cleaning
This commit is contained in:
parent
90440b50b7
commit
436dae8dd5
src
228
src/math.f90
228
src/math.f90
|
@ -6,12 +6,10 @@
|
|||
!> @brief Mathematical library, including random number generation and tensor representations
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
module math
|
||||
use prec, only: &
|
||||
pReal
|
||||
use prec
|
||||
use future
|
||||
|
||||
implicit none
|
||||
private
|
||||
real(pReal), parameter, public :: PI = acos(-1.0_pReal) !< ratio of a circle's circumference to its diameter
|
||||
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
|
||||
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
|
||||
|
@ -76,79 +74,13 @@ module math
|
|||
math_mul3x3
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
public :: &
|
||||
math_init, &
|
||||
math_sort, &
|
||||
math_expand, &
|
||||
math_range, &
|
||||
math_identity2nd, &
|
||||
math_identity4th, &
|
||||
math_civita, &
|
||||
math_delta, &
|
||||
math_cross, &
|
||||
math_outer, &
|
||||
math_inner, &
|
||||
math_mul33xx33, &
|
||||
math_mul3333xx33, &
|
||||
math_mul3333xx3333, &
|
||||
math_exp33 , &
|
||||
math_inv33, &
|
||||
math_invert33, &
|
||||
math_invSym3333, &
|
||||
math_invert, &
|
||||
math_invert2, &
|
||||
math_symmetric33, &
|
||||
math_symmetric66, &
|
||||
math_skew33, &
|
||||
math_spherical33, &
|
||||
math_deviatoric33, &
|
||||
math_equivStrain33, &
|
||||
math_equivStress33, &
|
||||
math_trace33, &
|
||||
math_det33, &
|
||||
math_33to9, &
|
||||
math_9to33, &
|
||||
math_sym33to6, &
|
||||
math_6toSym33, &
|
||||
math_3333to99, &
|
||||
math_99to3333, &
|
||||
math_sym3333to66, &
|
||||
math_66toSym3333, &
|
||||
math_Voigt66to3333, &
|
||||
math_qMul, &
|
||||
math_qConj, &
|
||||
math_qRot, &
|
||||
math_RtoEuler, &
|
||||
math_RtoQ, &
|
||||
math_EulerToR, &
|
||||
math_axisAngleToR, &
|
||||
math_qToRodrig, &
|
||||
math_sampleGaussVar, &
|
||||
math_eigenvectorBasisSym33, &
|
||||
math_eigenvectorBasisSym33_log, &
|
||||
math_eigenvectorBasisSym, &
|
||||
math_eigenValuesVectorsSym33, &
|
||||
math_eigenValuesVectorsSym, &
|
||||
math_rotationalPart33, &
|
||||
math_invariantsSym33, &
|
||||
math_eigenvaluesSym33, &
|
||||
math_factorial, &
|
||||
math_binomial, &
|
||||
math_multinomial, &
|
||||
math_volTetrahedron, &
|
||||
math_areaTriangle, &
|
||||
math_rotate_forward33, &
|
||||
math_rotate_backward33, &
|
||||
math_rotate_forward3333, &
|
||||
math_clip
|
||||
private :: &
|
||||
math_check
|
||||
|
||||
contains
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief initialization of random seed generator
|
||||
!> @brief initialization of random seed generator and internal checks
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine math_init
|
||||
use numerics, only: &
|
||||
|
@ -184,7 +116,7 @@ subroutine math_init
|
|||
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
|
||||
|
||||
call random_seed(put = randInit)
|
||||
call math_check()
|
||||
call math_check
|
||||
|
||||
end subroutine math_init
|
||||
|
||||
|
@ -192,7 +124,6 @@ end subroutine math_init
|
|||
!> @brief check correctness of (some) math functions
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine math_check
|
||||
use prec, only: tol_math_check
|
||||
use IO, only: IO_error
|
||||
|
||||
character(len=64) :: error_msg
|
||||
|
@ -252,7 +183,7 @@ recursive subroutine math_sort(a, istart, iend, sortDim)
|
|||
call math_sort(a, ipivot+1, e, d)
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
||||
contains
|
||||
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
|
@ -304,8 +235,7 @@ pure function math_expand(what,how)
|
|||
real(pReal), dimension(sum(how)) :: math_expand
|
||||
integer :: i
|
||||
|
||||
if (sum(how) == 0) &
|
||||
return
|
||||
if (sum(how) == 0) return
|
||||
|
||||
do i = 1, size(how)
|
||||
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
|
||||
|
@ -338,7 +268,9 @@ pure function math_identity2nd(dimen)
|
|||
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
||||
|
||||
math_identity2nd = 0.0_pReal
|
||||
forall(i=1:dimen) math_identity2nd(i,i) = 1.0_pReal
|
||||
do i=1, dimen
|
||||
math_identity2nd(i,i) = 1.0_pReal
|
||||
enddo
|
||||
|
||||
end function math_identity2nd
|
||||
|
||||
|
@ -484,99 +416,6 @@ pure function math_mul3333xx3333(A,B)
|
|||
end function math_mul3333xx3333
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 33x33 = 33
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul33x33(A,B)
|
||||
|
||||
real(pReal), dimension(3,3) :: math_mul33x33
|
||||
real(pReal), dimension(3,3), intent(in) :: A,B
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1:3,j=1:3) math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
||||
|
||||
end function math_mul33x33
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 66x66 = 66
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul66x66(A,B)
|
||||
|
||||
real(pReal), dimension(6,6) :: math_mul66x66
|
||||
real(pReal), dimension(6,6), intent(in) :: A,B
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1:6,j=1:6) &
|
||||
math_mul66x66(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) &
|
||||
+ A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
||||
|
||||
end function math_mul66x66
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 99x99 = 99
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul99x99(A,B)
|
||||
|
||||
real(pReal), dimension(9,9) :: math_mul99x99
|
||||
real(pReal), dimension(9,9), intent(in) :: A,B
|
||||
integer i,j
|
||||
|
||||
forall(i=1:9,j=1:9) &
|
||||
math_mul99x99(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) &
|
||||
+ A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) &
|
||||
+ A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
||||
|
||||
end function math_mul99x99
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 33x3 = 3
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul33x3(A,B)
|
||||
|
||||
real(pReal), dimension(3) :: math_mul33x3
|
||||
real(pReal), dimension(3,3), intent(in) :: A
|
||||
real(pReal), dimension(3), intent(in) :: B
|
||||
integer :: i
|
||||
|
||||
forall (i=1:3) math_mul33x3(i) = sum(A(i,1:3)*B)
|
||||
|
||||
end function math_mul33x3
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication complex(33) x real(3) = complex(3)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul33x3_complex(A,B)
|
||||
|
||||
complex(pReal), dimension(3) :: math_mul33x3_complex
|
||||
complex(pReal), dimension(3,3), intent(in) :: A
|
||||
real(pReal), dimension(3), intent(in) :: B
|
||||
integer :: i
|
||||
|
||||
forall (i=1:3) math_mul33x3_complex(i) = sum(A(i,1:3)*cmplx(B,0.0_pReal,pReal))
|
||||
|
||||
end function math_mul33x3_complex
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief matrix multiplication 66x6 = 6
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_mul66x6(A,B)
|
||||
|
||||
real(pReal), dimension(6) :: math_mul66x6
|
||||
real(pReal), dimension(6,6), intent(in) :: A
|
||||
real(pReal), dimension(6), intent(in) :: B
|
||||
integer :: i
|
||||
|
||||
forall (i=1:6) math_mul66x6(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) &
|
||||
+ A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
||||
|
||||
end function math_mul66x6
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief 3x3 matrix exponential up to series approximation order n (default 5)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -607,8 +446,6 @@ end function math_exp33
|
|||
! if determinant is close to zero
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_inv33(A)
|
||||
use prec, only: &
|
||||
dNeq0
|
||||
|
||||
real(pReal),dimension(3,3),intent(in) :: A
|
||||
real(pReal) :: DetA
|
||||
|
@ -644,8 +481,6 @@ end function math_inv33
|
|||
! ToDo: Output arguments should be first
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine math_invert33(A, InvA, DetA, error)
|
||||
use prec, only: &
|
||||
dEq0
|
||||
|
||||
logical, intent(out) :: error
|
||||
real(pReal),dimension(3,3),intent(in) :: A
|
||||
|
@ -907,7 +742,9 @@ pure function math_33to9(m33)
|
|||
|
||||
integer :: i
|
||||
|
||||
forall(i=1:9) math_33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
||||
do i = 1, 9
|
||||
math_33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
||||
enddo
|
||||
|
||||
end function math_33to9
|
||||
|
||||
|
@ -922,7 +759,9 @@ pure function math_9to33(v9)
|
|||
|
||||
integer :: i
|
||||
|
||||
forall(i=1:9) math_9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
||||
do i = 1, 9
|
||||
math_9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
||||
enddo
|
||||
|
||||
end function math_9to33
|
||||
|
||||
|
@ -948,7 +787,9 @@ pure function math_sym33to6(m33,weighted)
|
|||
w = nrmMandel
|
||||
endif
|
||||
|
||||
forall(i=1:6) math_sym33to6(i) = w(i)*m33(mapNye(1,i),mapNye(2,i))
|
||||
do i = 1, 6
|
||||
math_sym33to6(i) = w(i)*m33(mapNye(1,i),mapNye(2,i))
|
||||
enddo
|
||||
|
||||
end function math_sym33to6
|
||||
|
||||
|
@ -992,8 +833,9 @@ pure function math_3333to99(m3333)
|
|||
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1:9,j=1:9) &
|
||||
do i=1,9; do j=1,9
|
||||
math_3333to99(i,j) = m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
||||
enddo; enddo
|
||||
|
||||
end function math_3333to99
|
||||
|
||||
|
@ -1008,8 +850,9 @@ pure function math_99to3333(m99)
|
|||
|
||||
integer :: i,j
|
||||
|
||||
forall(i=1:9,j=1:9) &
|
||||
do i=1,9; do j=1,9
|
||||
math_99to3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
||||
enddo; enddo
|
||||
|
||||
end function math_99to3333
|
||||
|
||||
|
@ -1035,8 +878,9 @@ pure function math_sym3333to66(m3333,weighted)
|
|||
w = nrmMandel
|
||||
endif
|
||||
|
||||
forall(i=1:6,j=1:6) &
|
||||
do i=1,6; do j=1,6
|
||||
math_sym3333to66(i,j) = w(i)*w(j)*m3333(mapNye(1,i),mapNye(2,i),mapNye(1,j),mapNye(2,j))
|
||||
enddo; enddo
|
||||
|
||||
end function math_sym3333to66
|
||||
|
||||
|
@ -1062,7 +906,7 @@ pure function math_66toSym3333(m66,weighted)
|
|||
w = invnrmMandel
|
||||
endif
|
||||
|
||||
do i=1,6; do j=1, 6
|
||||
do i=1,6; do j=1,6
|
||||
math_66toSym3333(mapNye(1,i),mapNye(2,i),mapNye(1,j),mapNye(2,j)) = w(i)*w(j)*m66(i,j)
|
||||
math_66toSym3333(mapNye(2,i),mapNye(1,i),mapNye(1,j),mapNye(2,j)) = w(i)*w(j)*m66(i,j)
|
||||
math_66toSym3333(mapNye(1,i),mapNye(2,i),mapNye(2,j),mapNye(1,j)) = w(i)*w(j)*m66(i,j)
|
||||
|
@ -1163,7 +1007,6 @@ pure function math_RtoEuler(R)
|
|||
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
||||
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
||||
|
||||
! calculate PHI
|
||||
math_RtoEuler(2) = acos(math_clip(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
|
||||
|
||||
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
|
||||
|
@ -1316,10 +1159,6 @@ end function math_axisAngleToR
|
|||
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToRodrig(Q)
|
||||
use, intrinsic :: &
|
||||
IEEE_arithmetic
|
||||
use prec, only: &
|
||||
tol_math_check
|
||||
|
||||
real(pReal), dimension(4), intent(in) :: Q
|
||||
real(pReal), dimension(3) :: math_qToRodrig
|
||||
|
@ -1333,8 +1172,6 @@ end function math_qToRodrig
|
|||
!> @brief draw a random sample from Gauss variable
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
|
||||
use prec, only: &
|
||||
tol_math_check
|
||||
|
||||
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
|
||||
stddev ! standard deviation of gauss distribution
|
||||
|
@ -1408,7 +1245,7 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
|
|||
U = max(T, T**2)
|
||||
threshold = sqrt(5.68e-14_pReal * U**2)
|
||||
|
||||
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
|
||||
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
|
||||
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
|
||||
vectors(2,2) + m(2, 3) * values(1), &
|
||||
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
|
||||
|
@ -1421,7 +1258,7 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
|
|||
|
||||
vectors(1:3,1) = vectors(1:3, 1) / norm
|
||||
|
||||
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
|
||||
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
|
||||
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
|
||||
vectors(2,2) + m(2, 3) * values(2), &
|
||||
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
|
||||
|
@ -1433,7 +1270,7 @@ subroutine math_eigenValuesVectorsSym33(m,values,vectors)
|
|||
endif fallback2
|
||||
vectors(1:3,2) = vectors(1:3, 2) / norm
|
||||
|
||||
! Calculate third eigenvector according to v[2] = v[0] x v[1]
|
||||
! Calculate third eigenvector according to v[2] = v[0] x v[1]
|
||||
vectors(1:3,3) = math_cross(vectors(1:3,1),vectors(1:3,2))
|
||||
|
||||
end subroutine math_eigenValuesVectorsSym33
|
||||
|
@ -1483,7 +1320,7 @@ pure function math_eigenvectorBasisSym33(m)
|
|||
|
||||
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
|
||||
values = invariants(1)/3.0_pReal
|
||||
! this is not really correct, but at least the basis is correct
|
||||
! this is not really correct, but at least the basis is correct
|
||||
EB(1,1,1)=1.0_pReal
|
||||
EB(2,2,2)=1.0_pReal
|
||||
EB(3,3,3)=1.0_pReal
|
||||
|
@ -1547,7 +1384,7 @@ pure function math_eigenvectorBasisSym33_log(m)
|
|||
|
||||
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
|
||||
values = invariants(1)/3.0_pReal
|
||||
! this is not really correct, but at least the basis is correct
|
||||
! this is not really correct, but at least the basis is correct
|
||||
EB(1,1,1)=1.0_pReal
|
||||
EB(2,2,2)=1.0_pReal
|
||||
EB(3,3,3)=1.0_pReal
|
||||
|
@ -1595,8 +1432,6 @@ end function math_eigenvectorBasisSym33_log
|
|||
!> @brief rotational part from polar decomposition of 33 tensor m
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_rotationalPart33(m)
|
||||
use prec, only: &
|
||||
dEq0
|
||||
use IO, only: &
|
||||
IO_warning
|
||||
|
||||
|
@ -1622,8 +1457,6 @@ end function math_rotationalPart33
|
|||
! will return NaN on error
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_eigenvaluesSym(m)
|
||||
use, intrinsic :: &
|
||||
IEEE_arithmetic
|
||||
|
||||
real(pReal), dimension(:,:), intent(in) :: m
|
||||
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
|
||||
|
@ -1767,7 +1600,6 @@ end function math_areaTriangle
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_rotate_forward33(tensor,rot_tensor)
|
||||
|
||||
|
||||
real(pReal), dimension(3,3) :: math_rotate_forward33
|
||||
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
||||
|
||||
|
@ -1815,8 +1647,6 @@ end function math_rotate_forward3333
|
|||
! Will return NaN if left > right
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) pure elemental function math_clip(a, left, right)
|
||||
use, intrinsic :: &
|
||||
IEEE_arithmetic
|
||||
|
||||
real(pReal), intent(in) :: a
|
||||
real(pReal), intent(in), optional :: left, right
|
||||
|
|
Loading…
Reference in New Issue