Merge branch 'development' into env-reporting
This commit is contained in:
commit
3c41cd609f
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit 7f0594060779d9a8a4e774d558134309ab77b96e
|
||||
Subproject commit ab64793bb04c506d815ebc850672ed0f2d013e67
|
|
@ -71,18 +71,25 @@ def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=
|
|||
coords = _np.empty((N_seeds,3))
|
||||
coords[0] = rng.random(3) * size
|
||||
|
||||
i = 1
|
||||
s = 1
|
||||
i = 0
|
||||
progress = util._ProgressBar(N_seeds+1,'',50)
|
||||
while i < N_seeds:
|
||||
while s < N_seeds:
|
||||
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
|
||||
tree = _spatial.cKDTree(coords[:i],boxsize=size) if periodic else \
|
||||
_spatial.cKDTree(coords[:i])
|
||||
tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \
|
||||
_spatial.cKDTree(coords[:s])
|
||||
distances, dev_null = tree.query(candidates)
|
||||
best = distances.argmax()
|
||||
if distances[best] > distance: # require minimum separation
|
||||
coords[i] = candidates[best] # maximum separation to existing point cloud
|
||||
coords[s] = candidates[best] # maximum separation to existing point cloud
|
||||
s += 1
|
||||
progress.update(s)
|
||||
i = 0
|
||||
else:
|
||||
i += 1
|
||||
progress.update(i)
|
||||
|
||||
if i == 100:
|
||||
raise ValueError('Seeding not possible')
|
||||
|
||||
return coords
|
||||
|
||||
|
|
|
@ -26,6 +26,15 @@ class TestSeeds:
|
|||
cKDTree(coords).query(coords, 2)
|
||||
assert (0<= coords).all() and (coords<size).all() and np.min(min_dists[:,1])>=distance
|
||||
|
||||
@pytest.mark.parametrize('periodic',[True,False])
|
||||
def test_from_Poisson_disc_invalid(self,periodic):
|
||||
N_seeds = np.random.randint(30,300)
|
||||
N_candidates = N_seeds//15
|
||||
distance = np.random.random()
|
||||
size = np.ones(3)*distance
|
||||
with pytest.raises(ValueError):
|
||||
seeds.from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=periodic)
|
||||
|
||||
def test_from_grid_reconstruct(self):
|
||||
cells = np.random.randint(10,20,3)
|
||||
N_seeds = np.random.randint(30,300)
|
||||
|
|
Loading…
Reference in New Issue