add the calculation of Jacobian of Hill1948 and Drucker family criteria.

This commit is contained in:
Haiming Zhang 2015-02-11 19:06:23 +00:00
parent 53b40662ec
commit 40f1f3af23
1 changed files with 44 additions and 19 deletions

View File

@ -103,19 +103,21 @@ class Drucker(object):
''' '''
residuum of Drucker yield criterion (eq. 2.41, F = sigma0) residuum of Drucker yield criterion (eq. 2.41, F = sigma0)
''' '''
def fun(sigma0, C_D, ydata, sigmas): def fun(self, (sigma0, C_D), ydata, sigmas):
return DruckerBasis(sigma0, C_D, 1.0, ydata, sigmas) return DruckerBasis(sigma0, C_D, 1.0, sigmas)
def jac(sigma0, C_D, ydata, sigmas): def jac(self, (sigma0, C_D), ydata, sigmas):
pass return DruckerBasis(sigma0, C_D, 1.0, sigmas, Jac=True, nParas=2)
class generalDrucker(object): class generalDrucker(object):
''' '''
residuum of general Drucker yield criterion (eq. 2.42, F = sigma0) residuum of general Drucker yield criterion (eq. 2.42, F = sigma0)
''' '''
def fun(sigma0, C_D, ydata, sigmas): def fun(self, (sigma0, C_D, p), ydata, sigmas):
return DruckerBasis(sigma0, C_D, p, ydata, sigmas) return DruckerBasis(sigma0, C_D, p, sigmas)
def jac(sigma0, C_D, ydata, sigmas): def jac(self, (sigma0, C_D, p), ydata, sigmas):
pass return DruckerBasis(sigma0, C_D, p, sigmas, Jac=True, nParas=3)
class Hosford(object): class Hosford(object):
''' '''
@ -143,7 +145,11 @@ class Hill1948(object):
+ 2.0*L*sigmas[4]**2.0 + 2.0*M*sigmas[5]**2.0 + 2.0*N*sigmas[3]**2.0 - 1.0 + 2.0*L*sigmas[4]**2.0 + 2.0*M*sigmas[5]**2.0 + 2.0*N*sigmas[3]**2.0 - 1.0
return r.ravel()/2.0 return r.ravel()/2.0
def jac(self, (F,G,H,L,M,N), ydata, sigmas): def jac(self, (F,G,H,L,M,N), ydata, sigmas):
pass jF=(sigmas[1]-sigmas[2])**2.0; jG=(sigmas[2]-sigmas[0])**2.0; jH=(sigmas[0]-sigmas[1])**2.0
jL=2.0*sigmas[4]**2.0; jM=2.0*sigmas[5]**2.0; jN=2.0*sigmas[3]**2.0
jaco = []
for f,g,h,l,m,n in zip(jF, jG, jH, jL, jM, jN): jaco.append([f,g,h,l,m,n])
return np.array(jaco)
#more to do #more to do
# Hill 1979 # Hill 1979
@ -232,16 +238,34 @@ def BBC2003(sigma0, a,b,c, d,e,f,g, k, ydata, sigmas):
r = sBar/sigma0 - 1.0 r = sBar/sigma0 - 1.0
return r.ravel() return r.ravel()
def DruckerBasis(sigma0, C_D, p, ydata, sigmas): def DruckerBasis(sigma0, C_D, p, sigmas, Jac=False, nParas=2):
s11 = sigmas[0]; s22 = sigmas[1]; s33 = sigmas[2] s11 = sigmas[0]; s22 = sigmas[1]; s33 = sigmas[2]
s12 = sigmas[3]; s23 = sigmas[4]; s31 = sigmas[5] s12 = sigmas[3]; s23 = sigmas[4]; s31 = sigmas[5]
I1 = s11 + s22 + s33 I1 = s11 + s22 + s33
I2 = s11*s22 + s22*s33 + s11*s33 - s12**2 - s23**2 - s31**2 I2 = s11*s22 + s22*s33 + s33*s11 - s12**2 - s23**2 - s31**2
I3 = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22 I3 = s11*s22*s33 + 2.0*s12*s23*s31 - s12**2*s33 - s23**2*s11 - s31**2*s22
J2 = I1**2/3.0 - I2 J2 = I1**2/3.0 - I2
J3 = I1**3/13.5 - I1*I2/3.0 + I3 J3 = I1**3/13.5 - I1*I2/3.0 + I3
r = (J2**(3.0*p) - C_D*J3**(2.0*p))*27/(sigma0**6.0) - 1.0 left= J2**(3.0*p) - C_D*J3**(2.0*p); right = 3.0**(0.5)/sigma0
return r.ravel() expo= 1.0/(6.0*p)
if not Jac:
return (left**expo*right - 1.0).ravel()
else:
jaco = []
dfdl = expo*left**(expo-1.0)
j1 = -left**expo*right/sigma0
j2 = -dfdl*J3**(2*p)*right
if nParas == 2:
for a,b in zip(j1, j2): jaco.append([a,b])
return np.array(jaco)
else:
ln = lambda x : np.log(x + 1.0e-32)
dldp = 3.0*J2**(3.0*p)*ln(J2) - 2.0*C_D*J3**(2.0*p)*ln(J3)
j3 = dfdl*dldp*right + (left**expo)*ln(left)*expo/(-p)*right
for a,b,c in zip(j1, j2, j3): jaco.append([a,b,c])
return np.array(jaco)
def HosfordBasis(sigma0, F,G,H, a, sigmas, Jac=False, nParas=1): def HosfordBasis(sigma0, F,G,H, a, sigmas, Jac=False, nParas=1):
''' '''
@ -258,25 +282,26 @@ def HosfordBasis(sigma0, F,G,H, a, sigmas, Jac=False, nParas=1):
if nParas == 1: return (left - right).ravel() if nParas == 1: return (left - right).ravel()
else: return (left/right - 1.0).ravel() else: return (left/right - 1.0).ravel()
else: else:
ones = np.ones(np.shape(sigmas)[1])
if nParas > 1: if nParas > 1:
ln = lambda x : np.log(x + 1.0e-32) ln = lambda x : np.log(x + 1.0e-32)
dbda = F*ln(diff23)*diff23**a + G*ln(diff31)*diff31**a + H*ln(diff12)*diff12**a dbda = F*ln(diff23)*diff23**a + G*ln(diff31)*diff31**a + H*ln(diff12)*diff12**a
deda = -expo*expo; dldb = expo*left/base; drda = sigma0*(2.0**expo)*ln(2.0)*deda deda = -expo*expo; dldb = expo*left/base; drda = sigma0*(2.0**expo)*ln(2.0)*deda
ones = np.ones(np.shape(sigmas)[1]); jac = [] jaco = []
if nParas == 1: # von Mises if nParas == 1: # von Mises
return ones*(-2.0**0.5) return ones*(-2.0**0.5)
elif nParas == 2: # isotropic Hosford elif nParas == 2: # isotropic Hosford
j1 = ones*(-2.0**expo) # d[]/dsigma0 j1 = ones*(-2.0**expo) # d[]/dsigma0
j2 = dldb*dbda + left*ln(base)*deda - drda # d[]/da j2 = dldb*dbda + left*ln(base)*deda - drda # d[]/da
for a,b in zip(j1, j2): jac.append([a,b]) for a,b in zip(j1, j2): jaco.append([a,b])
return np.array(jac) return np.array(jaco)
elif nParas == 5: # anisotropic Hosford elif nParas == 5: # anisotropic Hosford
j1 = -left/right/sigma0 #ones*(-2.0**expo) # d[]/dsigma0 j1 = -left/right/sigma0 #ones*(-2.0**expo) # d[]/dsigma0
j2 = dldb*diff23**a/right; j3 = dldb*diff31**a/right; j4 = dldb*diff12**a/right j2 = dldb*diff23**a/right; j3 = dldb*diff31**a/right; j4 = dldb*diff12**a/right
j5 =(dldb*dbda + left*ln(base)*deda)/right + left*(-right**(-2))*drda # d[]/da j5 =(dldb*dbda + left*ln(base)*deda)/right + left*(-right**(-2))*drda # d[]/da
for a,b,c,d,e in zip(j1, j2,j3,j4,j5): jac.append([a,b,c,d,e]) for a,b,c,d,e in zip(j1, j2,j3,j4,j5): jaco.append([a,b,c,d,e])
return np.array(jac) return np.array(jaco)
def Barlat1991Basis(sigma0, a, b, c, f, g, h, order, sigmas): def Barlat1991Basis(sigma0, a, b, c, f, g, h, order, sigmas):
''' '''
@ -478,7 +503,7 @@ class Criterion(object):
try: try:
popt, pcov, infodict, errmsg, ierr = \ popt, pcov, infodict, errmsg, ierr = \
leastsqBound (criteria.fun, initialguess, args=(ydata,stress), leastsqBound (criteria.fun, initialguess, args=(ydata,stress),
bounds=bounds, full_output=True) bounds=bounds, Dfun=criteria.jac, full_output=True)
if ierr not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg) if ierr not in [1, 2, 3, 4]: raise RuntimeError("Optimal parameters not found: " + errmsg)
if (len(ydata) > len(initialguess)) and pcov is not None: if (len(ydata) > len(initialguess)) and pcov is not None:
s_sq = (criteria.fun(popt, *(ydata,stress))**2).sum()/(len(ydata)-len(initialguess)) s_sq = (criteria.fun(popt, *(ydata,stress))**2).sum()/(len(ydata)-len(initialguess))