clarify real/reciprocal space coordinates
This commit is contained in:
parent
3a078db6f1
commit
3d554e40b9
|
@ -30,7 +30,7 @@ lattice_symmetries: Dict[CrystalLattice, CrystalFamily] = {
|
|||
|
||||
class Crystal():
|
||||
"""
|
||||
Representation of crystal in terms of crystal family or Bravais lattice.
|
||||
Representation of a crystal as (general) crystal family or (more specific) as a scaled Bravais lattice.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
@ -41,14 +41,14 @@ class Crystal():
|
|||
>>> cubic
|
||||
Crystal family: cubic
|
||||
|
||||
Body centered cubic Bravais lattice with parameters of iron:
|
||||
Body-centered cubic Bravais lattice with parameters of iron:
|
||||
|
||||
>>> import damask
|
||||
>>> Fe = damask.Crystal(lattice='cI', a=0.287e-9)
|
||||
>>> Fe = damask.Crystal(lattice='cI', a=287e-12)
|
||||
>>> Fe
|
||||
Crystal family: cubic
|
||||
Bravais lattice: cI
|
||||
a=2.87e-10m, b=2.87e-10m, c=2.87e-10m
|
||||
a=2.87e-10 m, b=2.87e-10 m, c=2.87e-10 m
|
||||
α=90°, β=90°, γ=90°
|
||||
|
||||
"""
|
||||
|
@ -136,10 +136,10 @@ class Crystal():
|
|||
"""Represent."""
|
||||
family = f'Crystal family: {self.family}'
|
||||
return family if self.lattice is None else \
|
||||
'\n'.join([family,
|
||||
f'Bravais lattice: {self.lattice}',
|
||||
'a={:.5g}m, b={:.5g}m, c={:.5g}m'.format(*self.parameters[:3]),
|
||||
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
||||
util.srepr([family,
|
||||
f'Bravais lattice: {self.lattice}',
|
||||
'a={:.5g} m, b={:.5g} m, c={:.5g} m'.format(*self.parameters[:3]),
|
||||
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
||||
|
||||
|
||||
def __eq__(self,
|
||||
|
@ -345,7 +345,8 @@ class Crystal():
|
|||
Parameters
|
||||
----------
|
||||
direction|plane : numpy.ndarray, shape (...,3)
|
||||
Vector along direction or plane normal.
|
||||
Real space vector along direction or
|
||||
reciprocal space vector along plane normal.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -366,7 +367,7 @@ class Crystal():
|
|||
uvw: FloatSequence = None,
|
||||
hkl: FloatSequence = None) -> np.ndarray:
|
||||
"""
|
||||
Calculate crystal frame vector along lattice direction [uvw] or plane normal (hkl).
|
||||
Calculate crystal frame vector corresponding to lattice direction [uvw] or plane normal (hkl).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -376,18 +377,19 @@ class Crystal():
|
|||
Returns
|
||||
-------
|
||||
vector : numpy.ndarray, shape (...,3)
|
||||
Crystal frame vector along [uvw] direction or (hkl) plane normal.
|
||||
Crystal frame vector in real space along [uvw] direction or
|
||||
in reciprocal space along (hkl) plane normal.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Crystal frame vector of Magnesium along [1,0,0] direction:
|
||||
Crystal frame vector (real space) of Magnesium corresponding to [1,1,0] direction:
|
||||
|
||||
>>> import damask
|
||||
>>> Mg = damask.Crystal(lattice='hP', a=0.321e-9, c=0.521e-9)
|
||||
>>> Mg.to_frame(uvw=[1, 0, 0])
|
||||
array([3.21e-10, 0.00e+00, 0.00e+00])
|
||||
>>> Mg = damask.Crystal(lattice='hP', a=321e-12, c=521e-12)
|
||||
>>> Mg.to_frame(uvw=[1, 1, 0])
|
||||
array([1.60500000e-10, 2.77994155e-10, 0.00000000e+00])
|
||||
|
||||
Crystal frame vector of Titanium along (1,0,0) direction:
|
||||
Crystal frame vector (reciprocal space) of Titanium along (1,0,0) plane normal:
|
||||
|
||||
>>> import damask
|
||||
>>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9)
|
||||
|
|
Loading…
Reference in New Issue