clarify real/reciprocal space coordinates

This commit is contained in:
Philip Eisenlohr 2022-02-22 09:12:58 -05:00
parent 3a078db6f1
commit 3d554e40b9
1 changed files with 18 additions and 16 deletions

View File

@ -30,7 +30,7 @@ lattice_symmetries: Dict[CrystalLattice, CrystalFamily] = {
class Crystal(): class Crystal():
""" """
Representation of crystal in terms of crystal family or Bravais lattice. Representation of a crystal as (general) crystal family or (more specific) as a scaled Bravais lattice.
Examples Examples
-------- --------
@ -41,14 +41,14 @@ class Crystal():
>>> cubic >>> cubic
Crystal family: cubic Crystal family: cubic
Body centered cubic Bravais lattice with parameters of iron: Body-centered cubic Bravais lattice with parameters of iron:
>>> import damask >>> import damask
>>> Fe = damask.Crystal(lattice='cI', a=0.287e-9) >>> Fe = damask.Crystal(lattice='cI', a=287e-12)
>>> Fe >>> Fe
Crystal family: cubic Crystal family: cubic
Bravais lattice: cI Bravais lattice: cI
a=2.87e-10m, b=2.87e-10m, c=2.87e-10m a=2.87e-10 m, b=2.87e-10 m, c=2.87e-10 m
α=90°, β=90°, γ=90° α=90°, β=90°, γ=90°
""" """
@ -136,10 +136,10 @@ class Crystal():
"""Represent.""" """Represent."""
family = f'Crystal family: {self.family}' family = f'Crystal family: {self.family}'
return family if self.lattice is None else \ return family if self.lattice is None else \
'\n'.join([family, util.srepr([family,
f'Bravais lattice: {self.lattice}', f'Bravais lattice: {self.lattice}',
'a={:.5g}m, b={:.5g}m, c={:.5g}m'.format(*self.parameters[:3]), 'a={:.5g} m, b={:.5g} m, c={:.5g} m'.format(*self.parameters[:3]),
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))]) 'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
def __eq__(self, def __eq__(self,
@ -345,7 +345,8 @@ class Crystal():
Parameters Parameters
---------- ----------
direction|plane : numpy.ndarray, shape (...,3) direction|plane : numpy.ndarray, shape (...,3)
Vector along direction or plane normal. Real space vector along direction or
reciprocal space vector along plane normal.
Returns Returns
------- -------
@ -366,7 +367,7 @@ class Crystal():
uvw: FloatSequence = None, uvw: FloatSequence = None,
hkl: FloatSequence = None) -> np.ndarray: hkl: FloatSequence = None) -> np.ndarray:
""" """
Calculate crystal frame vector along lattice direction [uvw] or plane normal (hkl). Calculate crystal frame vector corresponding to lattice direction [uvw] or plane normal (hkl).
Parameters Parameters
---------- ----------
@ -376,18 +377,19 @@ class Crystal():
Returns Returns
------- -------
vector : numpy.ndarray, shape (...,3) vector : numpy.ndarray, shape (...,3)
Crystal frame vector along [uvw] direction or (hkl) plane normal. Crystal frame vector in real space along [uvw] direction or
in reciprocal space along (hkl) plane normal.
Examples Examples
-------- --------
Crystal frame vector of Magnesium along [1,0,0] direction: Crystal frame vector (real space) of Magnesium corresponding to [1,1,0] direction:
>>> import damask >>> import damask
>>> Mg = damask.Crystal(lattice='hP', a=0.321e-9, c=0.521e-9) >>> Mg = damask.Crystal(lattice='hP', a=321e-12, c=521e-12)
>>> Mg.to_frame(uvw=[1, 0, 0]) >>> Mg.to_frame(uvw=[1, 1, 0])
array([3.21e-10, 0.00e+00, 0.00e+00]) array([1.60500000e-10, 2.77994155e-10, 0.00000000e+00])
Crystal frame vector of Titanium along (1,0,0) direction: Crystal frame vector (reciprocal space) of Titanium along (1,0,0) plane normal:
>>> import damask >>> import damask
>>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9) >>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9)