7 @@ pure function math_mul3333xx3333(A,B)
|
||||||
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,3; do j=1,3; do k=1,3; do l=1,3
|
forall(i=1:3, j=1:3, k=1:3, l=1:3) math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
||||||
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
|
||||||
enddo; enddo; enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_mul3333xx3333
|
end function math_mul3333xx3333
|
||||||
|
@ -752,9 +745,7 @@ pure function math_3333to99(m3333)
|
||||||
math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
|
math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,9; do j=1,9
|
forall(i=1:9, j=1:9) math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
|
||||||
math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
|
|
||||||
enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_3333to99
|
end function math_3333to99
|
||||||
|
@ -775,9 +766,7 @@ pure function math_99to3333(m99)
|
||||||
math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
|
math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,9; do j=1,9
|
forall(i=1:9, j=1:9) math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
|
||||||
math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
|
|
||||||
enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_99to3333
|
end function math_99to3333
|
||||||
|
@ -810,9 +799,7 @@ pure function math_sym3333to66(m3333,weighted)
|
||||||
math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
|
math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
|
||||||
enddo
|
enddo
|
||||||
#else
|
#else
|
||||||
do i=1,6; do j=1,6
|
forall(i=1:6, j=1:6) math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
|
||||||
math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
|
|
||||||
enddo; enddo
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_sym3333to66
|
end function math_sym3333to66
|
||||||
|
@ -950,9 +937,7 @@ pure function math_3333toVoigt66_stiffness(C) result(C_tilde)
|
||||||
C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
|
C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
|
||||||
end do
|
end do
|
||||||
#else
|
#else
|
||||||
do i=1,6; do j=1,6
|
forall(i=1:6, j=1:6) C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
|
||||||
C_tilde(i,j) = C(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j))
|
|
||||||
end do; end do
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
end function math_3333toVoigt66_stiffness
|
end function math_3333toVoigt66_stiffness
|
||||||
|
|
|
@ -382,7 +382,6 @@ module function plastic_deltaState(ph, en) result(broken)
|
||||||
real(pReal), dimension(3,3) :: &
|
real(pReal), dimension(3,3) :: &
|
||||||
Mp
|
Mp
|
||||||
integer :: &
|
integer :: &
|
||||||
myOffset, &
|
|
||||||
mySize
|
mySize
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue