started to restructure fitting to criterion
This commit is contained in:
parent
4e3a202f02
commit
42032cbc25
|
@ -1,19 +1,20 @@
|
||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
# -*- coding: UTF-8 no BOM -*-
|
# -*- coding: UTF-8 no BOM -*-
|
||||||
|
|
||||||
|
import threading,time,os,subprocess,shlex,string
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.optimize import curve_fit
|
from scipy.optimize import curve_fit
|
||||||
from scipy.linalg import svd
|
from scipy.linalg import svd
|
||||||
import threading,time,os,subprocess,shlex,string
|
|
||||||
import damask
|
|
||||||
from optparse import OptionParser
|
from optparse import OptionParser
|
||||||
|
import damask
|
||||||
|
|
||||||
scriptID='aa'
|
scriptID = '$Id$'
|
||||||
popt1=[np.ones(1,'d'),np.ones(6,'d')]
|
scriptName = scriptID.split()[1]
|
||||||
|
|
||||||
def execute(cmd,dir='./'):
|
def execute(cmd,dir='./'):
|
||||||
|
|
||||||
initialPath=os.getcwd()
|
initialPath=os.getcwd()
|
||||||
|
os.chdir(dir)
|
||||||
out = ''
|
out = ''
|
||||||
line = True
|
line = True
|
||||||
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.STDOUT)
|
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.STDOUT)
|
||||||
|
@ -27,20 +28,6 @@ def asFullTensor(voigt):
|
||||||
[voigt[3],voigt[1],voigt[4]],\
|
[voigt[3],voigt[1],voigt[4]],\
|
||||||
[voigt[5],voigt[4],voigt[2]]])
|
[voigt[5],voigt[4],voigt[2]]])
|
||||||
|
|
||||||
def Hill48(x, F,G,H,L,M,N):
|
|
||||||
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
|
||||||
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
|
||||||
return a.ravel()
|
|
||||||
|
|
||||||
def vonMises(x, S_y):
|
|
||||||
sv=np.zeros(0,'d')
|
|
||||||
for i in xrange(np.shape(x)[1]):
|
|
||||||
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
|
|
||||||
sv = np.append(sv,l)
|
|
||||||
sv = sv.reshape(np.shape(x)[1],3)
|
|
||||||
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
|
|
||||||
return ooo.ravel()
|
|
||||||
|
|
||||||
#---------------------------------------------------------------------------------------------------
|
#---------------------------------------------------------------------------------------------------
|
||||||
class Loadcase():
|
class Loadcase():
|
||||||
#---------------------------------------------------------------------------------------------------
|
#---------------------------------------------------------------------------------------------------
|
||||||
|
@ -84,13 +71,35 @@ class Criterion(object):
|
||||||
'''
|
'''
|
||||||
Fitting to certain criterion
|
Fitting to certain criterion
|
||||||
'''
|
'''
|
||||||
def __init__(self,name):
|
def __init__(self,name='worst'):
|
||||||
self.name = name.lower()
|
self.name = name
|
||||||
if self.name not in ['hill48','vonmises']: print('Mist')
|
self.results = {
|
||||||
print('using the %s criterion'%self.name)
|
'vonmises':{'fit':np.ones(1,'d'),'err':np.inf},
|
||||||
|
'hill48' :{'fit':np.ones(6,'d'),'err':np.inf},
|
||||||
|
'worst' :{'err':np.inf},
|
||||||
|
'best' :{'err':np.inf}
|
||||||
|
}
|
||||||
|
if self.name.lower not in self.results.keys():
|
||||||
|
raise Exception as detail:
|
||||||
|
print detail
|
||||||
|
else:
|
||||||
|
print('fitting to the %s criterion'%name)
|
||||||
|
|
||||||
|
def Hill48(x, F,G,H,L,M,N):
|
||||||
|
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
||||||
|
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
||||||
|
return a.ravel()
|
||||||
|
|
||||||
|
def vonMises(x, S_y):
|
||||||
|
sv=np.zeros(0,'d')
|
||||||
|
for i in xrange(np.shape(x)[1]):
|
||||||
|
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
|
||||||
|
sv = np.append(sv,l)
|
||||||
|
sv = sv.reshape(np.shape(x)[1],3)
|
||||||
|
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
|
||||||
|
return ooo.ravel()
|
||||||
|
|
||||||
def fit(self,stress):
|
def fit(self,stress):
|
||||||
global popt1
|
|
||||||
try:
|
try:
|
||||||
popt1[0], pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0])
|
popt1[0], pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0])
|
||||||
print 'Mises', popt1[0], pcov
|
print 'Mises', popt1[0], pcov
|
||||||
|
|
Loading…
Reference in New Issue