fixed periodic averaging to work with multi-dimensional data

option --periodic now takes list of labels that undergo periodoc domain averaging, i.e. incompatible to former API!
This commit is contained in:
Philip Eisenlohr 2016-11-29 14:37:43 -05:00
parent 7ebd688885
commit 43c1880195
1 changed files with 20 additions and 22 deletions

View File

@ -7,14 +7,11 @@ import numpy as np
from optparse import OptionParser, OptionGroup
import damask
#"https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"
def periodicAverage(Points, Box):
theta = (Points/Box[1]) * (2.0*np.pi)
xi = np.cos(theta)
zeta = np.sin(theta)
theta_avg = np.arctan2(-1.0*zeta.mean(), -1.0*xi.mean()) + np.pi
Pmean = Box[1] * theta_avg/(2.0*np.pi)
return Pmean
def periodicAverage(coords, limits):
"""Centroid in periodic domain, see https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"""
theta = 2.0*np.pi * (coords - limits[0])/(limits[1] - limits[0])
theta_avg = np.pi + np.arctan2(-np.sin(theta).mean(axis=0), -np.cos(theta).mean(axis=0))
return limits[0] + theta_avg * (limits[1] - limits[0])/2.0/np.pi
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
@ -26,6 +23,7 @@ scriptID = ' '.join([scriptName,damask.version])
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Apply a user-specified function to condense all rows for which column 'label' has identical values into a single row.
Output table will contain as many rows as there are different (unique) values in the grouping column.
Periodic domain averaging of coordinate values is supported.
Examples:
For grain averaged values, replace all rows of particular 'texture' with a single row containing their average.
@ -43,23 +41,22 @@ parser.add_option('-a','--all',
dest = 'all',
action = 'store_true',
help = 'apply mapping function also to grouping column')
group = OptionGroup(parser, "periodic averaging", "")
group.add_option('-p','--periodic',
dest = 'periodic',
action = 'store_true',
help = 'calculate average in periodic space defined by periodic length [%default]')
group.add_option('--boundary',
dest = 'boundary', metavar = 'MIN MAX',
type = 'float', nargs = 2,
help = 'define periodic box end points %default')
group.add_option ('-p','--periodic',
dest = 'periodic',
action = 'extend', metavar = '<string LIST>',
help = 'coordinate label(s) to average across periodic domain')
group.add_option ('--limits',
dest = 'boundary',
type = 'float', metavar = 'float float', nargs = 2,
help = 'min and max of periodic domain %default')
parser.add_option_group(group)
parser.set_defaults(function = 'np.average',
all = False,
periodic = False,
boundary = [0.0, 1.0])
(options,filenames) = parser.parse_args()
@ -108,6 +105,7 @@ for name in filenames:
# ------------------------------------------ process data --------------------------------
table.data_readArray()
indexrange = table.label_indexrange(options.periodic) if options.periodic is not None else []
rows,cols = table.data.shape
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
@ -117,10 +115,10 @@ for name in filenames:
grpTable = np.empty((len(values), cols)) # initialize output
for i in range(len(values)): # iterate over groups (unique values in grpColumn)
if options.periodic :
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function
else :
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply (general) mapping function
grpTable[i,indexrange] = \
periodicAverage(table.data[index[i]:index[i+1],indexrange],options.boundary) # apply periodicAverage mapping function
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
table.data = grpTable