corrected conversion of quaternion to AxisAngle and Euler angles.

This commit is contained in:
Philip Eisenlohr 2015-03-06 13:54:30 +00:00
parent 35f9e91e73
commit 3d86c9b363
1 changed files with 55 additions and 22 deletions

View File

@ -297,9 +297,14 @@ class Quaternion:
def asAngleAxis(self): def asAngleAxis(self):
if self.w > 1: if self.w > 1:
self.normalize() self.normalize()
angle = 2 * math.acos(self.w)
s = math.sqrt(1 - self.w ** 2) s = math.sqrt(1. - self.w**2)
if s < 0.001: x = 2*self.w**2 - 1.
y = 2*self.w * s
angle = math.atan2(y,x)
if angle < 1e-3:
return angle, numpy.array([1.0, 0.0, 0.0]) return angle, numpy.array([1.0, 0.0, 0.0])
else: else:
return angle, numpy.array([self.x / s, self.y / s, self.z / s]) return angle, numpy.array([self.x / s, self.y / s, self.z / s])
@ -311,22 +316,49 @@ class Quaternion:
return numpy.array([float('inf')]*3) return numpy.array([float('inf')]*3)
def asEulers(self,type='bunge'): def asEulers(self,type='bunge'):
'''
conversion taken from:
Melcher, A.; Unser, A.; Reichhardt, M.; Nestler, B.; Pötschke, M.; Selzer, M.
Conversion of EBSD data by a quaternion based algorithm to be used for grain structure simulations
Technische Mechanik 30 (2010) pp 401--413
'''
angles = [0.0,0.0,0.0] angles = [0.0,0.0,0.0]
if type.lower() == 'bunge' or type.lower() == 'zxz':
angles[0] = math.atan2( self.x*self.z+self.y*self.w,
-self.y*self.z+self.x*self.w)
# angles[1] = math.acos(-self.x**2-self.y**2+self.z**2+self.w**2)
angles[1] = math.acos(1.0 - 2*(self.x**2+self.y**2))
angles[2] = math.atan2( self.x*self.z-self.y*self.w,
+self.y*self.z+self.x*self.w)
if angles[0] < 0.0: if type.lower() == 'bunge' or type.lower() == 'zxz':
angles[0] += 2*math.pi if abs(self.x - self.y) < 1e-8:
if angles[1] < 0.0: print 'q.x approx q.y !!'
angles[1] += math.pi x = self.w**2 - self.z**2
angles[2] *= -1 y = 2.*self.w*self.z
if angles[2] < 0.0: angles[0] = math.atan2(y,x)
angles[2] += 2*math.pi elif abs(self.w - self.z) < 1e-8:
print 'q.w approx q.z !!'
x = self.x**2 - self.y**2
y = 2.*self.x*self.y
angles[0] = math.atan2(y,x)
angles[1] = math.pi
else:
chi = math.sqrt((self.w**2 + self.z**2)*(self.x**2 + self.y**2))
x = (self.w * self.x - self.y * self.z)/2./chi
y = (self.w * self.y + self.x * self.z)/2./chi
angles[0] = math.atan2(y,x)
x = self.w**2 + self.z**2 - (self.x**2 + self.y**2)
y = 2.*chi
angles[1] = math.atan2(y,x)
x = (self.w * self.x + self.y * self.z)/2./chi
y = (self.z * self.x - self.y * self.w)/2./chi
angles[2] = math.atan2(y,x)
# if angles[0] < 0.0:
# angles[0] += 2*math.pi
# if angles[1] < 0.0:
# angles[1] += math.pi
# angles[2] *= -1
# if angles[2] < 0.0:
# angles[2] += 2*math.pi
return angles return angles
@ -740,13 +772,13 @@ class Orientation:
return 'Symmetry: %s\n' % (self.symmetry) + \ return 'Symmetry: %s\n' % (self.symmetry) + \
'Quaternion: %s\n' % (self.quaternion) + \ 'Quaternion: %s\n' % (self.quaternion) + \
'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \ 'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \
'Bunge Eulers: %s' % ('\t'.join(map(lambda x:str(numpy.degrees(x)),self.asEulers('Bunge'))) ) 'Bunge Eulers / deg: %s' % ('\t'.join(map(lambda x:str(numpy.degrees(x)),self.asEulers('bunge'))) )
def asQuaternion(self): def asQuaternion(self):
return self.quaternion.asList() return self.quaternion.asList()
def asEulers(self,type): def asEulers(self,type='bunge'):
return self.quaternion.asEulers(type) return self.quaternion.asEulers(type)
@ -781,10 +813,11 @@ class Orientation:
for me in self.symmetry.equivalentQuaternions(self.quaternion): for me in self.symmetry.equivalentQuaternions(self.quaternion):
me.conjugate() me.conjugate()
for they in other.symmetry.equivalentQuaternions(other.quaternion): for they in other.symmetry.equivalentQuaternions(other.quaternion):
theQ = me * they # theQ = me * they
theQ = they * me
# if theQ.x < 0.0 or theQ.y < 0.0 or theQ.z < 0.0: theQ.conjugate() # speed up scanning since minimum angle is usually found for positive x,y,z # if theQ.x < 0.0 or theQ.y < 0.0 or theQ.z < 0.0: theQ.conjugate() # speed up scanning since minimum angle is usually found for positive x,y,z
breaker = lowerSymmetry.inDisorientationSST(theQ.asRodrigues()) \ breaker = lowerSymmetry.inDisorientationSST(theQ.asRodrigues()) #\
or lowerSymmetry.inDisorientationSST(theQ.conjugated().asRodrigues()) # or lowerSymmetry.inDisorientationSST(theQ.conjugated().asRodrigues())
if breaker: break if breaker: break
if breaker: break if breaker: break