clarify real/reciprocal space coordinates
This commit is contained in:
parent
3a078db6f1
commit
3d554e40b9
|
@ -30,7 +30,7 @@ lattice_symmetries: Dict[CrystalLattice, CrystalFamily] = {
|
||||||
|
|
||||||
class Crystal():
|
class Crystal():
|
||||||
"""
|
"""
|
||||||
Representation of crystal in terms of crystal family or Bravais lattice.
|
Representation of a crystal as (general) crystal family or (more specific) as a scaled Bravais lattice.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
|
@ -41,10 +41,10 @@ class Crystal():
|
||||||
>>> cubic
|
>>> cubic
|
||||||
Crystal family: cubic
|
Crystal family: cubic
|
||||||
|
|
||||||
Body centered cubic Bravais lattice with parameters of iron:
|
Body-centered cubic Bravais lattice with parameters of iron:
|
||||||
|
|
||||||
>>> import damask
|
>>> import damask
|
||||||
>>> Fe = damask.Crystal(lattice='cI', a=0.287e-9)
|
>>> Fe = damask.Crystal(lattice='cI', a=287e-12)
|
||||||
>>> Fe
|
>>> Fe
|
||||||
Crystal family: cubic
|
Crystal family: cubic
|
||||||
Bravais lattice: cI
|
Bravais lattice: cI
|
||||||
|
@ -136,7 +136,7 @@ class Crystal():
|
||||||
"""Represent."""
|
"""Represent."""
|
||||||
family = f'Crystal family: {self.family}'
|
family = f'Crystal family: {self.family}'
|
||||||
return family if self.lattice is None else \
|
return family if self.lattice is None else \
|
||||||
'\n'.join([family,
|
util.srepr([family,
|
||||||
f'Bravais lattice: {self.lattice}',
|
f'Bravais lattice: {self.lattice}',
|
||||||
'a={:.5g} m, b={:.5g} m, c={:.5g} m'.format(*self.parameters[:3]),
|
'a={:.5g} m, b={:.5g} m, c={:.5g} m'.format(*self.parameters[:3]),
|
||||||
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
||||||
|
@ -345,7 +345,8 @@ class Crystal():
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
direction|plane : numpy.ndarray, shape (...,3)
|
direction|plane : numpy.ndarray, shape (...,3)
|
||||||
Vector along direction or plane normal.
|
Real space vector along direction or
|
||||||
|
reciprocal space vector along plane normal.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -366,7 +367,7 @@ class Crystal():
|
||||||
uvw: FloatSequence = None,
|
uvw: FloatSequence = None,
|
||||||
hkl: FloatSequence = None) -> np.ndarray:
|
hkl: FloatSequence = None) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Calculate crystal frame vector along lattice direction [uvw] or plane normal (hkl).
|
Calculate crystal frame vector corresponding to lattice direction [uvw] or plane normal (hkl).
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -376,18 +377,19 @@ class Crystal():
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
vector : numpy.ndarray, shape (...,3)
|
vector : numpy.ndarray, shape (...,3)
|
||||||
Crystal frame vector along [uvw] direction or (hkl) plane normal.
|
Crystal frame vector in real space along [uvw] direction or
|
||||||
|
in reciprocal space along (hkl) plane normal.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
Crystal frame vector of Magnesium along [1,0,0] direction:
|
Crystal frame vector (real space) of Magnesium corresponding to [1,1,0] direction:
|
||||||
|
|
||||||
>>> import damask
|
>>> import damask
|
||||||
>>> Mg = damask.Crystal(lattice='hP', a=0.321e-9, c=0.521e-9)
|
>>> Mg = damask.Crystal(lattice='hP', a=321e-12, c=521e-12)
|
||||||
>>> Mg.to_frame(uvw=[1, 0, 0])
|
>>> Mg.to_frame(uvw=[1, 1, 0])
|
||||||
array([3.21e-10, 0.00e+00, 0.00e+00])
|
array([1.60500000e-10, 2.77994155e-10, 0.00000000e+00])
|
||||||
|
|
||||||
Crystal frame vector of Titanium along (1,0,0) direction:
|
Crystal frame vector (reciprocal space) of Titanium along (1,0,0) plane normal:
|
||||||
|
|
||||||
>>> import damask
|
>>> import damask
|
||||||
>>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9)
|
>>> Ti = damask.Crystal(lattice='hP', a=0.295e-9, c=0.469e-9)
|
||||||
|
|
Loading…
Reference in New Issue