corrected volume calculation and write to DADF5.

follows https://www.osti.gov/servlets/purl/632793/
This commit is contained in:
Martin Diehl 2019-10-16 22:00:25 +02:00
parent 9b5545229f
commit 3f481e1cea
3 changed files with 80 additions and 81 deletions

View File

@ -14,11 +14,11 @@
#include "Lambert.f90"
#include "rotations.f90"
#include "FEsolving.f90"
#include "geometry_plastic_nonlocal.f90"
#include "element.f90"
#include "mesh_base.f90"
#include "HDF5_utilities.f90"
#include "results.f90"
#include "geometry_plastic_nonlocal.f90"
#include "discretization.f90"
#ifdef Abaqus
#include "mesh_abaqus.f90"

View File

@ -7,6 +7,7 @@
!--------------------------------------------------------------------------------------------------
module geometry_plastic_nonlocal
use prec
use results
implicit none
private
@ -32,6 +33,7 @@ module geometry_plastic_nonlocal
geometry_plastic_nonlocal_setIPvolume, &
geometry_plastic_nonlocal_setIParea, &
geometry_plastic_nonlocal_setIPareaNormal, &
geometry_plastic_nonlocal_results, &
geometry_plastic_nonlocal_disable
contains
@ -112,4 +114,21 @@ subroutine geometry_plastic_nonlocal_disable
end subroutine geometry_plastic_nonlocal_disable
!---------------------------------------------------------------------------------------------------
!> @brief Frees memory used by variables only needed by plastic_nonlocal
!---------------------------------------------------------------------------------------------------
subroutine geometry_plastic_nonlocal_results
#if defined(DAMASK_HDF5)
call results_openJobFile
call results_writeDataset('geometry',geometry_plastic_nonlocal_IPvolume0,'v_0',&
'initial cell volume','m³')
call results_writeDataset('geometry',geometry_plastic_nonlocal_IParea0,'a_0',&
'initial cell face area','m²')
call results_closeJobFile
#endif
end subroutine geometry_plastic_nonlocal_results
end module geometry_plastic_nonlocal

View File

@ -77,7 +77,8 @@ subroutine mesh_init(ip,el)
connectivity_cell !< cell connectivity for each element,ip/cell
integer, dimension(:,:), allocatable :: &
connectivity_elem
real(pReal), dimension(:,:,:,:),allocatable :: x
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
@ -116,6 +117,11 @@ subroutine mesh_init(ip,el)
reshape(connectivity_cell,[elem%NcellNodesPerCell,elem%nIPs*nElems]),&
node0_cell,ip_reshaped)
call geometry_plastic_nonlocal_setIPvolume(IPvolume(elem,node0_cell,connectivity_cell))
x = IPareaNormal(elem,nElems,connectivity_cell,node0_cell)
call geometry_plastic_nonlocal_setIParea(norm2(x,1))
call geometry_plastic_nonlocal_results
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
@ -158,7 +164,7 @@ subroutine writeGeometry(elemType, &
call results_writeDataset('geometry',coordinates_temp,'x_p', &
'coordinates of the material points','m')
call results_closeJobFile()
call results_closeJobFile
#endif
end subroutine writeGeometry
@ -427,22 +433,17 @@ subroutine inputRead_mapElems(tableStyle,nameElemSet,mapElemSet,fileFormatVersio
integer :: i,cpElem
allocate(contInts(size(mesh_mapFEtoCPelem,2)+1))
write(6,*) 'hallo';flush(6)
write(6,*) nameElemSet;flush(6)
write(6,*) mapElemSet;flush(6)
write(6,*) 'map', size(mesh_mapFEtoCPelem,2);flush(6)
cpElem = 0
contInts = 0
rewind(fileUnit)
do
read (fileUnit,'(A300)',END=620) line
write(6,*) trim(line);flush(6)
chunkPos = IO_stringPos(line)
if (fileFormatVersion < 13) then ! Marc 2016 or earlier
if( IO_lc(IO_stringValue(line,chunkPos,1)) == 'hypoelastic' ) then
do i=1,3+TableStyle ! skip three (or four if new table style!) lines
read (fileUnit,'(A300)') line
write(6,*) i;flush(6)
enddo
contInts = IO_continuousIntValues(fileUnit,size(mesh_mapFEtoCPelem,2),nameElemSet,&
mapElemSet,size(nameElemSet))
@ -961,14 +962,16 @@ end subroutine buildIPcoordinates
!---------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume.
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of one in order to calculate the volume.
!> 2D cells assume an element depth of 1.0
!---------------------------------------------------------------------------------------------------
function IPvolume(elem,node,connectivity)
type(tElement) :: elem
real(pReal), dimension(:,:), intent(in) :: node
integer, dimension(:,:,:), intent(in) :: connectivity
type(tElement), intent(in) :: elem
real(pReal), dimension(:,:), intent(in) :: node
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(elem%nIPs,size(connectivity,3)) :: IPvolume
real(pReal), dimension(3) :: x0,x1,x2,x3,x4,x5,x6,x7
integer :: e,i
@ -994,98 +997,75 @@ function IPvolume(elem,node,connectivity)
node(1:3,connectivity(3,i,e)), &
node(1:3,connectivity(4,i,e)))
case (4) ! 3D 8node
IPvolume(i,e) = math_volTetrahedron(node(1:3,connectivity(1,i,e)), &
node(1:3,connectivity(2,i,e)), &
node(1:3,connectivity(3,i,e)), &
node(1:3,connectivity(6,i,e))) &
+ math_volTetrahedron(node(1:3,connectivity(3,i,e)), &
node(1:3,connectivity(4,i,e)), &
node(1:3,connectivity(1,i,e)), &
node(1:3,connectivity(8,i,e))) &
+ math_volTetrahedron(node(1:3,connectivity(6,i,e)), &
node(1:3,connectivity(7,i,e)), &
node(1:3,connectivity(8,i,e)), &
node(1:3,connectivity(3,i,e))) &
+ math_volTetrahedron(node(1:3,connectivity(8,i,e)), &
node(1:3,connectivity(5,i,e)), &
node(1:3,connectivity(6,i,e)), &
node(1:3,connectivity(1,i,e))) ! first triangulation
IPvolume(i,e) = IPvolume(i,e) &
+ math_volTetrahedron(node(1:3,connectivity(2,i,e)), &
node(1:3,connectivity(3,i,e)), &
node(1:3,connectivity(4,i,e)), &
node(1:3,connectivity(7,i,e))) &
+ math_volTetrahedron(node(1:3,connectivity(4,i,e)), &
node(1:3,connectivity(1,i,e)), &
node(1:3,connectivity(2,i,e)), &
node(1:3,connectivity(5,i,e))) &
+ math_volTetrahedron(node(1:3,connectivity(7,i,e)), &
node(1:3,connectivity(8,i,e)), &
node(1:3,connectivity(5,i,e)), &
node(1:3,connectivity(4,i,e))) &
+ math_volTetrahedron(node(1:3,connectivity(5,i,e)), &
node(1:3,connectivity(6,i,e)), &
node(1:3,connectivity(7,i,e)), &
node(1:3,connectivity(2,i,e))) ! second triangulation
IPvolume(i,e) = IPvolume(i,e) * 0.5_pReal
x0 = node(1:3,connectivity(1,i,e))
x1 = node(1:3,connectivity(2,i,e))
x2 = node(1:3,connectivity(4,i,e))
x3 = node(1:3,connectivity(3,i,e))
x4 = node(1:3,connectivity(5,i,e))
x5 = node(1:3,connectivity(6,i,e))
x6 = node(1:3,connectivity(8,i,e))
x7 = node(1:3,connectivity(7,i,e))
IPvolume(i,e) = dot_product((x7-x1)+(x6-x0),math_cross((x7-x2), (x3-x0))) &
+ dot_product((x6-x0), math_cross((x7-x2)+(x5-x0),(x7-x4))) &
+ dot_product((x7-x1), math_cross((x5-x0), (x7-x4)+(x3-x0)))
IPvolume(i,e) = IPvolume(i,e)/12.0_pReal
end select
enddo
enddo
end function IPvolume
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipAreas(ipArea,ipAreaNormal,elem,nElem,connectivity,node)
type(tElement) :: elem
integer :: nElem
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(:,:), intent(in) :: node
real(pReal), dimension(elem%nIPneighbors,elem%nIPs,nElem), intent(out) :: ipArea
real(pReal), dimension(3,elem%nIPneighbors,elem%nIPs,nElem), intent(out) :: ipAreaNormal
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas
!--------------------------------------------------------------------------------------------------
function IPareaNormal(elem,nElem,connectivity,node)
real(pReal), dimension (3,size(elem%cellFace,2)) :: nodePos, normals
real(pReal), dimension(3) :: normal
integer :: e,i,f,n,m
type(tElement), intent(in) :: elem
integer, intent(in) :: nElem
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(:,:), intent(in) :: node
real(pReal), dimension(3,elem%nIPneighbors,elem%nIPs,nElem) :: ipAreaNormal
real(pReal), dimension (3,size(elem%cellFace,2)) :: nodePos
integer :: e,i,f,n,m
m = size(elem%cellFace,1)
m = size(elem%cellFace,1)
do e = 1,nElem
do i = 1,elem%nIPs
do f = 1,size(elem%cellFace,2) !????
forall(n = 1: size(elem%cellface,1)) &
do f = 1,size(elem%cellFace,2)
do n = 1, m
nodePos(1:3,n) = node(1:3,connectivity(elem%cellface(n,f),i,e))
write(6,*) e,i,f,n,nodePos(1:3,n)
enddo
select case (elem%cellType)
case (1,2) ! 2D 3 or 4 node
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
normal(3) = 0.0_pReal
case (3) ! 3D 4node
normal = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
nodePos(1:3,3) - nodePos(1:3,1))
case (4) ! 3D 8node
case (1,2) ! 2D 3 or 4 node
IPareaNormal(1,n,i,e) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
IPareaNormal(2,n,i,e) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
IPareaNormal(3,n,i,e) = 0.0_pReal
case (3) ! 3D 4node
IPareaNormal(1:3,n,i,e) = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
nodePos(1:3,3) - nodePos(1:3,1))
case (4) ! 3D 8node
! for this cell type we get the normal of the quadrilateral face as an average of
! four normals of triangular subfaces; since the face consists only of two triangles,
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
normals(1:3,n) = 0.5_pReal &
* math_cross(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
normal = 0.5_pReal * sum(normals,2)
do n = 1, m
IPareaNormal(1:3,n,i,e) = 0.5_pReal &
* math_cross(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
enddo
end select
ipArea(f,i,e) = norm2(normal)
ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
enddo
enddo
enddo
end subroutine mesh_build_ipAreas
end function IPareaNormal
!--------------------------------------------------------------------------------------------------
!> @brief Gives the FE to CP ID mapping by binary search through lookup array