fixed periodic averaging to work with multi-dimensional data
option --periodic now takes list of labels that undergo periodoc domain averaging, i.e. incompatible to former API!
This commit is contained in:
parent
7ebd688885
commit
43c1880195
|
@ -7,14 +7,11 @@ import numpy as np
|
|||
from optparse import OptionParser, OptionGroup
|
||||
import damask
|
||||
|
||||
#"https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"
|
||||
def periodicAverage(Points, Box):
|
||||
theta = (Points/Box[1]) * (2.0*np.pi)
|
||||
xi = np.cos(theta)
|
||||
zeta = np.sin(theta)
|
||||
theta_avg = np.arctan2(-1.0*zeta.mean(), -1.0*xi.mean()) + np.pi
|
||||
Pmean = Box[1] * theta_avg/(2.0*np.pi)
|
||||
return Pmean
|
||||
def periodicAverage(coords, limits):
|
||||
"""Centroid in periodic domain, see https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions"""
|
||||
theta = 2.0*np.pi * (coords - limits[0])/(limits[1] - limits[0])
|
||||
theta_avg = np.pi + np.arctan2(-np.sin(theta).mean(axis=0), -np.cos(theta).mean(axis=0))
|
||||
return limits[0] + theta_avg * (limits[1] - limits[0])/2.0/np.pi
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
@ -26,6 +23,7 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Apply a user-specified function to condense all rows for which column 'label' has identical values into a single row.
|
||||
Output table will contain as many rows as there are different (unique) values in the grouping column.
|
||||
Periodic domain averaging of coordinate values is supported.
|
||||
|
||||
Examples:
|
||||
For grain averaged values, replace all rows of particular 'texture' with a single row containing their average.
|
||||
|
@ -43,23 +41,22 @@ parser.add_option('-a','--all',
|
|||
dest = 'all',
|
||||
action = 'store_true',
|
||||
help = 'apply mapping function also to grouping column')
|
||||
|
||||
|
||||
group = OptionGroup(parser, "periodic averaging", "")
|
||||
|
||||
group.add_option('-p','--periodic',
|
||||
dest = 'periodic',
|
||||
action = 'store_true',
|
||||
help = 'calculate average in periodic space defined by periodic length [%default]')
|
||||
group.add_option('--boundary',
|
||||
dest = 'boundary', metavar = 'MIN MAX',
|
||||
type = 'float', nargs = 2,
|
||||
help = 'define periodic box end points %default')
|
||||
group.add_option ('-p','--periodic',
|
||||
dest = 'periodic',
|
||||
action = 'extend', metavar = '<string LIST>',
|
||||
help = 'coordinate label(s) to average across periodic domain')
|
||||
group.add_option ('--limits',
|
||||
dest = 'boundary',
|
||||
type = 'float', metavar = 'float float', nargs = 2,
|
||||
help = 'min and max of periodic domain %default')
|
||||
|
||||
parser.add_option_group(group)
|
||||
|
||||
parser.set_defaults(function = 'np.average',
|
||||
all = False,
|
||||
periodic = False,
|
||||
boundary = [0.0, 1.0])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
@ -108,6 +105,7 @@ for name in filenames:
|
|||
# ------------------------------------------ process data --------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
indexrange = table.label_indexrange(options.periodic) if options.periodic is not None else []
|
||||
rows,cols = table.data.shape
|
||||
|
||||
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
|
||||
|
@ -117,10 +115,10 @@ for name in filenames:
|
|||
grpTable = np.empty((len(values), cols)) # initialize output
|
||||
|
||||
for i in range(len(values)): # iterate over groups (unique values in grpColumn)
|
||||
if options.periodic :
|
||||
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function
|
||||
else :
|
||||
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
|
||||
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply (general) mapping function
|
||||
grpTable[i,indexrange] = \
|
||||
periodicAverage(table.data[index[i]:index[i+1],indexrange],options.boundary) # apply periodicAverage mapping function
|
||||
|
||||
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
|
||||
|
||||
table.data = grpTable
|
||||
|
|
Loading…
Reference in New Issue