mpie_spectral.f90: changed fourier transormation, now using the advanced interface to do the tranformation both ways with just one call. now also using the same variable for pk-stress in both domains and the change of deformation gradient in both domains.
postprocessing: renamed name of python/f2py modul from "reconstruct" to "postprocessingMath", added some numerical operations to use for postprocessing.
This commit is contained in:
parent
803e1a8c05
commit
3d7fad6ba9
|
@ -60,7 +60,7 @@ program mpie_spectral
|
|||
! variables storing information from geom file
|
||||
real(pReal) wgt
|
||||
real(pReal), dimension(3) :: geomdimension
|
||||
integer(pInt) homog, prodnn
|
||||
integer(pInt) homog
|
||||
integer(pInt), dimension(3) :: resolution
|
||||
|
||||
! stress etc.
|
||||
|
@ -68,21 +68,19 @@ program mpie_spectral
|
|||
pstress, pstress_av, cstress_av, defgrad_av,&
|
||||
defgradAim, defgradAimOld, defgradAimCorr, defgradAimCorrPrev,&
|
||||
mask_stress, mask_defgrad
|
||||
real(pReal), dimension(3,3,3) :: temp333_Real
|
||||
real(pReal), dimension(3,3,3,3) :: dPdF, c0, s0
|
||||
real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation
|
||||
real(pReal), dimension(6,6) :: dsde, c066, s066 ! Mandel notation of 4th order tensors
|
||||
real(pReal), dimension(:,:,:), allocatable :: ddefgrad
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: pstress_field, defgrad, defgradold
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable :: workfft, defgrad, defgradold
|
||||
|
||||
! variables storing information for spectral method
|
||||
complex(pReal), dimension(:,:,:,:,:), allocatable :: workfft
|
||||
complex(pReal) :: img
|
||||
complex(pReal), dimension(3,3) :: temp33_Complex
|
||||
real(pReal), dimension(3,3) :: xinormdyad
|
||||
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
real(pReal), dimension(3) :: xi, xi_middle
|
||||
integer*8, dimension(2,3,3) :: plan_fft
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
integer*8, dimension(2) :: plan_fft
|
||||
|
||||
! loop variables, convergence etc.
|
||||
real(pReal) guessmode, err_div, err_stress, err_defgrad, sigma0
|
||||
|
@ -98,6 +96,7 @@ program mpie_spectral
|
|||
bc_maskvector = ''
|
||||
unit = 234_pInt
|
||||
ones = 1.0_pReal; zeroes = 0.0_pReal
|
||||
img = cmplx(0.0,1.0)
|
||||
|
||||
N_l = 0_pInt; N_s = 0_pInt
|
||||
N_t = 0_pInt; N_n = 0_pInt
|
||||
|
@ -238,11 +237,10 @@ program mpie_spectral
|
|||
print '(a,/,f6.1,f6.1,f6.1)','dimension x y z', geomdimension
|
||||
print *,'homogenization',homog
|
||||
|
||||
allocate (defgrad(resolution(1),resolution(2),resolution(3),3,3)); defgrad = 0.0_pReal
|
||||
allocate (defgrad (resolution(1),resolution(2),resolution(3),3,3)); defgrad = 0.0_pReal
|
||||
allocate (defgradold(resolution(1),resolution(2),resolution(3),3,3)); defgradold = 0.0_pReal
|
||||
|
||||
prodnn = resolution(1)*resolution(2)*resolution(3)
|
||||
wgt = 1.0_pReal/real(prodnn, pReal)
|
||||
wgt = 1.0_pReal/real(resolution(1)*resolution(2)*resolution(3), pReal)
|
||||
defgradAim = math_I3
|
||||
defgradAimOld = math_I3
|
||||
defgrad_av = math_I3
|
||||
|
@ -297,25 +295,23 @@ program mpie_spectral
|
|||
endif
|
||||
|
||||
! calculate xi for the calculation of divergence in Fourier space (middle frequency)
|
||||
xi_middle(3) = 0.0_pReal
|
||||
xi_middle(3) = 0.0_pReal !2D case
|
||||
if(resolution(3) > 1) xi_middle(3) = real(resolution(3)/2, pReal)/geomdimension(3) !3D case
|
||||
xi_middle(2) = real(resolution(2)/2, pReal)/geomdimension(2)
|
||||
xi_middle(1) = real(resolution(1)/2, pReal)/geomdimension(1)
|
||||
|
||||
allocate (workfft(resolution(1)+2,resolution(2),resolution(3),3,3)); workfft = 0.0_pReal
|
||||
|
||||
! Initialization of fftw (see manual on fftw.org for more details)
|
||||
allocate (workfft(resolution(1)/2+1,resolution(2),resolution(3),3,3)); workfft = 0.0_pReal
|
||||
allocate (ddefgrad(resolution(1),resolution(2),resolution(3))); ddefgrad = 0.0_pReal
|
||||
allocate (pstress_field(resolution(1),resolution(2),resolution(3),3,3)); pstress_field = 0.0_pReal
|
||||
call dfftw_init_threads(ierr) !toDo: add error code
|
||||
call dfftw_plan_with_nthreads(mpieNumThreadsInt)
|
||||
! Do r2c Transform r2c in one step
|
||||
call dfftw_plan_many_dft_r2c(plan_fft(1,1,1),3,(/resolution(1),resolution(2),resolution(3)/),9,&
|
||||
pstress_field(:,:,:,:,:),(/resolution(1),resolution(2),resolution(3)/),1,prodnn,workfft(:,:,:,:,:),&
|
||||
(/resolution(1)/2+1,resolution(2),resolution(3)/),1,(resolution(1)/2+1)*resolution(2)*resolution(3),FFTW_PATIENT)
|
||||
do m = 1,3; do n = 1,3 ! do the back transform for each single component (saves memory)
|
||||
call dfftw_plan_dft_c2r(plan_fft(2,m,n),3,(/resolution(1),resolution(2),resolution(3)/),&
|
||||
workfft(:,:,:,m,n), ddefgrad(:,:,:), FFTW_PATIENT)
|
||||
enddo; enddo
|
||||
! Do r2c/c2r Transform in one step
|
||||
call dfftw_plan_many_dft_r2c(plan_fft(1),3,(/resolution(1),resolution(2),resolution(3)/),9,&
|
||||
workfft,(/resolution(1) +2,resolution(2),resolution(3)/),1,(resolution(1) +2)*resolution(2)*resolution(3),&
|
||||
workfft,(/resolution(1)/2+1,resolution(2),resolution(3)/),1,(resolution(1)/2+1)*resolution(2)*resolution(3),FFTW_PATIENT)
|
||||
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/resolution(1),resolution(2),resolution(3)/),9,&
|
||||
workfft,(/resolution(1)/2+1,resolution(2),resolution(3)/),1,(resolution(1)/2+1)*resolution(2)*resolution(3),&
|
||||
workfft,(/resolution(1) +2,resolution(2),resolution(3)/),1,(resolution(1) +2)*resolution(2)*resolution(3),FFTW_PATIENT)
|
||||
|
||||
! write header of output file
|
||||
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())&
|
||||
|
@ -384,6 +380,7 @@ program mpie_spectral
|
|||
print*, ' '
|
||||
print '(3(A,I5.5,tr2))', ' Loadcase = ',loadcase, ' Step = ',steps,'Iteration = ',iter
|
||||
cstress_av = 0.0_pReal
|
||||
workfft = 0.0_pReal !needed because of the padding for FFTW
|
||||
!*************************************************************
|
||||
|
||||
! adjust defgrad to fulfill BCs
|
||||
|
@ -406,13 +403,13 @@ program mpie_spectral
|
|||
temperature,timeinc,ielem,1_pInt,&
|
||||
cstress,dsde, pstress, dPdF)
|
||||
CPFEM_mode = 2_pInt
|
||||
pstress_field(i,j,k,:,:) = pstress
|
||||
workfft(i,j,k,:,:) = pstress
|
||||
cstress_av = cstress_av + math_mandel6to33(cstress)
|
||||
enddo; enddo; enddo
|
||||
|
||||
cstress_av = cstress_av * wgt
|
||||
do m = 1,3; do n = 1,3
|
||||
pstress_av(m,n) = sum(pstress_field(:,:,:,m,n)) * wgt
|
||||
pstress_av(m,n) = sum(workfft(1:resolution(1),:,:,m,n)) * wgt
|
||||
defgrad_av(m,n) = sum(defgrad(:,:,:,m,n)) * wgt
|
||||
enddo; enddo
|
||||
|
||||
|
@ -456,7 +453,6 @@ program mpie_spectral
|
|||
temperature,timeinc,ielem,1_pInt,&
|
||||
cstress,dsde, pstress, dPdF)
|
||||
enddo; enddo; enddo
|
||||
|
||||
ielem = 0_pInt
|
||||
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
|
||||
ielem = ielem + 1_pInt
|
||||
|
@ -464,31 +460,32 @@ program mpie_spectral
|
|||
defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),&
|
||||
temperature,timeinc,ielem,1_pInt,&
|
||||
cstress,dsde, pstress, dPdF)
|
||||
pstress_field(i,j,k,:,:) = pstress
|
||||
workfft(i,j,k,:,:) = pstress
|
||||
cstress_av = cstress_av + math_mandel6to33(cstress)
|
||||
enddo; enddo; enddo
|
||||
cstress_av = cstress_av * wgt
|
||||
do m = 1,3; do n = 1,3
|
||||
pstress_av(m,n) = sum(pstress_field(:,:,:,m,n))*wgt
|
||||
pstress_av(m,n) = sum(workfft(1:resolution(1),:,:,m,n))*wgt
|
||||
enddo; enddo
|
||||
|
||||
print *, 'Calculating equilibrium using spectral method'
|
||||
err_div = 0.0_pReal; sigma0 = 0.0_pReal
|
||||
call dfftw_execute_dft_r2c(plan_fft(1,1,1), pstress_field,workfft) ! FFT of pstress
|
||||
|
||||
do m = 1,3
|
||||
sigma0 = max(sigma0, sum(abs(workfft(1,1,1,m,:)))) ! L infinity Norm of stress tensor
|
||||
call dfftw_execute_dft_r2c(plan_fft(1),workfft,workfft) ! FFT of pstress
|
||||
do m = 1,3 ! L infinity Norm of stress tensor
|
||||
sigma0 = max(sigma0, sum(abs(workfft(1,1,1,m,:) + (workfft(2,1,1,m,:))*img)))
|
||||
enddo
|
||||
err_div = (maxval(abs(math_mul33x3_complex(workfft(resolution(1)/2+1,resolution(2)/2+1,resolution(3)/2+1,:,:),xi_middle)))) ! L infinity Norm of div(stress)
|
||||
err_div = err_div/sigma0 !weighting of error
|
||||
err_div = (maxval(abs(math_mul33x3_complex(workfft(resolution(1)+1,resolution(2)/2+1,resolution(3)/2+1,:,:)+& ! L infinity Norm of div(stress)
|
||||
workfft(resolution(1)+2,resolution(2)/2+1,resolution(3)/2+1,:,:)*img,xi_middle))))
|
||||
err_div = err_div/sigma0 !weighting of error
|
||||
|
||||
if(fast_execution) then ! fast execution with stored gamma_hat
|
||||
if(fast_execution) then ! fast execution with stored gamma_hat
|
||||
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
|
||||
temp33_Complex = 0.0_pReal
|
||||
do m = 1,3; do n = 1,3
|
||||
temp33_Complex(m,n) = sum(gamma_hat(i,j,k,m,n,:,:) * workfft(i,j,k,:,:))
|
||||
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n,:,:) *(workfft(i*2-1,j,k,:,:)&
|
||||
+ workfft(i*2 ,j,k,:,:)*img))
|
||||
enddo; enddo
|
||||
workfft(i,j,k,:,:) = temp33_Complex(:,:)
|
||||
workfft(i*2-1,j,k,:,:) = real (temp33_Complex)
|
||||
workfft(i*2 ,j,k,:,:) = aimag(temp33_Complex)
|
||||
enddo; enddo; enddo
|
||||
|
||||
else ! memory saving version, in-time calculation of gamma_hat
|
||||
|
@ -514,26 +511,28 @@ program mpie_spectral
|
|||
temp33_Real = math_mul3333xx33(c0, xinormdyad)
|
||||
temp33_Real = math_inv3x3(temp33_Real)
|
||||
do l=1,3; do m=1,3; do n=1,3; do p=1,3
|
||||
gamma_hat(1,1,1, l,m,n,p) = - (0.5*temp33_Real(l,n)+0.5*temp33_Real(n,l)) *&
|
||||
(0.5*xinormdyad(m,p)+0.5*xinormdyad(p,m))
|
||||
gamma_hat(1,1,1, l,m,n,p) = - (0.5*temp33_Real(l,n)+0.5*temp33_Real(n,l))*&
|
||||
(0.5*xinormdyad(m,p) +0.5*xinormdyad(p,m))
|
||||
enddo; enddo; enddo; enddo
|
||||
temp33_Complex = 0.0_pReal
|
||||
do m = 1,3; do n = 1,3
|
||||
temp33_Complex(m,n) = sum(gamma_hat(1,1,1, m,n,:,:) * workfft(i,j,k,:,:))
|
||||
temp33_Complex(m,n) = sum(gamma_hat(1,1,1,m,n,:,:) *(workfft(i*2-1,j,k,:,:)&
|
||||
+workfft(i*2 ,j,k,:,:)*img))
|
||||
enddo; enddo
|
||||
workfft(i,j,k,:,:) = temp33_Complex(:,:)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
workfft(i*2-1,j,k,:,:) = real (temp33_Complex)
|
||||
workfft(i*2 ,j,k,:,:) = aimag(temp33_Complex)
|
||||
enddo; enddo; enddo
|
||||
endif
|
||||
|
||||
workfft(1,1,1,:,:) = defgrad_av - math_I3 !zero frequency
|
||||
workfft(1,1,1,:,:) = defgrad_av - math_I3 !zero frequency (real part)
|
||||
workfft(2,1,1,:,:) = 0.0_pReal !zero frequency (imaginary part)
|
||||
|
||||
call dfftw_execute_dft_c2r(plan_fft(2),workfft,workfft)
|
||||
defgrad = defgrad + workfft(1:resolution(1),:,:,:,:)*wgt
|
||||
do m = 1,3; do n = 1,3
|
||||
call dfftw_execute_dft_c2r(plan_fft(2,m,n), workfft(:,:,:,m,n),ddefgrad(:,:,:))
|
||||
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + ddefgrad * wgt
|
||||
defgrad_av(m,n) = sum(defgrad(:,:,:,m,n))*wgt
|
||||
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradAim(m,n) - defgrad_av(m,n)) !anticipated target minus current state
|
||||
enddo; enddo
|
||||
|
||||
err_stress = maxval(abs(mask_stress * (pstress_av - bc_stress(:,:,loadcase))))
|
||||
err_stress_tol = maxval(abs(pstress_av))*err_stress_tolrel !accecpt relativ error specified
|
||||
err_defgrad = maxval(abs(mask_defgrad * (defgrad_av - defgradAim)))
|
||||
|
@ -560,9 +559,7 @@ program mpie_spectral
|
|||
enddo ! end looping over steps in current loadcase
|
||||
enddo ! end looping over loadcases
|
||||
close(538)
|
||||
do i=1,2; do m = 1,3; do n = 1,3
|
||||
call dfftw_destroy_plan(plan_fft(i,m,n))
|
||||
enddo; enddo; enddo
|
||||
call dfftw_destroy_plan(plan_fft(1)); call dfftw_destroy_plan(plan_fft(2))
|
||||
|
||||
end program mpie_spectral
|
||||
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
# This script is used to compile the python module used for geometry reconstruction.
|
||||
# It uses the fortran wrapper f2py that is included in the numpy package to construct the
|
||||
# module postprocessingMath.so out of the fortran code postprocessingMath.f90
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
#for the generation of the pyf file.
|
||||
#f2py -m postprocessingMath -h postprocessingMath.pyf --overwrite-signature postprocessingMath.f90
|
||||
|
||||
# --f90flags="-heap-arrays 500000000" prevents segmentation fault for large arrays
|
||||
f2py -c --f90flags="-heap-arrays 500000000" \
|
||||
postprocessingMath.pyf postprocessingMath.f90
|
||||
|
|
@ -1,15 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
# This script is used to compile the python module used for geometry reconstruction.
|
||||
# It uses the fortran wrapper f2py that is included in the numpy package to construct the
|
||||
# module reconstruct.so out of the fortran code reconstruct.f90
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
|
||||
#f2py -m reconstruct2 -h reconstruct2.pyf --overwrite-signature reconstruct_new.f90
|
||||
#f2py -m reconstruct -h reconstruct.pyf reconstruct.f90
|
||||
# f2py -c \
|
||||
# --f90flags="-heap-arrays 500000000" \ # preventing segmentation fault for large arrays
|
||||
# reconstruct.pyf \
|
||||
# reconstruct.f90
|
||||
f2py -c --f90flags="-heap-arrays 500000000" reconstruct.pyf reconstruct.f90
|
|
@ -0,0 +1,525 @@
|
|||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!all function below are taken from math.f90
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
module math
|
||||
|
||||
real*8, parameter :: pi = 3.14159265358979323846264338327950288419716939937510
|
||||
|
||||
! *** 3x3 Identity ***
|
||||
real*8, dimension(3,3), parameter :: math_I3 = &
|
||||
reshape( (/ &
|
||||
1.0,0.0,0.0, &
|
||||
0.0,1.0,0.0, &
|
||||
0.0,0.0,1.0 /),(/3,3/))
|
||||
|
||||
contains
|
||||
!**************************************************************************
|
||||
! matrix multiplication 33x33 = 3x3
|
||||
!**************************************************************************
|
||||
pure function math_mul33x33(A,B)
|
||||
|
||||
implicit none
|
||||
|
||||
integer i,j
|
||||
real*8, dimension(3,3), intent(in) :: A,B
|
||||
real*8, dimension(3,3) :: math_mul33x33
|
||||
|
||||
forall (i=1:3,j=1:3) math_mul33x33(i,j) = &
|
||||
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
||||
return
|
||||
|
||||
end function math_mul33x33
|
||||
|
||||
!**************************************************************************
|
||||
! Cramer inversion of 3x3 matrix (subroutine)
|
||||
!**************************************************************************
|
||||
PURE SUBROUTINE math_invert3x3(A, InvA, DetA, error)
|
||||
|
||||
! Bestimmung der Determinanten und Inversen einer 3x3-Matrix
|
||||
! A = Matrix A
|
||||
! InvA = Inverse of A
|
||||
! DetA = Determinant of A
|
||||
! error = logical
|
||||
|
||||
implicit none
|
||||
|
||||
logical, intent(out) :: error
|
||||
|
||||
real*8,dimension(3,3),intent(in) :: A
|
||||
real*8,dimension(3,3),intent(out) :: InvA
|
||||
real*8, intent(out) :: DetA
|
||||
|
||||
DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )&
|
||||
- A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )&
|
||||
+ A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) )
|
||||
|
||||
if (DetA <= tiny(DetA)) then
|
||||
error = .true.
|
||||
else
|
||||
InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA
|
||||
InvA(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA
|
||||
InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA
|
||||
|
||||
InvA(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA
|
||||
InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA
|
||||
InvA(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA
|
||||
|
||||
InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA
|
||||
InvA(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA
|
||||
InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA
|
||||
|
||||
error = .false.
|
||||
endif
|
||||
return
|
||||
|
||||
END SUBROUTINE math_invert3x3
|
||||
|
||||
!********************************************************************
|
||||
! determinant of a 3x3 matrix
|
||||
!********************************************************************
|
||||
pure function math_det3x3(m)
|
||||
|
||||
implicit none
|
||||
|
||||
real*8, dimension(3,3), intent(in) :: m
|
||||
real*8 math_det3x3
|
||||
|
||||
math_det3x3 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
||||
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
||||
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
||||
return
|
||||
|
||||
end function math_det3x3
|
||||
|
||||
!****************************************************************
|
||||
pure subroutine math_pDecomposition(FE,U,R,error)
|
||||
!-----FE = R.U
|
||||
!****************************************************************
|
||||
implicit none
|
||||
|
||||
real*8, intent(in) :: FE(3,3)
|
||||
real*8, intent(out) :: R(3,3), U(3,3)
|
||||
logical, intent(out) :: error
|
||||
real*8 CE(3,3),EW1,EW2,EW3,EB1(3,3),EB2(3,3),EB3(3,3),UI(3,3),det
|
||||
|
||||
error = .false.
|
||||
ce = math_mul33x33(transpose(FE),FE)
|
||||
|
||||
CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
||||
U=DSQRT(EW1)*EB1+DSQRT(EW2)*EB2+DSQRT(EW3)*EB3
|
||||
call math_invert3x3(U,UI,det,error)
|
||||
if (.not. error) R = math_mul33x33(FE,UI)
|
||||
|
||||
return
|
||||
|
||||
end subroutine math_pDecomposition
|
||||
|
||||
!**************************************************************************
|
||||
! Cramer inversion of 3x3 matrix (function)
|
||||
!**************************************************************************
|
||||
pure function math_inv3x3(A)
|
||||
|
||||
! direct Cramer inversion of matrix A.
|
||||
! returns all zeroes if not possible, i.e. if det close to zero
|
||||
|
||||
implicit none
|
||||
|
||||
real*8,dimension(3,3),intent(in) :: A
|
||||
real*8 DetA
|
||||
|
||||
real*8,dimension(3,3) :: math_inv3x3
|
||||
|
||||
math_inv3x3 = 0.0
|
||||
|
||||
DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )&
|
||||
- A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )&
|
||||
+ A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) )
|
||||
|
||||
if (DetA > tiny(DetA)) then
|
||||
math_inv3x3(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA
|
||||
math_inv3x3(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA
|
||||
math_inv3x3(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA
|
||||
|
||||
math_inv3x3(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA
|
||||
math_inv3x3(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA
|
||||
math_inv3x3(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA
|
||||
|
||||
math_inv3x3(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA
|
||||
math_inv3x3(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA
|
||||
math_inv3x3(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA
|
||||
endif
|
||||
return
|
||||
|
||||
end function math_inv3x3
|
||||
|
||||
!**********************************************************************
|
||||
! HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
||||
!**********************************************************************
|
||||
|
||||
PURE SUBROUTINE math_hi(M,HI1M,HI2M,HI3M)
|
||||
implicit none
|
||||
|
||||
real*8, intent(in) :: M(3,3)
|
||||
real*8, intent(out) :: HI1M, HI2M, HI3M
|
||||
|
||||
HI1M=M(1,1)+M(2,2)+M(3,3)
|
||||
HI2M=HI1M**2/2.0-(M(1,1)**2+M(2,2)**2+M(3,3)**2)/2.0-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
||||
HI3M=math_det3x3(M)
|
||||
! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES
|
||||
return
|
||||
|
||||
END SUBROUTINE math_hi
|
||||
|
||||
!**********************************************************************
|
||||
pure subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
||||
!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
||||
|
||||
implicit none
|
||||
|
||||
real*8, intent(in) :: M(3,3)
|
||||
real*8, intent(out) :: EB1(3,3),EB2(3,3),EB3(3,3),EW1,EW2,EW3
|
||||
real*8 HI1M,HI2M,HI3M,TOL,R,S,T,P,Q,RHO,PHI,Y1,Y2,Y3,D1,D2,D3
|
||||
real*8 C1,C2,C3,M1(3,3),M2(3,3),M3(3,3),arg
|
||||
TOL=1.e-14
|
||||
CALL math_hi(M,HI1M,HI2M,HI3M)
|
||||
R=-HI1M
|
||||
S= HI2M
|
||||
T=-HI3M
|
||||
P=S-R**2.0/3.0
|
||||
Q=2.0/27.0*R**3.0-R*S/3.0+T
|
||||
EB1=0.0
|
||||
EB2=0.0
|
||||
EB3=0.0
|
||||
IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN
|
||||
! DREI GLEICHE EIGENWERTE
|
||||
EW1=HI1M/3.0
|
||||
EW2=EW1
|
||||
EW3=EW1
|
||||
! this is not really correct, but this way U is calculated
|
||||
! correctly in PDECOMPOSITION (correct is EB?=I)
|
||||
EB1(1,1)=1.0
|
||||
EB2(2,2)=1.0
|
||||
EB3(3,3)=1.0
|
||||
ELSE
|
||||
RHO=DSQRT(-3.0*P**3.0)/9.0
|
||||
arg=-Q/RHO/2.0
|
||||
if(arg.GT.1) arg=1
|
||||
if(arg.LT.-1) arg=-1
|
||||
PHI=DACOS(arg)
|
||||
Y1=2*RHO**(1.0/3.0)*DCOS(PHI/3.0)
|
||||
Y2=2*RHO**(1.0/3.0)*DCOS(PHI/3.0+2.0/3.0*PI)
|
||||
Y3=2*RHO**(1.0/3.0)*DCOS(PHI/3.0+4.0/3.0*PI)
|
||||
EW1=Y1-R/3.0
|
||||
EW2=Y2-R/3.0
|
||||
EW3=Y3-R/3.0
|
||||
C1=ABS(EW1-EW2)
|
||||
C2=ABS(EW2-EW3)
|
||||
C3=ABS(EW3-EW1)
|
||||
|
||||
IF(C1.LT.TOL) THEN
|
||||
! EW1 is equal to EW2
|
||||
D3=1.0/(EW3-EW1)/(EW3-EW2)
|
||||
M1=M-EW1*math_I3
|
||||
M2=M-EW2*math_I3
|
||||
EB3=math_mul33x33(M1,M2)*D3
|
||||
|
||||
EB1=math_I3-EB3
|
||||
! both EB2 and EW2 are set to zero so that they do not
|
||||
! contribute to U in PDECOMPOSITION
|
||||
EW2=0.0
|
||||
ELSE IF(C2.LT.TOL) THEN
|
||||
! EW2 is equal to EW3
|
||||
D1=1.0/(EW1-EW2)/(EW1-EW3)
|
||||
M2=M-math_I3*EW2
|
||||
M3=M-math_I3*EW3
|
||||
EB1=math_mul33x33(M2,M3)*D1
|
||||
EB2=math_I3-EB1
|
||||
! both EB3 and EW3 are set to zero so that they do not
|
||||
! contribute to U in PDECOMPOSITION
|
||||
EW3=0.0
|
||||
ELSE IF(C3.LT.TOL) THEN
|
||||
! EW1 is equal to EW3
|
||||
D2=1.0/(EW2-EW1)/(EW2-EW3)
|
||||
M1=M-math_I3*EW1
|
||||
M3=M-math_I3*EW3
|
||||
EB2=math_mul33x33(M1,M3)*D2
|
||||
EB1=math_I3-EB2
|
||||
! both EB3 and EW3 are set to zero so that they do not
|
||||
! contribute to U in PDECOMPOSITION
|
||||
EW3=0.0
|
||||
ELSE
|
||||
! all three eigenvectors are different
|
||||
D1=1.0/(EW1-EW2)/(EW1-EW3)
|
||||
D2=1.0/(EW2-EW1)/(EW2-EW3)
|
||||
D3=1.0/(EW3-EW1)/(EW3-EW2)
|
||||
M1=M-EW1*math_I3
|
||||
M2=M-EW2*math_I3
|
||||
M3=M-EW3*math_I3
|
||||
EB1=math_mul33x33(M2,M3)*D1
|
||||
EB2=math_mul33x33(M1,M3)*D2
|
||||
EB3=math_mul33x33(M1,M2)*D3
|
||||
|
||||
END IF
|
||||
END IF
|
||||
RETURN
|
||||
END SUBROUTINE math_spectral1
|
||||
|
||||
end module math
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
implicit none
|
||||
real*8 geomdim(3)
|
||||
integer res_x, res_y, res_z
|
||||
real*8 wrappedCentroids(res_x+2,res_y+2,res_z+2,3)
|
||||
real*8 nodes(res_x+1,res_y+1,res_z+1,3)
|
||||
real*8 centroids(res_x ,res_y ,res_z ,3)
|
||||
|
||||
integer, dimension(3,8) :: neighbor = reshape((/ &
|
||||
0, 0, 0,&
|
||||
1, 0, 0,&
|
||||
1, 1, 0,&
|
||||
0, 1, 0,&
|
||||
0, 0, 1,&
|
||||
1, 0, 1,&
|
||||
1, 1, 1,&
|
||||
0, 1, 1 &
|
||||
/), &
|
||||
(/3,8/))
|
||||
|
||||
integer i,j,k,n
|
||||
real*8, dimension(3,3) :: defgrad_av
|
||||
integer, dimension(3) :: diag, shift, lookup, me, res
|
||||
|
||||
diag = 1
|
||||
shift = 0
|
||||
lookup = 0
|
||||
|
||||
res = (/res_x,res_y,res_z/)
|
||||
|
||||
wrappedCentroids=0.0
|
||||
wrappedCentroids(2:res_x+1,2:res_y+1,2:res_z+1,:) = centroids
|
||||
|
||||
do k=0, res_z+1
|
||||
do j=0, res_y+1
|
||||
do i=0, res_x+1
|
||||
if (k==0 .or. k==res_z+1 .or. &
|
||||
j==0 .or. j==res_y+1 .or. &
|
||||
i==0 .or. i==res_x+1 ) then
|
||||
me = (/i,j,k/)
|
||||
shift = sign(abs(res+diag-2*me)/(res+diag),res+diag-2*me)
|
||||
lookup = me-diag+shift*res
|
||||
wrappedCentroids(i+1,j+1,k+1,:) = centroids(lookup(1)+1,lookup(2)+1,lookup(3)+1,:)- &
|
||||
matmul(defgrad_av, shift*geomdim)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
do k=0, res_z
|
||||
do j=0, res_y
|
||||
do i=0, res_x
|
||||
do n=1,8
|
||||
nodes(i+1,j+1,k+1,:) = nodes(i+1,j+1,k+1,:) + wrappedCentroids(i+1+neighbor(n,1),j+1+neighbor(n,2),k+1+neighbor(n,3),:)
|
||||
enddo; enddo; enddo; enddo
|
||||
nodes = nodes/8.0
|
||||
|
||||
end subroutine mesh
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine deformed(res_x,res_y,res_z,geomdim,defgrad,defgrad_av,coord_avgCorner)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
implicit none
|
||||
real*8 geomdim(3)
|
||||
integer res_x, res_y, res_z
|
||||
real*8 coord(8,6,res_x,res_y,res_z,3)
|
||||
real*8 coord_avgOrder(8,res_x,res_y,res_z,3)
|
||||
real*8 coord_avgCorner(res_x,res_y,res_z,3)
|
||||
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||
integer, dimension(3,8) :: corner = reshape((/ &
|
||||
0, 0, 0,&
|
||||
1, 0, 0,&
|
||||
1, 1, 0,&
|
||||
0, 1, 0,&
|
||||
1, 1, 1,&
|
||||
0, 1, 1,&
|
||||
0, 0, 1,&
|
||||
1, 0, 1 &
|
||||
/), &
|
||||
(/3,8/))
|
||||
integer, dimension(3,8) :: step = reshape((/ &
|
||||
1, 1, 1,&
|
||||
-1, 1, 1,&
|
||||
-1,-1, 1,&
|
||||
1,-1, 1,&
|
||||
-1,-1,-1,&
|
||||
1,-1,-1,&
|
||||
1, 1,-1,&
|
||||
-1, 1,-1 &
|
||||
/), &
|
||||
(/3,8/))
|
||||
integer, dimension(3,6) :: order = reshape((/ &
|
||||
1, 2, 3,&
|
||||
1, 3, 2,&
|
||||
2, 1, 3,&
|
||||
2, 3, 1,&
|
||||
3, 1, 2,&
|
||||
3, 2, 1 &
|
||||
/), &
|
||||
(/3,6/))
|
||||
|
||||
real*8 myStep(3), fones(3), parameter_coords(3)
|
||||
real*8 defgrad_av(3,3)
|
||||
real*8 negative(3), positive(3)
|
||||
integer rear(3), init(3), ones(3), oppo(3), me(3), res(3)
|
||||
integer i, j, k, s, o
|
||||
|
||||
ones = 1
|
||||
fones = 1.0
|
||||
coord_avgOrder=0.0
|
||||
|
||||
res = (/res_x,res_y,res_z/)
|
||||
|
||||
do s = 0, 7 ! corners (from 0 to 7)
|
||||
init = corner(:,s+1)*(res-ones) +ones
|
||||
oppo = corner(:,mod((s+4),8)+1)*(res-ones) +ones
|
||||
do o=1,6 ! orders ! from 1 to 6)
|
||||
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1)
|
||||
rear(order(2,o)) = init(order(2,o))
|
||||
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1)
|
||||
rear(order(1,o)) = init(order(1,o))
|
||||
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1)
|
||||
me(order(1,o)) = i
|
||||
me(order(2,o)) = j
|
||||
me(order(3,o)) = k
|
||||
if ( (me(1)==init(1)).and.(me(2)==init(2)).and. (me(3)==init(3)) ) then
|
||||
coord(s+1,o,me(1),me(2),me(3),:) = geomdim * (matmul(defgrad_av,corner(:,s+1)) + &
|
||||
matmul(defgrad(me(1),me(2),me(3),:,:),0.5*step(:,s+1)/res))
|
||||
|
||||
else
|
||||
myStep = (me-rear)*geomdim/res
|
||||
coord(s+1,o,me(1),me(2),me(3),:) = coord(s+1,o,rear(1),rear(2),rear(3),:) + &
|
||||
0.5*matmul(defgrad(me(1),me(2),me(3),:,:) + &
|
||||
defgrad(rear(1),rear(2),rear(3),:,:),myStep)
|
||||
endif
|
||||
rear = me
|
||||
enddo; enddo; enddo; enddo
|
||||
do i=1,6
|
||||
coord_avgOrder(s+1,:,:,:,:) = coord_avgOrder(s+1,:,:,:,:) + coord(s+1,i,:,:,:,:)/6.0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=0, res_z-1
|
||||
do j=0, res_y-1
|
||||
do i=0, res_x-1
|
||||
parameter_coords = (2.0*(/i+0.0,j+0.0,k+0.0/)-real(res)+fones)/(real(res)-fones)
|
||||
positive = fones + parameter_coords
|
||||
negative = fones - parameter_coords
|
||||
coord_avgCorner(i+1,j+1,k+1,:) = ( coord_avgOrder(1,i+1,j+1,k+1,:) *negative(1)*negative(2)*negative(3)&
|
||||
+ coord_avgOrder(2,i+1,j+1,k+1,:) *positive(1)*negative(2)*negative(3)&
|
||||
+ coord_avgOrder(3,i+1,j+1,k+1,:) *positive(1)*positive(2)*negative(3)&
|
||||
+ coord_avgOrder(4,i+1,j+1,k+1,:) *negative(1)*positive(2)*negative(3)&
|
||||
+ coord_avgOrder(5,i+1,j+1,k+1,:) *positive(1)*positive(2)*positive(3)&
|
||||
+ coord_avgOrder(6,i+1,j+1,k+1,:) *negative(1)*positive(2)*positive(3)&
|
||||
+ coord_avgOrder(7,i+1,j+1,k+1,:) *negative(1)*negative(2)*positive(3)&
|
||||
+ coord_avgOrder(8,i+1,j+1,k+1,:) *positive(1)*negative(2)*positive(3))*0.125
|
||||
enddo; enddo; enddo
|
||||
end subroutine deformed
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine logstrain_spat(res_x,res_y,res_z,defgrad,logstrain_field)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
use math
|
||||
implicit none
|
||||
integer res_x, res_y, res_z
|
||||
integer i, j, k
|
||||
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||
real*8 logstrain_field(res_x,res_y,res_z,3,3)
|
||||
real*8 temp33_Real(3,3), temp33_Real2(3,3)
|
||||
real*8 eigenvectorbasis(3,3,3)
|
||||
real*8 eigenvalue(3)
|
||||
logical errmatinv
|
||||
|
||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
||||
call math_pDecomposition(defgrad(i,j,k,:,:),temp33_Real2,temp33_Real,errmatinv) !store R in temp33_Real
|
||||
temp33_Real2 = math_inv3x3(temp33_Real)
|
||||
temp33_Real = math_mul33x33(defgrad(i,j,k,:,:),temp33_Real2) ! v = F o inv(R), store in temp33_Real2
|
||||
call math_spectral1(temp33_Real, eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
||||
eigenvectorbasis(1,:,:), eigenvectorbasis(2,:,:), eigenvectorbasis(3,:,:))
|
||||
eigenvalue = log(sqrt(eigenvalue))
|
||||
logstrain_field(i,j,k,:,:) = eigenvalue(1)*eigenvectorbasis(1,:,:)+&
|
||||
eigenvalue(2)*eigenvectorbasis(2,:,:)+&
|
||||
eigenvalue(3)*eigenvectorbasis(3,:,:)
|
||||
enddo; enddo; enddo
|
||||
end subroutine logstrain_spat
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine logstrain_mat(res_x,res_y,res_z,defgrad,logstrain_field)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
use math
|
||||
implicit none
|
||||
integer res_x, res_y, res_z
|
||||
integer i, j, k
|
||||
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||
real*8 logstrain_field(res_x,res_y,res_z,3,3)
|
||||
real*8 temp33_Real(3,3), temp33_Real2(3,3)
|
||||
real*8 eigenvectorbasis(3,3,3)
|
||||
real*8 eigenvalue(3)
|
||||
logical errmatinv
|
||||
|
||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
||||
call math_pDecomposition(defgrad(i,j,k,:,:),temp33_Real,temp33_Real2,errmatinv) !store U in temp33_Real
|
||||
call math_spectral1(temp33_Real, eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
||||
eigenvectorbasis(1,:,:), eigenvectorbasis(2,:,:), eigenvectorbasis(3,:,:))
|
||||
eigenvalue = log(sqrt(eigenvalue))
|
||||
logstrain_field(i,j,k,:,:) = eigenvalue(1)*eigenvectorbasis(1,:,:)+&
|
||||
eigenvalue(2)*eigenvectorbasis(2,:,:)+&
|
||||
eigenvalue(3)*eigenvectorbasis(3,:,:)
|
||||
enddo; enddo; enddo
|
||||
end subroutine logstrain_mat
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress,c_stress)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
use math
|
||||
implicit none
|
||||
integer res_x, res_y, res_z
|
||||
integer i, j, k
|
||||
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||
real*8 p_stress(res_x,res_y,res_z,3,3)
|
||||
real*8 c_stress(res_x,res_y,res_z,3,3)
|
||||
real*8 jacobi
|
||||
c_stress = 0.0
|
||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
||||
jacobi = math_det3x3(defgrad(i,j,k,:,:))
|
||||
c_stress(i,j,k,:,:) = matmul(p_stress(i,j,k,:,:),transpose(defgrad(i,j,k,:,:)))/jacobi
|
||||
enddo; enddo; enddo
|
||||
end subroutine calculate_cauchy
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine calculate_mises(res_x,res_y,res_z,tensor,vm)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
implicit none
|
||||
integer res_x, res_y, res_z
|
||||
integer i, j, k
|
||||
real*8 tensor(res_x,res_y,res_z,3,3)
|
||||
real*8 vm(res_x,res_y,res_z,1)
|
||||
real*8 deviator(3,3)
|
||||
real*8 delta(3,3)
|
||||
real*8 J_2
|
||||
|
||||
delta =0.0
|
||||
delta(1,1) = 1.0
|
||||
delta(2,2) = 1.0
|
||||
delta(3,3) = 1.0
|
||||
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
||||
deviator = tensor(i,j,k,:,:) - 1.0/3.0*tensor(i,j,k,1,1)*tensor(i,j,k,2,2)*tensor(i,j,k,3,3)*delta
|
||||
J_2 = deviator(1,1)*deviator(2,2)&
|
||||
+ deviator(2,2)*deviator(3,3)&
|
||||
+ deviator(1,1)*deviator(3,3)&
|
||||
- (deviator(1,2))**2&
|
||||
- (deviator(2,3))**2&
|
||||
- (deviator(1,3))**2
|
||||
vm(i,j,k,:) = sqrt(3*J_2)
|
||||
enddo; enddo; enddo
|
||||
end subroutine calculate_mises
|
|
@ -0,0 +1,105 @@
|
|||
! -*- f90 -*-
|
||||
! Note: the context of this file is case sensitive.
|
||||
|
||||
python module postprocessingMath ! in
|
||||
interface ! in :postprocessingMath
|
||||
module math ! in :postprocessingMath:postprocessingMath.f90
|
||||
real*8 parameter,optional,dimension(3,3) :: math_i3=reshape((/1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0/),(/3,3/))
|
||||
real*8 parameter,optional :: pi=3.14159265359
|
||||
function math_mul33x33(a,b) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: a
|
||||
real*8 dimension(3,3),intent(in) :: b
|
||||
real*8 dimension(3,3) :: math_mul33x33
|
||||
end function math_mul33x33
|
||||
subroutine math_invert3x3(a,inva,deta,error) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: a
|
||||
real*8 dimension(3,3),intent(out) :: inva
|
||||
real*8 intent(out) :: deta
|
||||
logical intent(out) :: error
|
||||
end subroutine math_invert3x3
|
||||
function math_det3x3(m) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: m
|
||||
real*8 :: math_det3x3
|
||||
end function math_det3x3
|
||||
subroutine math_pdecomposition(fe,u,r,error) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: fe
|
||||
real*8 dimension(3,3),intent(out) :: u
|
||||
real*8 dimension(3,3),intent(out) :: r
|
||||
logical intent(out) :: error
|
||||
end subroutine math_pdecomposition
|
||||
function math_inv3x3(a) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: a
|
||||
real*8 dimension(3,3) :: math_inv3x3
|
||||
end function math_inv3x3
|
||||
subroutine math_hi(m,hi1m,hi2m,hi3m) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: m
|
||||
real*8 intent(out) :: hi1m
|
||||
real*8 intent(out) :: hi2m
|
||||
real*8 intent(out) :: hi3m
|
||||
end subroutine math_hi
|
||||
subroutine math_spectral1(m,ew1,ew2,ew3,eb1,eb2,eb3) ! in :postprocessingMath:postprocessingMath.f90:math
|
||||
real*8 dimension(3,3),intent(in) :: m
|
||||
real*8 intent(out) :: ew1
|
||||
real*8 intent(out) :: ew2
|
||||
real*8 intent(out) :: ew3
|
||||
real*8 dimension(3,3),intent(out) :: eb1
|
||||
real*8 dimension(3,3),intent(out) :: eb2
|
||||
real*8 dimension(3,3),intent(out) :: eb3
|
||||
end subroutine math_spectral1
|
||||
end module math
|
||||
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes) ! in :postprocessingMath:postprocessingMath.f90
|
||||
integer intent(in) :: res_x
|
||||
integer intent(in) :: res_y
|
||||
integer intent(in) :: res_z
|
||||
real*8 dimension(3),intent(in) :: geomdim
|
||||
real*8 dimension(3,3),intent(in) :: defgrad_av
|
||||
real*8 dimension(res_x,res_y,res_z,3),intent(in),depend(res_x,res_y,res_z) :: centroids
|
||||
real*8 dimension(res_x + 2,res_y + 2,res_z +2 ,3),depend(res_x,res_y,res_z) :: centroids
|
||||
real*8 dimension(res_x + 1,res_y + 1,res_z + 1,3),intent(out),depend(res_x,res_y,res_z) :: nodes
|
||||
end subroutine mesh
|
||||
subroutine deformed(res_x,res_y,res_z,geomdim,defgrad,defgrad_av,coord_avgCorner) ! in :postprocessingMath:postprocessingMath.f90
|
||||
integer intent(in) :: res_x
|
||||
integer intent(in) :: res_y
|
||||
integer intent(in) :: res_z
|
||||
real*8 dimension(3),intent(in) :: geomdim
|
||||
real*8 dimension(3,3),intent(in) :: defgrad_av
|
||||
real*8 dimension(res_x,res_y,res_z,3),intent(out),depend(res_x,res_y,res_z) :: coord_avgCorner
|
||||
real*8 dimension(8,6,res_x,res_y,res_z,3),depend(res_x,res_y,res_z) :: coord
|
||||
real*8 dimension(8,res_x,res_y,res_z,3),depend(res_x,res_y,res_z) :: coord_avgOrder
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: defgrad
|
||||
end subroutine deformed
|
||||
subroutine logstrain_mat(res_x,res_y,res_z,defgrad,logstrain_field) ! in :postprocessingMath:postprocessingMath.f90
|
||||
integer intent(in) :: res_x
|
||||
integer intent(in) :: res_y
|
||||
integer intent(in) :: res_z
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: defgrad
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(out),depend(res_x,res_y,res_z) :: logstrain_field
|
||||
end subroutine logstrain_mat
|
||||
subroutine logstrain_spat(res_x,res_y,res_z,defgrad,logstrain_field) ! in :postprocessingMath:postprocessingMath.f90
|
||||
integer intent(in) :: res_x
|
||||
integer intent(in) :: res_y
|
||||
integer intent(in) :: res_z
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: defgrad
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(out),depend(res_x,res_y,res_z) :: logstrain_field
|
||||
end subroutine logstrain_spat
|
||||
subroutine calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress,c_stress) ! in :postprocessingMath:postprocessingMath.f90
|
||||
integer intent(in) :: res_x
|
||||
integer intent(in) :: res_y
|
||||
integer intent(in) :: res_z
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: defgrad
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: p_stress
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(out),depend(res_x,res_y,res_z) :: c_stress
|
||||
end subroutine calculate_cauchy
|
||||
subroutine calculate_mises(res_x,res_y,res_z,tensor,vm) ! in :postprocessingMath:postprocessingMath.f90
|
||||
integer intent(in) :: res_x
|
||||
integer intent(in) :: res_y
|
||||
integer intent(in) :: res_z
|
||||
real*8 dimension(res_x,res_y,res_z,3,3),intent(in),depend(res_x,res_y,res_z) :: tensor
|
||||
real*8 dimension(res_x,res_y,res_z,1),intent(out),depend(res_x,res_y,res_z) :: vm
|
||||
end subroutine calculate_mises
|
||||
end interface
|
||||
end python module postprocessingMath
|
||||
|
||||
! This file was auto-generated with f2py (version:2_5972).
|
||||
! See http://cens.ioc.ee/projects/f2py2e/
|
||||
! modified by m.diehl
|
|
@ -1,157 +0,0 @@
|
|||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
implicit none
|
||||
real*8 geomdim(3)
|
||||
integer res_x, res_y, res_z
|
||||
real*8 wrappedCentroids(res_x+2,res_y+2,res_z+2,3)
|
||||
real*8 nodes(res_x+1,res_y+1,res_z+1,3)
|
||||
real*8 centroids(res_x ,res_y ,res_z ,3)
|
||||
|
||||
integer, dimension(3,8) :: neighbor = reshape((/ &
|
||||
0, 0, 0,&
|
||||
1, 0, 0,&
|
||||
1, 1, 0,&
|
||||
0, 1, 0,&
|
||||
0, 0, 1,&
|
||||
1, 0, 1,&
|
||||
1, 1, 1,&
|
||||
0, 1, 1 &
|
||||
/), &
|
||||
(/3,8/))
|
||||
|
||||
integer i,j,k,n
|
||||
real*8, dimension(3,3) :: defgrad_av
|
||||
integer, dimension(3) :: diag, shift, lookup, me, res
|
||||
|
||||
diag = 1
|
||||
shift = 0
|
||||
lookup = 0
|
||||
|
||||
res = (/res_x,res_y,res_z/)
|
||||
|
||||
wrappedCentroids=0.0
|
||||
wrappedCentroids(2:res_x+1,2:res_y+1,2:res_z+1,:) = centroids
|
||||
|
||||
do k=0, res_z+1
|
||||
do j=0, res_y+1
|
||||
do i=0, res_x+1
|
||||
if (k==0 .or. k==res_z+1 .or. &
|
||||
j==0 .or. j==res_y+1 .or. &
|
||||
i==0 .or. i==res_x+1 ) then
|
||||
me = (/i,j,k/)
|
||||
shift = sign(abs(res+diag-2*me)/(res+diag),res+diag-2*me)
|
||||
lookup = me-diag+shift*res
|
||||
wrappedCentroids(i+1,j+1,k+1,:) = centroids(lookup(1)+1,lookup(2)+1,lookup(3)+1,:)- &
|
||||
matmul(defgrad_av, shift*geomdim)
|
||||
endif
|
||||
enddo; enddo; enddo
|
||||
do k=0, res_z
|
||||
do j=0, res_y
|
||||
do i=0, res_x
|
||||
do n=1,8
|
||||
nodes(i+1,j+1,k+1,:) = nodes(i+1,j+1,k+1,:) + wrappedCentroids(i+1+neighbor(n,1),j+1+neighbor(n,2),k+1+neighbor(n,3),:)
|
||||
enddo; enddo; enddo; enddo
|
||||
nodes = nodes/8.0
|
||||
|
||||
end subroutine mesh
|
||||
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
subroutine deformed(res_x,res_y,res_z,geomdim,defgrad,defgrad_av,coord_avgCorner)
|
||||
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
implicit none
|
||||
real*8 geomdim(3)
|
||||
integer res_x, res_y, res_z
|
||||
real*8 coord(8,6,res_x,res_y,res_z,3)
|
||||
real*8 coord_avgOrder(8,res_x,res_y,res_z,3)
|
||||
real*8 coord_avgCorner(res_x,res_y,res_z,3)
|
||||
real*8 defgrad(res_x,res_y,res_z,3,3)
|
||||
integer, dimension(3,8) :: corner = reshape((/ &
|
||||
0, 0, 0,&
|
||||
1, 0, 0,&
|
||||
1, 1, 0,&
|
||||
0, 1, 0,&
|
||||
1, 1, 1,&
|
||||
0, 1, 1,&
|
||||
0, 0, 1,&
|
||||
1, 0, 1 &
|
||||
/), &
|
||||
(/3,8/))
|
||||
integer, dimension(3,8) :: step = reshape((/ &
|
||||
1, 1, 1,&
|
||||
-1, 1, 1,&
|
||||
-1,-1, 1,&
|
||||
1,-1, 1,&
|
||||
-1,-1,-1,&
|
||||
1,-1,-1,&
|
||||
1, 1,-1,&
|
||||
-1, 1,-1 &
|
||||
/), &
|
||||
(/3,8/))
|
||||
integer, dimension(3,6) :: order = reshape((/ &
|
||||
1, 2, 3,&
|
||||
1, 3, 2,&
|
||||
2, 1, 3,&
|
||||
2, 3, 1,&
|
||||
3, 1, 2,&
|
||||
3, 2, 1 &
|
||||
/), &
|
||||
(/3,6/))
|
||||
|
||||
real*8 myStep(3), fones(3), parameter_coords(3)
|
||||
real*8 defgrad_av(3,3)
|
||||
real*8 negative(3), positive(3)
|
||||
integer rear(3), init(3), ones(3), oppo(3), me(3), res(3)
|
||||
integer i, j, k, s, o
|
||||
|
||||
ones = 1
|
||||
fones = 1.0
|
||||
coord_avgOrder=0.0
|
||||
|
||||
res = (/res_x,res_y,res_z/)
|
||||
|
||||
do s = 0, 7 ! corners (from 0 to 7)
|
||||
init = corner(:,s+1)*(res-ones) +ones
|
||||
oppo = corner(:,mod((s+4),8)+1)*(res-ones) +ones
|
||||
do o=1,6 ! orders ! from 1 to 6)
|
||||
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1)
|
||||
rear(order(2,o)) = init(order(2,o))
|
||||
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1)
|
||||
rear(order(1,o)) = init(order(1,o))
|
||||
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1)
|
||||
me(order(1,o)) = i
|
||||
me(order(2,o)) = j
|
||||
me(order(3,o)) = k
|
||||
if ( (me(1)==init(1)).and.(me(2)==init(2)).and. (me(3)==init(3)) ) then
|
||||
coord(s+1,o,me(1),me(2),me(3),:) = geomdim * (matmul(defgrad_av,corner(:,s+1)) + &
|
||||
matmul(defgrad(me(1),me(2),me(3),:,:),0.5*step(:,s+1)/res))
|
||||
|
||||
else
|
||||
myStep = (me-rear)*geomdim/res
|
||||
coord(s+1,o,me(1),me(2),me(3),:) = coord(s+1,o,rear(1),rear(2),rear(3),:) + &
|
||||
0.5*matmul(defgrad(me(1),me(2),me(3),:,:) + &
|
||||
defgrad(rear(1),rear(2),rear(3),:,:),myStep)
|
||||
endif
|
||||
rear = me
|
||||
enddo; enddo; enddo; enddo
|
||||
do i=1,6
|
||||
coord_avgOrder(s+1,:,:,:,:) = coord_avgOrder(s+1,:,:,:,:) + coord(s+1,i,:,:,:,:)/6.0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=0, res_z-1
|
||||
do j=0, res_y-1
|
||||
do i=0, res_x-1
|
||||
parameter_coords = (2.0*(/i+0.0,j+0.0,k+0.0/)-real(res)+fones)/(real(res)-fones)
|
||||
positive = fones + parameter_coords
|
||||
negative = fones - parameter_coords
|
||||
coord_avgCorner(i+1,j+1,k+1,:) = ( coord_avgOrder(1,i+1,j+1,k+1,:) *negative(1)*negative(2)*negative(3)&
|
||||
+ coord_avgOrder(2,i+1,j+1,k+1,:) *positive(1)*negative(2)*negative(3)&
|
||||
+ coord_avgOrder(3,i+1,j+1,k+1,:) *positive(1)*positive(2)*negative(3)&
|
||||
+ coord_avgOrder(4,i+1,j+1,k+1,:) *negative(1)*positive(2)*negative(3)&
|
||||
+ coord_avgOrder(5,i+1,j+1,k+1,:) *positive(1)*positive(2)*positive(3)&
|
||||
+ coord_avgOrder(6,i+1,j+1,k+1,:) *negative(1)*positive(2)*positive(3)&
|
||||
+ coord_avgOrder(7,i+1,j+1,k+1,:) *negative(1)*negative(2)*positive(3)&
|
||||
+ coord_avgOrder(8,i+1,j+1,k+1,:) *positive(1)*negative(2)*positive(3))*0.125
|
||||
enddo; enddo; enddo
|
||||
end subroutine deformed
|
|
@ -6,7 +6,7 @@
|
|||
# computed using the FEM solvers. Until now, its capable to handle elements with one IP in a regular order
|
||||
# written by M. Diehl, m.diehl@mpie.de
|
||||
|
||||
import os,sys,re,array,struct,numpy, time, reconstruct
|
||||
import os,sys,re,array,struct,numpy, time, postprocessingMath
|
||||
|
||||
class vector:
|
||||
x,y,z = [None,None,None]
|
||||
|
@ -159,145 +159,6 @@ def calculateCauchyStress(p_stress,defgrad,res):
|
|||
c_stress[x,y,z] = numpy.dot(p_stress[x,y,z],numpy.transpose(defgrad[x,y,z]))/jacobi
|
||||
return c_stress
|
||||
|
||||
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
def calculateVonMises(tensor,res):
|
||||
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
vonMises = numpy.zeros([res[0],res[1],res[2]],'d')
|
||||
deviator = numpy.zeros([3,3],'d')
|
||||
delta = numpy.zeros([3,3],'d')
|
||||
delta[0,0] = 1.0
|
||||
delta[1,1] = 1.0
|
||||
delta[2,2] = 1.0
|
||||
for z in range(res[2]):
|
||||
for y in range(res[1]):
|
||||
for x in range(res[0]):
|
||||
deviator = tensor[x,y,z] - 1.0/3.0*tensor[x,y,z,0,0]*tensor[x,y,z,1,1]*tensor[x,y,z,2,2]*delta
|
||||
J_2 = deviator[0,0]*deviator[1,1]\
|
||||
+ deviator[1,1]*deviator[2,2]\
|
||||
+ deviator[0,0]*deviator[2,2]\
|
||||
- (deviator[0,1])**2\
|
||||
- (deviator[1,2])**2\
|
||||
- (deviator[0,2])**2
|
||||
vonMises[x,y,z] = numpy.sqrt(3*J_2)
|
||||
return vonMises
|
||||
|
||||
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
def mesh(res,geomdim,defgrad_av,centroids):
|
||||
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
neighbor = numpy.array([[0, 0, 0],
|
||||
[1, 0, 0],
|
||||
[1, 1, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1],
|
||||
[1, 0, 1],
|
||||
[1, 1, 1],
|
||||
[0, 1, 1]])
|
||||
|
||||
wrappedCentroids = numpy.zeros([res[0]+2,res[1]+2,res[2]+2,3],'d')
|
||||
nodes = numpy.zeros([res[0]+1,res[1]+1,res[2]+1,3],'d')
|
||||
wrappedCentroids[1:-1,1:-1,1:-1] = centroids
|
||||
diag = numpy.ones(3,'i')
|
||||
shift = numpy.zeros(3,'i')
|
||||
lookup = numpy.zeros(3,'i')
|
||||
|
||||
for k in range(res[2]+2):
|
||||
for j in range(res[1]+2):
|
||||
for i in range(res[0]+2):
|
||||
if (k==0 or k==res[2]+1 or \
|
||||
j==0 or j==res[1]+1 or \
|
||||
i==0 or i==res[0]+1 ):
|
||||
me = numpy.array([i,j,k],'i')
|
||||
shift = numpy.sign(res+diag-2*me)*(numpy.abs(res+diag-2*me)/(res+diag))
|
||||
lookup = me-diag+shift*res
|
||||
wrappedCentroids[i,j,k] = centroids[lookup[0],lookup[1],lookup[2]]- \
|
||||
numpy.dot(defgrad_av, shift*geomdim)
|
||||
for k in range(res[2]+1):
|
||||
for j in range(res[1]+1):
|
||||
for i in range(res[0]+1):
|
||||
for n in range(8):
|
||||
nodes[i,j,k] += wrappedCentroids[i+neighbor[n,0],j+neighbor[n,1],k+neighbor[n,2]]
|
||||
nodes[:,:,:] /= 8.0
|
||||
|
||||
return nodes
|
||||
|
||||
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
def centroids(res,geomdimension,defgrad):
|
||||
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
corner = numpy.array([[0, 0, 0],
|
||||
[1, 0, 0],
|
||||
[1, 1, 0],
|
||||
[0, 1, 0],
|
||||
[1, 1, 1],
|
||||
[0, 1, 1],
|
||||
[0, 0, 1],
|
||||
[1, 0, 1]])
|
||||
step = numpy.array([[ 1, 1, 1],
|
||||
[-1, 1, 1],
|
||||
[-1,-1, 1],
|
||||
[ 1,-1, 1],
|
||||
[-1,-1,-1],
|
||||
[ 1,-1,-1],
|
||||
[ 1, 1,-1],
|
||||
[-1, 1,-1]])
|
||||
|
||||
order = numpy.array([[0, 1, 2],
|
||||
[0, 2, 1],
|
||||
[1, 0, 2],
|
||||
[1, 2, 0],
|
||||
[2, 0, 1],
|
||||
[2, 1, 0]])
|
||||
|
||||
cornerCoords = numpy.zeros([8,res[0],res[1],res[2],3], 'd')
|
||||
coord = numpy.zeros([8,6,res[0],res[1],res[2],3], 'd')
|
||||
centroids = numpy.zeros([res[0],res[1],res[2],3], 'd')
|
||||
myStep = numpy.zeros(3,'d')
|
||||
rear = numpy.zeros(3, 'i')
|
||||
init = numpy.zeros(3, 'i')
|
||||
oppo = numpy.zeros(3, 'i')
|
||||
me = numpy.zeros(3, 'i')
|
||||
ones = numpy.ones(3, 'i')
|
||||
fones = numpy.ones(3, 'd')
|
||||
defgrad_av=numpy.average(numpy.average(numpy.average(defgrad,0),0),0)
|
||||
print defgrad_av
|
||||
for s in range(8):# corners
|
||||
init = corner[s]*(res-ones)
|
||||
oppo = corner[(s+4)%8]*(res-ones)
|
||||
for o in range(6): # orders
|
||||
for k in range(init[order[o,2]],oppo[order[o,2]]+step[s,order[o,2]],step[s,order[o,2]]):
|
||||
rear[order[o,1]] = init[order[o,1]]
|
||||
for j in range(init[order[o,1]],oppo[order[o,1]]+step[s,order[o,1]],step[s,order[o,1]]):
|
||||
rear[order[o,0]] = init[order[o,0]]
|
||||
for i in range(init[order[o,0]],oppo[order[o,0]]+step[s,order[o,0]],step[s,order[o,0]]):
|
||||
me[order[o,0]] = i
|
||||
me[order[o,1]] = j
|
||||
me[order[o,2]] = k
|
||||
if (numpy.all(me == init)):
|
||||
coord[s,o,me[0],me[1],me[2]] = geomdimension * (numpy.dot(defgrad_av,corner[s]) + \
|
||||
numpy.dot(defgrad[me[0],me[1],me[2]],0.5*step[s]/res))
|
||||
else:
|
||||
myStep = (me-rear)*geomdimension/res
|
||||
coord[s,o,me[0],me[1],me[2]] = coord[s,o,rear[0],rear[1],rear[2]]+ \
|
||||
0.5*numpy.dot(defgrad[me[0],me[1],me[2]] + \
|
||||
defgrad[rear[0],rear[1],rear[2]],myStep)
|
||||
|
||||
rear[:] = me[:]
|
||||
cornerCoords[s] = numpy.average(coord[s],0)
|
||||
for k in range(res[2]):
|
||||
for j in range(res[1]):
|
||||
for i in range(res[0]):
|
||||
parameter_coords=(2.0*numpy.array([i,j,k])-res+fones)/(res-fones)
|
||||
pos = (fones + parameter_coords)
|
||||
neg = (fones - parameter_coords)
|
||||
centroids[i,j,k] = ( cornerCoords[0,i,j,k] *neg[0]*neg[1]*neg[2]\
|
||||
+ cornerCoords[1,i,j,k] *pos[0]*neg[1]*neg[2]\
|
||||
+ cornerCoords[2,i,j,k] *pos[0]*pos[1]*neg[2]\
|
||||
+ cornerCoords[3,i,j,k] *neg[0]*pos[1]*neg[2]\
|
||||
+ cornerCoords[4,i,j,k] *pos[0]*pos[1]*pos[2]\
|
||||
+ cornerCoords[5,i,j,k] *neg[0]*pos[1]*pos[2]\
|
||||
+ cornerCoords[6,i,j,k] *neg[0]*neg[1]*pos[2]\
|
||||
+ cornerCoords[7,i,j,k] *pos[0]*neg[1]*pos[2])*0.125
|
||||
return centroids, defgrad_av
|
||||
|
||||
# function writes scalar values to a mesh (geometry)
|
||||
def writeVtkAscii(filename,geometry,scalar,resolution):
|
||||
|
@ -445,7 +306,7 @@ print 'Post Processing for Material subroutine for BVP solution using spectral m
|
|||
print '*********************************************************************************\n'
|
||||
|
||||
#reading in the header of the results file
|
||||
name = 'dipl32'
|
||||
name = 'dipl10'
|
||||
p = MPIEspectral_result(name+'.spectralOut')
|
||||
p.extrapolation('')
|
||||
print p
|
||||
|
@ -475,13 +336,16 @@ ms=numpy.zeros([res_x,res_y,res_z,3], 'd')
|
|||
for i in range(249,250):
|
||||
c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
||||
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,16)
|
||||
logstrain = postprocessingMath.logstrain_mat(res_x,res_y,res_z,defgrad)
|
||||
logstrain2 = postprocessingMath.logstrain_spat(res_x,res_y,res_z,defgrad)
|
||||
p_stress = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,58)
|
||||
#c_stress = calculateCauchyStress(p_stress,defgrad,p.resolution)
|
||||
#grain = calculateVonMises(c_stress,p.resolution)
|
||||
c_stress = postprocessingMath.calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress)
|
||||
vm = postprocessingMath.calculate_mises(res_x,res_y,res_z,c_stress)
|
||||
defgrad_av=numpy.average(numpy.average(numpy.average(defgrad,0),0),0)
|
||||
centroids_coord = reconstruct.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||||
ms = reconstruct.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||||
writeVtkAscii(name+'-mesh-fortran-%s.vtk'%i,ms,p_stress[:,:,:,1,2],p.resolution)
|
||||
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||||
ms = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||||
writeVtkAscii(name+'-mesh-1-%s.vtk'%i,ms,logstrain[:,:,:,1,2],p.resolution)
|
||||
writeVtkAscii(name+'-mesh-2-%s.vtk'%i,ms,logstrain2[:,:,:,1,2],p.resolution)
|
||||
#writeVtkAsciidefgrad_av(name+'-box-%i.vtk'%i,p.dimension,defgrad_av)
|
||||
#writeVtkAsciiDots(name+'-points-%i.vtk'%i,centroids_coord,grain,p.resolution)
|
||||
sys.stdout.flush()
|
||||
|
|
Loading…
Reference in New Issue