This commit is contained in:
Martin Diehl 2019-05-11 11:51:57 +02:00
parent 90440b50b7
commit 436dae8dd5
1 changed files with 874 additions and 1044 deletions

View File

@ -6,12 +6,10 @@
!> @brief Mathematical library, including random number generation and tensor representations
!--------------------------------------------------------------------------------------------------
module math
use prec, only: &
pReal
use prec
use future
implicit none
private
real(pReal), parameter, public :: PI = acos(-1.0_pReal) !< ratio of a circle's circumference to its diameter
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
@ -76,79 +74,13 @@ module math
math_mul3x3
!---------------------------------------------------------------------------------------------------
public :: &
math_init, &
math_sort, &
math_expand, &
math_range, &
math_identity2nd, &
math_identity4th, &
math_civita, &
math_delta, &
math_cross, &
math_outer, &
math_inner, &
math_mul33xx33, &
math_mul3333xx33, &
math_mul3333xx3333, &
math_exp33 , &
math_inv33, &
math_invert33, &
math_invSym3333, &
math_invert, &
math_invert2, &
math_symmetric33, &
math_symmetric66, &
math_skew33, &
math_spherical33, &
math_deviatoric33, &
math_equivStrain33, &
math_equivStress33, &
math_trace33, &
math_det33, &
math_33to9, &
math_9to33, &
math_sym33to6, &
math_6toSym33, &
math_3333to99, &
math_99to3333, &
math_sym3333to66, &
math_66toSym3333, &
math_Voigt66to3333, &
math_qMul, &
math_qConj, &
math_qRot, &
math_RtoEuler, &
math_RtoQ, &
math_EulerToR, &
math_axisAngleToR, &
math_qToRodrig, &
math_sampleGaussVar, &
math_eigenvectorBasisSym33, &
math_eigenvectorBasisSym33_log, &
math_eigenvectorBasisSym, &
math_eigenValuesVectorsSym33, &
math_eigenValuesVectorsSym, &
math_rotationalPart33, &
math_invariantsSym33, &
math_eigenvaluesSym33, &
math_factorial, &
math_binomial, &
math_multinomial, &
math_volTetrahedron, &
math_areaTriangle, &
math_rotate_forward33, &
math_rotate_backward33, &
math_rotate_forward3333, &
math_clip
private :: &
math_check
contains
!--------------------------------------------------------------------------------------------------
!> @brief initialization of random seed generator
!> @brief initialization of random seed generator and internal checks
!--------------------------------------------------------------------------------------------------
subroutine math_init
use numerics, only: &
@ -184,7 +116,7 @@ subroutine math_init
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
call random_seed(put = randInit)
call math_check()
call math_check
end subroutine math_init
@ -192,7 +124,6 @@ end subroutine math_init
!> @brief check correctness of (some) math functions
!--------------------------------------------------------------------------------------------------
subroutine math_check
use prec, only: tol_math_check
use IO, only: IO_error
character(len=64) :: error_msg
@ -252,7 +183,7 @@ recursive subroutine math_sort(a, istart, iend, sortDim)
call math_sort(a, ipivot+1, e, d)
endif
!--------------------------------------------------------------------------------------------------
contains
!-------------------------------------------------------------------------------------------------
@ -304,8 +235,7 @@ pure function math_expand(what,how)
real(pReal), dimension(sum(how)) :: math_expand
integer :: i
if (sum(how) == 0) &
return
if (sum(how) == 0) return
do i = 1, size(how)
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
@ -338,7 +268,9 @@ pure function math_identity2nd(dimen)
real(pReal), dimension(dimen,dimen) :: math_identity2nd
math_identity2nd = 0.0_pReal
forall(i=1:dimen) math_identity2nd(i,i) = 1.0_pReal
do i=1, dimen
math_identity2nd(i,i) = 1.0_pReal
enddo
end function math_identity2nd
@ -484,99 +416,6 @@ pure function math_mul3333xx3333(A,B)
end function math_mul3333xx3333
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 33x33 = 33
!--------------------------------------------------------------------------------------------------
pure function math_mul33x33(A,B)
real(pReal), dimension(3,3) :: math_mul33x33
real(pReal), dimension(3,3), intent(in) :: A,B
integer :: i,j
forall(i=1:3,j=1:3) math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
end function math_mul33x33
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 66x66 = 66
!--------------------------------------------------------------------------------------------------
pure function math_mul66x66(A,B)
real(pReal), dimension(6,6) :: math_mul66x66
real(pReal), dimension(6,6), intent(in) :: A,B
integer :: i,j
forall(i=1:6,j=1:6) &
math_mul66x66(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) &
+ A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
end function math_mul66x66
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 99x99 = 99
!--------------------------------------------------------------------------------------------------
pure function math_mul99x99(A,B)
real(pReal), dimension(9,9) :: math_mul99x99
real(pReal), dimension(9,9), intent(in) :: A,B
integer i,j
forall(i=1:9,j=1:9) &
math_mul99x99(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) &
+ A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) &
+ A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
end function math_mul99x99
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 33x3 = 3
!--------------------------------------------------------------------------------------------------
pure function math_mul33x3(A,B)
real(pReal), dimension(3) :: math_mul33x3
real(pReal), dimension(3,3), intent(in) :: A
real(pReal), dimension(3), intent(in) :: B
integer :: i
forall (i=1:3) math_mul33x3(i) = sum(A(i,1:3)*B)
end function math_mul33x3
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication complex(33) x real(3) = complex(3)
!--------------------------------------------------------------------------------------------------
pure function math_mul33x3_complex(A,B)
complex(pReal), dimension(3) :: math_mul33x3_complex
complex(pReal), dimension(3,3), intent(in) :: A
real(pReal), dimension(3), intent(in) :: B
integer :: i
forall (i=1:3) math_mul33x3_complex(i) = sum(A(i,1:3)*cmplx(B,0.0_pReal,pReal))
end function math_mul33x3_complex
!--------------------------------------------------------------------------------------------------
!> @brief matrix multiplication 66x6 = 6
!--------------------------------------------------------------------------------------------------
pure function math_mul66x6(A,B)
real(pReal), dimension(6) :: math_mul66x6
real(pReal), dimension(6,6), intent(in) :: A
real(pReal), dimension(6), intent(in) :: B
integer :: i
forall (i=1:6) math_mul66x6(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) &
+ A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
end function math_mul66x6
!--------------------------------------------------------------------------------------------------
!> @brief 3x3 matrix exponential up to series approximation order n (default 5)
!--------------------------------------------------------------------------------------------------
@ -607,8 +446,6 @@ end function math_exp33
! if determinant is close to zero
!--------------------------------------------------------------------------------------------------
pure function math_inv33(A)
use prec, only: &
dNeq0
real(pReal),dimension(3,3),intent(in) :: A
real(pReal) :: DetA
@ -644,8 +481,6 @@ end function math_inv33
! ToDo: Output arguments should be first
!--------------------------------------------------------------------------------------------------
pure subroutine math_invert33(A, InvA, DetA, error)
use prec, only: &
dEq0
logical, intent(out) :: error
real(pReal),dimension(3,3),intent(in) :: A
@ -907,7 +742,9 @@ pure function math_33to9(m33)
integer :: i
forall(i=1:9) math_33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
do i = 1, 9
math_33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
enddo
end function math_33to9
@ -922,7 +759,9 @@ pure function math_9to33(v9)
integer :: i
forall(i=1:9) math_9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
do i = 1, 9
math_9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
enddo
end function math_9to33
@ -948,7 +787,9 @@ pure function math_sym33to6(m33,weighted)
w = nrmMandel
endif
forall(i=1:6) math_sym33to6(i) = w(i)*m33(mapNye(1,i),mapNye(2,i))
do i = 1, 6
math_sym33to6(i) = w(i)*m33(mapNye(1,i),mapNye(2,i))
enddo
end function math_sym33to6
@ -992,8 +833,9 @@ pure function math_3333to99(m3333)
integer :: i,j
forall(i=1:9,j=1:9) &
do i=1,9; do j=1,9
math_3333to99(i,j) = m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
enddo; enddo
end function math_3333to99
@ -1008,8 +850,9 @@ pure function math_99to3333(m99)
integer :: i,j
forall(i=1:9,j=1:9) &
do i=1,9; do j=1,9
math_99to3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
enddo; enddo
end function math_99to3333
@ -1035,8 +878,9 @@ pure function math_sym3333to66(m3333,weighted)
w = nrmMandel
endif
forall(i=1:6,j=1:6) &
do i=1,6; do j=1,6
math_sym3333to66(i,j) = w(i)*w(j)*m3333(mapNye(1,i),mapNye(2,i),mapNye(1,j),mapNye(2,j))
enddo; enddo
end function math_sym3333to66
@ -1062,7 +906,7 @@ pure function math_66toSym3333(m66,weighted)
w = invnrmMandel
endif
do i=1,6; do j=1, 6
do i=1,6; do j=1,6
math_66toSym3333(mapNye(1,i),mapNye(2,i),mapNye(1,j),mapNye(2,j)) = w(i)*w(j)*m66(i,j)
math_66toSym3333(mapNye(2,i),mapNye(1,i),mapNye(1,j),mapNye(2,j)) = w(i)*w(j)*m66(i,j)
math_66toSym3333(mapNye(1,i),mapNye(2,i),mapNye(2,j),mapNye(1,j)) = w(i)*w(j)*m66(i,j)
@ -1163,7 +1007,6 @@ pure function math_RtoEuler(R)
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
! calculate PHI
math_RtoEuler(2) = acos(math_clip(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
@ -1316,10 +1159,6 @@ end function math_axisAngleToR
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
!--------------------------------------------------------------------------------------------------
pure function math_qToRodrig(Q)
use, intrinsic :: &
IEEE_arithmetic
use prec, only: &
tol_math_check
real(pReal), dimension(4), intent(in) :: Q
real(pReal), dimension(3) :: math_qToRodrig
@ -1333,8 +1172,6 @@ end function math_qToRodrig
!> @brief draw a random sample from Gauss variable
!--------------------------------------------------------------------------------------------------
real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
use prec, only: &
tol_math_check
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
stddev ! standard deviation of gauss distribution
@ -1408,7 +1245,7 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
U = max(T, T**2)
threshold = sqrt(5.68e-14_pReal * U**2)
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
vectors(2,2) + m(2, 3) * values(1), &
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
@ -1421,7 +1258,7 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
vectors(1:3,1) = vectors(1:3, 1) / norm
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
vectors(2,2) + m(2, 3) * values(2), &
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
@ -1433,7 +1270,7 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
endif fallback2
vectors(1:3,2) = vectors(1:3, 2) / norm
! Calculate third eigenvector according to v[2] = v[0] x v[1]
! Calculate third eigenvector according to v[2] = v[0] x v[1]
vectors(1:3,3) = math_cross(vectors(1:3,1),vectors(1:3,2))
end subroutine math_eigenValuesVectorsSym33
@ -1483,7 +1320,7 @@ pure function math_eigenvectorBasisSym33(m)
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
values = invariants(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
! this is not really correct, but at least the basis is correct
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
@ -1547,7 +1384,7 @@ pure function math_eigenvectorBasisSym33_log(m)
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
values = invariants(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
! this is not really correct, but at least the basis is correct
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
@ -1595,8 +1432,6 @@ end function math_eigenvectorBasisSym33_log
!> @brief rotational part from polar decomposition of 33 tensor m
!--------------------------------------------------------------------------------------------------
function math_rotationalPart33(m)
use prec, only: &
dEq0
use IO, only: &
IO_warning
@ -1622,8 +1457,6 @@ end function math_rotationalPart33
! will return NaN on error
!--------------------------------------------------------------------------------------------------
function math_eigenvaluesSym(m)
use, intrinsic :: &
IEEE_arithmetic
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
@ -1767,7 +1600,6 @@ end function math_areaTriangle
!--------------------------------------------------------------------------------------------------
pure function math_rotate_forward33(tensor,rot_tensor)
real(pReal), dimension(3,3) :: math_rotate_forward33
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
@ -1815,8 +1647,6 @@ end function math_rotate_forward3333
! Will return NaN if left > right
!--------------------------------------------------------------------------------------------------
real(pReal) pure elemental function math_clip(a, left, right)
use, intrinsic :: &
IEEE_arithmetic
real(pReal), intent(in) :: a
real(pReal), intent(in), optional :: left, right