Merge branch 'development' into 56-parallel-hdf5
This commit is contained in:
commit
3bab08fdeb
|
@ -158,12 +158,12 @@ Post_AverageDown:
|
||||||
- master
|
- master
|
||||||
- release
|
- release
|
||||||
|
|
||||||
Post_General:
|
#Post_General:
|
||||||
stage: postprocessing
|
# stage: postprocessing
|
||||||
script: PostProcessing/test.py
|
# script: PostProcessing/test.py
|
||||||
except:
|
# except:
|
||||||
- master
|
# - master
|
||||||
- release
|
# - release
|
||||||
|
|
||||||
Post_GeometryReconstruction:
|
Post_GeometryReconstruction:
|
||||||
stage: postprocessing
|
stage: postprocessing
|
||||||
|
@ -373,12 +373,12 @@ Phenopowerlaw_singleSlip:
|
||||||
- master
|
- master
|
||||||
- release
|
- release
|
||||||
|
|
||||||
TextureComponents:
|
#TextureComponents:
|
||||||
stage: spectral
|
# stage: spectral
|
||||||
script: TextureComponents/test.py
|
# script: TextureComponents/test.py
|
||||||
except:
|
# except:
|
||||||
- master
|
# - master
|
||||||
- release
|
# - release
|
||||||
|
|
||||||
|
|
||||||
###################################################################################################
|
###################################################################################################
|
||||||
|
|
|
@ -119,6 +119,9 @@ for executable in mpirun mpiexec; do
|
||||||
getDetails $executable '--version'
|
getDetails $executable '--version'
|
||||||
done
|
done
|
||||||
|
|
||||||
|
firstLevel "CMake"
|
||||||
|
getDetails cmake --version
|
||||||
|
|
||||||
firstLevel "Abaqus"
|
firstLevel "Abaqus"
|
||||||
cd installation/mods_Abaqus # to have the right environment file
|
cd installation/mods_Abaqus # to have the right environment file
|
||||||
for executable in abaqus abq2017 abq2018; do
|
for executable in abaqus abq2017 abq2018; do
|
||||||
|
|
|
@ -33,7 +33,7 @@ class Quaternion:
|
||||||
All methods and naming conventions based on Rowenhorst_etal2015
|
All methods and naming conventions based on Rowenhorst_etal2015
|
||||||
Convention 1: coordinate frames are right-handed
|
Convention 1: coordinate frames are right-handed
|
||||||
Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
||||||
when viewing from the end point of the rotation axis unit vector towards the origin
|
when viewing from the end point of the rotation axis towards the origin
|
||||||
Convention 3: rotations will be interpreted in the passive sense
|
Convention 3: rotations will be interpreted in the passive sense
|
||||||
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
||||||
with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
||||||
|
@ -48,206 +48,138 @@ class Quaternion:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
quatArray = [1.0,0.0,0.0,0.0]):
|
quat = None,
|
||||||
"""Initializes to identity if not given"""
|
q = 1.0,
|
||||||
self.w, \
|
p = np.zeros(3,dtype=float)):
|
||||||
self.x, \
|
"""Initializes to identity unless specified"""
|
||||||
self.y, \
|
self.q = quat[0] if quat is not None else q
|
||||||
self.z = quatArray
|
self.p = np.array(quat[1:4]) if quat is not None else p
|
||||||
self.homomorph()
|
self.homomorph()
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
"""Components"""
|
"""Components"""
|
||||||
return iter([self.w,self.x,self.y,self.z])
|
return iter(self.asList())
|
||||||
|
|
||||||
def __copy__(self):
|
def __copy__(self):
|
||||||
"""Create copy"""
|
"""Copy"""
|
||||||
Q = Quaternion([self.w,self.x,self.y,self.z])
|
return self.__class__(q=self.q,p=self.p.copy())
|
||||||
return Q
|
|
||||||
|
|
||||||
copy = __copy__
|
copy = __copy__
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
"""Readbable string"""
|
"""Readable string"""
|
||||||
return 'Quaternion(real=%+.6f, imag=<%+.6f, %+.6f, %+.6f>)' % \
|
return 'Quaternion(real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(q=self.q,p=self.p)
|
||||||
(self.w, self.x, self.y, self.z)
|
|
||||||
|
|
||||||
def __pow__(self, exponent):
|
def __pow__(self, exponent):
|
||||||
"""Power"""
|
"""Power"""
|
||||||
omega = math.acos(self.w)
|
omega = math.acos(self.q)
|
||||||
vRescale = math.sin(exponent*omega)/math.sin(omega)
|
return self.__class__(q= math.cos(exponent*omega),
|
||||||
Q = Quaternion()
|
p=self.p * math.sin(exponent*omega)/math.sin(omega))
|
||||||
Q.w = math.cos(exponent*omega)
|
|
||||||
Q.x = self.x * vRescale
|
|
||||||
Q.y = self.y * vRescale
|
|
||||||
Q.z = self.z * vRescale
|
|
||||||
return Q
|
|
||||||
|
|
||||||
def __ipow__(self, exponent):
|
def __ipow__(self, exponent):
|
||||||
"""In-place power"""
|
"""In-place power"""
|
||||||
omega = math.acos(self.w)
|
omega = math.acos(self.q)
|
||||||
vRescale = math.sin(exponent*omega)/math.sin(omega)
|
self.q = math.cos(exponent*omega)
|
||||||
self.w = np.cos(exponent*omega)
|
self.p *= math.sin(exponent*omega)/math.sin(omega)
|
||||||
self.x *= vRescale
|
|
||||||
self.y *= vRescale
|
|
||||||
self.z *= vRescale
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __mul__(self, other):
|
def __mul__(self, other):
|
||||||
"""Multiplication"""
|
"""Multiplication"""
|
||||||
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||||
|
P = -1.0
|
||||||
try: # quaternion
|
try: # quaternion
|
||||||
Aw = self.w
|
return self.__class__(q=self.q*other.q - np.dot(self.p,other.p),
|
||||||
Ax = self.x
|
p=self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p))
|
||||||
Ay = self.y
|
|
||||||
Az = self.z
|
|
||||||
Bw = other.w
|
|
||||||
Bx = other.x
|
|
||||||
By = other.y
|
|
||||||
Bz = other.z
|
|
||||||
Q = Quaternion()
|
|
||||||
Q.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
|
||||||
Q.x = + Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
|
||||||
Q.y = - Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
|
||||||
Q.z = + Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
|
||||||
return Q
|
|
||||||
except: pass
|
except: pass
|
||||||
try: # vector (perform active rotation, i.e. q*v*q.conjugated)
|
try: # vector (perform passive rotation)
|
||||||
w = self.w
|
( x, y, z) = self.p
|
||||||
x = self.x
|
(Vx,Vy,Vz) = other[0:3]
|
||||||
y = self.y
|
A = self.q*self.q - np.dot(self.p,self.p)
|
||||||
z = self.z
|
B = 2.0 * (x*Vx + y*Vy + z*Vz)
|
||||||
Vx = other[0]
|
C = 2.0 * P*self.q
|
||||||
Vy = other[1]
|
|
||||||
Vz = other[2]
|
|
||||||
|
|
||||||
return np.array([\
|
return np.array([
|
||||||
w * w * Vx + 2 * y * w * Vz - 2 * z * w * Vy + \
|
A*Vx + B*x + C*(y*Vz - z*Vy),
|
||||||
x * x * Vx + 2 * y * x * Vy + 2 * z * x * Vz - \
|
A*Vy + B*y + C*(z*Vx - x*Vz),
|
||||||
z * z * Vx - y * y * Vx,
|
A*Vz + B*z + C*(x*Vy - y*Vx),
|
||||||
2 * x * y * Vx + y * y * Vy + 2 * z * y * Vz + \
|
])
|
||||||
2 * w * z * Vx - z * z * Vy + w * w * Vy - \
|
|
||||||
2 * x * w * Vz - x * x * Vy,
|
|
||||||
2 * x * z * Vx + 2 * y * z * Vy + \
|
|
||||||
z * z * Vz - 2 * w * y * Vx - y * y * Vz + \
|
|
||||||
2 * w * x * Vy - x * x * Vz + w * w * Vz ])
|
|
||||||
except: pass
|
except: pass
|
||||||
try: # scalar
|
try: # scalar
|
||||||
Q = self.copy()
|
return self.__class__(q=self.q*other,
|
||||||
Q.w *= other
|
p=self.p*other)
|
||||||
Q.x *= other
|
|
||||||
Q.y *= other
|
|
||||||
Q.z *= other
|
|
||||||
return Q
|
|
||||||
except:
|
except:
|
||||||
return self.copy()
|
return self.copy()
|
||||||
|
|
||||||
def __imul__(self, other):
|
def __imul__(self, other):
|
||||||
"""In-place multiplication"""
|
"""In-place multiplication"""
|
||||||
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||||
|
P = -1.0
|
||||||
try: # Quaternion
|
try: # Quaternion
|
||||||
Aw = self.w
|
self.q = self.q*other.q - np.dot(self.p,other.p)
|
||||||
Ax = self.x
|
self.p = self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p)
|
||||||
Ay = self.y
|
|
||||||
Az = self.z
|
|
||||||
Bw = other.w
|
|
||||||
Bx = other.x
|
|
||||||
By = other.y
|
|
||||||
Bz = other.z
|
|
||||||
self.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
|
||||||
self.x = + Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
|
||||||
self.y = - Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
|
||||||
self.z = + Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
|
||||||
except: pass
|
except: pass
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __div__(self, other):
|
def __div__(self, other):
|
||||||
"""Division"""
|
"""Division"""
|
||||||
if isinstance(other, (int,float)):
|
if isinstance(other, (int,float)):
|
||||||
w = self.w / other
|
return self.__class__(q=self.q / other,
|
||||||
x = self.x / other
|
p=self.p / other)
|
||||||
y = self.y / other
|
|
||||||
z = self.z / other
|
|
||||||
return self.__class__([w,x,y,z])
|
|
||||||
else:
|
else:
|
||||||
return NotImplemented
|
return NotImplemented
|
||||||
|
|
||||||
def __idiv__(self, other):
|
def __idiv__(self, other):
|
||||||
"""In-place division"""
|
"""In-place division"""
|
||||||
if isinstance(other, (int,float)):
|
if isinstance(other, (int,float)):
|
||||||
self.w /= other
|
self.q /= other
|
||||||
self.x /= other
|
self.p /= other
|
||||||
self.y /= other
|
|
||||||
self.z /= other
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __add__(self, other):
|
def __add__(self, other):
|
||||||
"""Addition"""
|
"""Addition"""
|
||||||
if isinstance(other, Quaternion):
|
if isinstance(other, Quaternion):
|
||||||
w = self.w + other.w
|
return self.__class__(q=self.q + other.q,
|
||||||
x = self.x + other.x
|
p=self.p + other.p)
|
||||||
y = self.y + other.y
|
|
||||||
z = self.z + other.z
|
|
||||||
return self.__class__([w,x,y,z])
|
|
||||||
else:
|
else:
|
||||||
return NotImplemented
|
return NotImplemented
|
||||||
|
|
||||||
def __iadd__(self, other):
|
def __iadd__(self, other):
|
||||||
"""In-place addition"""
|
"""In-place addition"""
|
||||||
if isinstance(other, Quaternion):
|
if isinstance(other, Quaternion):
|
||||||
self.w += other.w
|
self.q += other.q
|
||||||
self.x += other.x
|
self.p += other.p
|
||||||
self.y += other.y
|
|
||||||
self.z += other.z
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __sub__(self, other):
|
def __sub__(self, other):
|
||||||
"""Subtraction"""
|
"""Subtraction"""
|
||||||
if isinstance(other, Quaternion):
|
if isinstance(other, Quaternion):
|
||||||
Q = self.copy()
|
return self.__class__(q=self.q - other.q,
|
||||||
Q.w -= other.w
|
p=self.p - other.p)
|
||||||
Q.x -= other.x
|
|
||||||
Q.y -= other.y
|
|
||||||
Q.z -= other.z
|
|
||||||
return Q
|
|
||||||
else:
|
else:
|
||||||
return self.copy()
|
return NotImplemented
|
||||||
|
|
||||||
def __isub__(self, other):
|
def __isub__(self, other):
|
||||||
"""In-place subtraction"""
|
"""In-place subtraction"""
|
||||||
if isinstance(other, Quaternion):
|
if isinstance(other, Quaternion):
|
||||||
self.w -= other.w
|
self.q -= other.q
|
||||||
self.x -= other.x
|
self.p -= other.p
|
||||||
self.y -= other.y
|
|
||||||
self.z -= other.z
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __neg__(self):
|
def __neg__(self):
|
||||||
"""Additive inverse"""
|
"""Additive inverse"""
|
||||||
self.w = -self.w
|
self.q = -self.q
|
||||||
self.x = -self.x
|
self.p = -self.p
|
||||||
self.y = -self.y
|
|
||||||
self.z = -self.z
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __abs__(self):
|
def __abs__(self):
|
||||||
"""Norm"""
|
"""Norm"""
|
||||||
return math.sqrt(self.w ** 2 + \
|
return math.sqrt(self.q ** 2 + np.dot(self.p,self.p))
|
||||||
self.x ** 2 + \
|
|
||||||
self.y ** 2 + \
|
|
||||||
self.z ** 2)
|
|
||||||
|
|
||||||
magnitude = __abs__
|
magnitude = __abs__
|
||||||
|
|
||||||
def __eq__(self,other):
|
def __eq__(self,other):
|
||||||
"""Equal at e-8 precision"""
|
"""Equal at e-8 precision"""
|
||||||
return (abs(self.w-other.w) < 1e-8 and \
|
return (self-other).magnitude() < 1e-8 or (-self-other).magnitude() < 1e-8
|
||||||
abs(self.x-other.x) < 1e-8 and \
|
|
||||||
abs(self.y-other.y) < 1e-8 and \
|
|
||||||
abs(self.z-other.z) < 1e-8) \
|
|
||||||
or \
|
|
||||||
(abs(-self.w-other.w) < 1e-8 and \
|
|
||||||
abs(-self.x-other.x) < 1e-8 and \
|
|
||||||
abs(-self.y-other.y) < 1e-8 and \
|
|
||||||
abs(-self.z-other.z) < 1e-8)
|
|
||||||
|
|
||||||
def __ne__(self,other):
|
def __ne__(self,other):
|
||||||
"""Not equal at e-8 precision"""
|
"""Not equal at e-8 precision"""
|
||||||
|
@ -255,31 +187,26 @@ class Quaternion:
|
||||||
|
|
||||||
def __cmp__(self,other):
|
def __cmp__(self,other):
|
||||||
"""Linear ordering"""
|
"""Linear ordering"""
|
||||||
return (self.Rodrigues()>other.Rodrigues()) - (self.Rodrigues()<other.Rodrigues())
|
return (1 if np.linalg.norm(self.asRodrigues()) > np.linalg.norm(other.asRodrigues()) else 0) \
|
||||||
|
- (1 if np.linalg.norm(self.asRodrigues()) < np.linalg.norm(other.asRodrigues()) else 0)
|
||||||
|
|
||||||
def magnitude_squared(self):
|
def magnitude_squared(self):
|
||||||
return self.w ** 2 + \
|
return self.q ** 2 + np.dot(self.p,self.p)
|
||||||
self.x ** 2 + \
|
|
||||||
self.y ** 2 + \
|
|
||||||
self.z ** 2
|
|
||||||
|
|
||||||
def identity(self):
|
def identity(self):
|
||||||
self.w = 1.
|
self.q = 1.
|
||||||
self.x = 0.
|
self.p = np.zeros(3,dtype=float)
|
||||||
self.y = 0.
|
|
||||||
self.z = 0.
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def normalize(self):
|
def normalize(self):
|
||||||
d = self.magnitude()
|
d = self.magnitude()
|
||||||
if d > 0.0:
|
if d > 0.0:
|
||||||
self /= d
|
self.q /= d
|
||||||
|
self.p /= d
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def conjugate(self):
|
def conjugate(self):
|
||||||
self.x = -self.x
|
self.p = -self.p
|
||||||
self.y = -self.y
|
|
||||||
self.z = -self.z
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def inverse(self):
|
def inverse(self):
|
||||||
|
@ -290,11 +217,9 @@ class Quaternion:
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def homomorph(self):
|
def homomorph(self):
|
||||||
if self.w < 0.0:
|
if self.q < 0.0:
|
||||||
self.w = -self.w
|
self.q = -self.q
|
||||||
self.x = -self.x
|
self.p = -self.p
|
||||||
self.y = -self.y
|
|
||||||
self.z = -self.z
|
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def normalized(self):
|
def normalized(self):
|
||||||
|
@ -310,27 +235,35 @@ class Quaternion:
|
||||||
return self.copy().homomorph()
|
return self.copy().homomorph()
|
||||||
|
|
||||||
def asList(self):
|
def asList(self):
|
||||||
return [i for i in self]
|
return [self.q]+list(self.p)
|
||||||
|
|
||||||
def asM(self): # to find Averaging Quaternions (see F. Landis Markley et al.)
|
def asM(self): # to find Averaging Quaternions (see F. Landis Markley et al.)
|
||||||
return np.outer([i for i in self],[i for i in self])
|
return np.outer(self.asList(),self.asList())
|
||||||
|
|
||||||
def asMatrix(self):
|
def asMatrix(self):
|
||||||
qbarhalf = 0.5*(self.w**2 - self.x**2 - self.y**2 - self.z**2)
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||||
|
P = -1.0
|
||||||
|
qbarhalf = 0.5*(self.q**2 - np.dot(self.p,self.p))
|
||||||
return 2.0*np.array(
|
return 2.0*np.array(
|
||||||
[[ qbarhalf + self.x**2 , self.x*self.y - self.w*self.z, self.x*self.z + self.w*self.y],
|
[[ qbarhalf + self.p[0]**2 ,
|
||||||
[ self.x*self.y + self.w*self.z, qbarhalf + self.y**2 , self.y*self.z - self.w*self.x],
|
self.p[0]*self.p[1] -P* self.q*self.p[2],
|
||||||
[ self.x*self.z - self.w*self.y, self.y*self.z + self.w*self.x, qbarhalf + self.z**2 ],
|
self.p[0]*self.p[2] +P* self.q*self.p[1] ],
|
||||||
|
[ self.p[0]*self.p[1] +P* self.q*self.p[2],
|
||||||
|
qbarhalf + self.p[1]**2 ,
|
||||||
|
self.p[1]*self.p[2] -P* self.q*self.p[0] ],
|
||||||
|
[ self.p[0]*self.p[2] -P* self.q*self.p[1],
|
||||||
|
self.p[1]*self.p[2] +P* self.q*self.p[0],
|
||||||
|
qbarhalf + self.p[2]**2 ],
|
||||||
])
|
])
|
||||||
|
|
||||||
def asAngleAxis(self,
|
def asAngleAxis(self,
|
||||||
degrees = False):
|
degrees = False):
|
||||||
if self.w > 1:
|
if self.q > 1.:
|
||||||
self.normalize()
|
self.normalize()
|
||||||
|
|
||||||
s = math.sqrt(1. - self.w**2)
|
s = math.sqrt(1. - self.q**2)
|
||||||
x = 2*self.w**2 - 1.
|
x = 2*self.q**2 - 1.
|
||||||
y = 2*self.w * s
|
y = 2*self.q * s
|
||||||
|
|
||||||
angle = math.atan2(y,x)
|
angle = math.atan2(y,x)
|
||||||
if angle < 0.0:
|
if angle < 0.0:
|
||||||
|
@ -338,26 +271,28 @@ class Quaternion:
|
||||||
s *= -1.
|
s *= -1.
|
||||||
|
|
||||||
return (np.degrees(angle) if degrees else angle,
|
return (np.degrees(angle) if degrees else angle,
|
||||||
np.array([1.0, 0.0, 0.0] if np.abs(angle) < 1e-6 else [self.x / s, self.y / s, self.z / s]))
|
np.array([1.0, 0.0, 0.0] if np.abs(angle) < 1e-6 else self.p / s))
|
||||||
|
|
||||||
def asRodrigues(self):
|
def asRodrigues(self):
|
||||||
return np.inf*np.ones(3) if self.w == 0.0 else np.array([self.x, self.y, self.z])/self.w
|
return np.inf*np.ones(3) if self.q == 0.0 else self.p/self.q
|
||||||
|
|
||||||
def asEulers(self,
|
def asEulers(self,
|
||||||
degrees = False):
|
degrees = False):
|
||||||
"""Orientation as Bunge-Euler angles."""
|
"""Orientation as Bunge-Euler angles."""
|
||||||
q03 = self.w**2+self.z**2
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||||
q12 = self.x**2+self.y**2
|
P = -1.0
|
||||||
|
q03 = self.q**2 + self.p[2]**2
|
||||||
|
q12 = self.p[0]**2 + self.p[1]**2
|
||||||
chi = np.sqrt(q03*q12)
|
chi = np.sqrt(q03*q12)
|
||||||
|
|
||||||
if abs(chi) < 1e-10 and abs(q12) < 1e-10:
|
if abs(chi) < 1e-10 and abs(q12) < 1e-10:
|
||||||
eulers = np.array([math.atan2(-2*self.w*self.z,self.w**2-self.z**2),0,0])
|
eulers = np.array([math.atan2(-2*P*self.q*self.p[2],self.q**2-self.p[2]**2),0,0])
|
||||||
elif abs(chi) < 1e-10 and abs(q03) < 1e-10:
|
elif abs(chi) < 1e-10 and abs(q03) < 1e-10:
|
||||||
eulers = np.array([math.atan2( 2*self.x*self.y,self.x**2-self.y**2),np.pi,0])
|
eulers = np.array([math.atan2( 2 *self.p[0]*self.p[1],self.p[0]**2-self.p[1]**2),np.pi,0])
|
||||||
else:
|
else:
|
||||||
eulers = np.array([math.atan2((self.x*self.z-self.w*self.y)/chi,(-self.w*self.x-self.y*self.z)/chi),
|
eulers = np.array([math.atan2((self.p[0]*self.p[2]-P*self.q*self.p[1])/chi,(-P*self.q*self.p[0]-self.p[1]*self.p[2])/chi),
|
||||||
math.atan2(2*chi,q03-q12),
|
math.atan2(2*chi,q03-q12),
|
||||||
math.atan2((self.w*self.y+self.x*self.z)/chi,( self.y*self.z-self.w*self.x)/chi),
|
math.atan2((P*self.q*self.p[1]+self.p[0]*self.p[2])/chi,( self.p[1]*self.p[2]-P*self.q*self.p[0])/chi),
|
||||||
])
|
])
|
||||||
|
|
||||||
return np.degrees(eulers) if degrees else eulers
|
return np.degrees(eulers) if degrees else eulers
|
||||||
|
@ -371,25 +306,26 @@ class Quaternion:
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def fromRandom(cls,randomSeed = None):
|
def fromRandom(cls,randomSeed = None):
|
||||||
|
import binascii
|
||||||
if randomSeed is None:
|
if randomSeed is None:
|
||||||
randomSeed = int(os.urandom(4).encode('hex'), 16)
|
randomSeed = int(binascii.hexlify(os.urandom(4)),16)
|
||||||
np.random.seed(randomSeed)
|
np.random.seed(randomSeed)
|
||||||
r = np.random.random(3)
|
r = np.random.random(3)
|
||||||
w = math.cos(2.0*math.pi*r[0])*math.sqrt(r[2])
|
w = math.cos(2.0*math.pi*r[0])*math.sqrt(r[2])
|
||||||
x = math.sin(2.0*math.pi*r[1])*math.sqrt(1.0-r[2])
|
x = math.sin(2.0*math.pi*r[1])*math.sqrt(1.0-r[2])
|
||||||
y = math.cos(2.0*math.pi*r[1])*math.sqrt(1.0-r[2])
|
y = math.cos(2.0*math.pi*r[1])*math.sqrt(1.0-r[2])
|
||||||
z = math.sin(2.0*math.pi*r[0])*math.sqrt(r[2])
|
z = math.sin(2.0*math.pi*r[0])*math.sqrt(r[2])
|
||||||
return cls([w,x,y,z])
|
return cls(quat=[w,x,y,z])
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def fromRodrigues(cls, rodrigues):
|
def fromRodrigues(cls, rodrigues):
|
||||||
if not isinstance(rodrigues, np.ndarray): rodrigues = np.array(rodrigues)
|
if not isinstance(rodrigues, np.ndarray): rodrigues = np.array(rodrigues)
|
||||||
halfangle = math.atan(np.linalg.norm(rodrigues))
|
norm = np.linalg.norm(rodrigues)
|
||||||
|
halfangle = math.atan(norm)
|
||||||
|
s = math.sin(halfangle)
|
||||||
c = math.cos(halfangle)
|
c = math.cos(halfangle)
|
||||||
w = c
|
return cls(q=c,p=s*rodrigues/norm)
|
||||||
x,y,z = rodrigues/c
|
|
||||||
return cls([w,x,y,z])
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
@ -397,22 +333,19 @@ class Quaternion:
|
||||||
angle,
|
angle,
|
||||||
axis,
|
axis,
|
||||||
degrees = False):
|
degrees = False):
|
||||||
if not isinstance(axis, np.ndarray): axis = np.array(axis,dtype='d')
|
if not isinstance(axis, np.ndarray): axis = np.array(axis,dtype=float)
|
||||||
axis = axis.astype(float)/np.linalg.norm(axis)
|
axis = axis.astype(float)/np.linalg.norm(axis)
|
||||||
angle = np.radians(angle) if degrees else angle
|
angle = np.radians(angle) if degrees else angle
|
||||||
s = math.sin(0.5 * angle)
|
s = math.sin(0.5 * angle)
|
||||||
w = math.cos(0.5 * angle)
|
c = math.cos(0.5 * angle)
|
||||||
x = axis[0] * s
|
return cls(q=c,p=axis*s)
|
||||||
y = axis[1] * s
|
|
||||||
z = axis[2] * s
|
|
||||||
return cls([w,x,y,z])
|
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def fromEulers(cls,
|
def fromEulers(cls,
|
||||||
eulers,
|
eulers,
|
||||||
degrees = False):
|
degrees = False):
|
||||||
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype='d')
|
if not isinstance(eulers, np.ndarray): eulers = np.array(eulers,dtype=float)
|
||||||
eulers = np.radians(eulers) if degrees else eulers
|
eulers = np.radians(eulers) if degrees else eulers
|
||||||
|
|
||||||
sigma = 0.5*(eulers[0]+eulers[2])
|
sigma = 0.5*(eulers[0]+eulers[2])
|
||||||
|
@ -420,11 +353,13 @@ class Quaternion:
|
||||||
c = np.cos(0.5*eulers[1])
|
c = np.cos(0.5*eulers[1])
|
||||||
s = np.sin(0.5*eulers[1])
|
s = np.sin(0.5*eulers[1])
|
||||||
|
|
||||||
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||||
|
P = -1.0
|
||||||
w = c * np.cos(sigma)
|
w = c * np.cos(sigma)
|
||||||
x = -s * np.cos(delta)
|
x = -P * s * np.cos(delta)
|
||||||
y = -s * np.sin(delta)
|
y = -P * s * np.sin(delta)
|
||||||
z = -c * np.sin(sigma)
|
z = -P * c * np.sin(sigma)
|
||||||
return cls([w,x,y,z])
|
return cls(quat=[w,x,y,z])
|
||||||
|
|
||||||
|
|
||||||
# Modified Method to calculate Quaternion from Orientation Matrix,
|
# Modified Method to calculate Quaternion from Orientation Matrix,
|
||||||
|
@ -435,16 +370,18 @@ class Quaternion:
|
||||||
if m.shape != (3,3) and np.prod(m.shape) == 9:
|
if m.shape != (3,3) and np.prod(m.shape) == 9:
|
||||||
m = m.reshape(3,3)
|
m = m.reshape(3,3)
|
||||||
|
|
||||||
|
# Rowenhorst_etal2015 MSMSE: value of P is selected as -1
|
||||||
|
P = -1.0
|
||||||
w = 0.5*math.sqrt(1.+m[0,0]+m[1,1]+m[2,2])
|
w = 0.5*math.sqrt(1.+m[0,0]+m[1,1]+m[2,2])
|
||||||
x = 0.5*math.sqrt(1.+m[0,0]-m[1,1]-m[2,2])
|
x = P*0.5*math.sqrt(1.+m[0,0]-m[1,1]-m[2,2])
|
||||||
y = 0.5*math.sqrt(1.-m[0,0]+m[1,1]-m[2,2])
|
y = P*0.5*math.sqrt(1.-m[0,0]+m[1,1]-m[2,2])
|
||||||
z = 0.5*math.sqrt(1.-m[0,0]-m[1,1]+m[2,2])
|
z = P*0.5*math.sqrt(1.-m[0,0]-m[1,1]+m[2,2])
|
||||||
|
|
||||||
x *= -1 if m[2,1] < m[1,2] else 1
|
x *= -1 if m[2,1] < m[1,2] else 1
|
||||||
y *= -1 if m[0,2] < m[2,0] else 1
|
y *= -1 if m[0,2] < m[2,0] else 1
|
||||||
z *= -1 if m[1,0] < m[0,1] else 1
|
z *= -1 if m[1,0] < m[0,1] else 1
|
||||||
|
|
||||||
return cls( np.array([w,x,y,z])/math.sqrt(w**2 + x**2 + y**2 + z**2))
|
return cls(quat=np.array([w,x,y,z])/math.sqrt(w**2 + x**2 + y**2 + z**2))
|
||||||
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
@ -458,36 +395,30 @@ class Quaternion:
|
||||||
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
|
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
|
||||||
Q = cls()
|
Q = cls()
|
||||||
|
|
||||||
costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z
|
costheta = q1.q*q2.q + np.dot(q1.p,q2.p)
|
||||||
if costheta < 0.:
|
if costheta < 0.:
|
||||||
costheta = -costheta
|
costheta = -costheta
|
||||||
q1 = q1.conjugated()
|
q1 = q1.conjugated()
|
||||||
elif costheta > 1:
|
elif costheta > 1.:
|
||||||
costheta = 1
|
costheta = 1.
|
||||||
|
|
||||||
theta = math.acos(costheta)
|
theta = math.acos(costheta)
|
||||||
if abs(theta) < 0.01:
|
if abs(theta) < 0.01:
|
||||||
Q.w = q2.w
|
Q.q = q2.q
|
||||||
Q.x = q2.x
|
Q.p = q2.p
|
||||||
Q.y = q2.y
|
|
||||||
Q.z = q2.z
|
|
||||||
return Q
|
return Q
|
||||||
|
|
||||||
sintheta = math.sqrt(1.0 - costheta * costheta)
|
sintheta = math.sqrt(1.0 - costheta * costheta)
|
||||||
if abs(sintheta) < 0.01:
|
if abs(sintheta) < 0.01:
|
||||||
Q.w = (q1.w + q2.w) * 0.5
|
Q.q = (q1.q + q2.q) * 0.5
|
||||||
Q.x = (q1.x + q2.x) * 0.5
|
Q.p = (q1.p + q2.p) * 0.5
|
||||||
Q.y = (q1.y + q2.y) * 0.5
|
|
||||||
Q.z = (q1.z + q2.z) * 0.5
|
|
||||||
return Q
|
return Q
|
||||||
|
|
||||||
ratio1 = math.sin((1 - t) * theta) / sintheta
|
ratio1 = math.sin((1.0 - t) * theta) / sintheta
|
||||||
ratio2 = math.sin( t * theta) / sintheta
|
ratio2 = math.sin( t * theta) / sintheta
|
||||||
|
|
||||||
Q.w = q1.w * ratio1 + q2.w * ratio2
|
Q.q = q1.q * ratio1 + q2.q * ratio2
|
||||||
Q.x = q1.x * ratio1 + q2.x * ratio2
|
Q.p = q1.p * ratio1 + q2.p * ratio2
|
||||||
Q.y = q1.y * ratio1 + q2.y * ratio2
|
|
||||||
Q.z = q1.z * ratio1 + q2.z * ratio2
|
|
||||||
return Q
|
return Q
|
||||||
|
|
||||||
|
|
||||||
|
@ -513,7 +444,7 @@ class Symmetry:
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
"""Readbable string"""
|
"""Readbable string"""
|
||||||
return '%s' % (self.lattice)
|
return '{}'.format(self.lattice)
|
||||||
|
|
||||||
|
|
||||||
def __eq__(self, other):
|
def __eq__(self, other):
|
||||||
|
@ -737,10 +668,10 @@ class Symmetry:
|
||||||
if color: # have to return color array
|
if color: # have to return color array
|
||||||
if inSST:
|
if inSST:
|
||||||
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
||||||
rgb = np.minimum(np.ones(3,'d'),rgb) # limit to maximum intensity
|
rgb = np.minimum(np.ones(3,dtype=float),rgb) # limit to maximum intensity
|
||||||
rgb /= max(rgb) # normalize to (HS)V = 1
|
rgb /= max(rgb) # normalize to (HS)V = 1
|
||||||
else:
|
else:
|
||||||
rgb = np.zeros(3,'d')
|
rgb = np.zeros(3,dtype=float)
|
||||||
return (inSST,rgb)
|
return (inSST,rgb)
|
||||||
else:
|
else:
|
||||||
return inSST
|
return inSST
|
||||||
|
@ -780,8 +711,9 @@ class Orientation:
|
||||||
self.quaternion = Quaternion.fromRodrigues(Rodrigues)
|
self.quaternion = Quaternion.fromRodrigues(Rodrigues)
|
||||||
elif isinstance(quaternion, Quaternion): # based on given quaternion
|
elif isinstance(quaternion, Quaternion): # based on given quaternion
|
||||||
self.quaternion = quaternion.homomorphed()
|
self.quaternion = quaternion.homomorphed()
|
||||||
elif isinstance(quaternion, np.ndarray) and quaternion.shape == (4,): # based on given quaternion-like array
|
elif (isinstance(quaternion, np.ndarray) and quaternion.shape == (4,)) or \
|
||||||
self.quaternion = Quaternion(quaternion).homomorphed()
|
(isinstance(quaternion, list) and len(quaternion) == 4 ): # based on given quaternion-like array
|
||||||
|
self.quaternion = Quaternion(quat=quaternion).homomorphed()
|
||||||
|
|
||||||
self.symmetry = Symmetry(symmetry)
|
self.symmetry = Symmetry(symmetry)
|
||||||
|
|
||||||
|
@ -794,10 +726,12 @@ class Orientation:
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
"""Value as all implemented representations"""
|
"""Value as all implemented representations"""
|
||||||
return 'Symmetry: %s\n' % (self.symmetry) + \
|
return '\n'.join([
|
||||||
'Quaternion: %s\n' % (self.quaternion) + \
|
'Symmetry: {}'.format(self.symmetry),
|
||||||
'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \
|
'Quaternion: {}'.format(self.quaternion),
|
||||||
'Bunge Eulers / deg: %s' % ('\t'.join(map(str,self.asEulers(degrees=True))) )
|
'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ),
|
||||||
|
'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ),
|
||||||
|
])
|
||||||
|
|
||||||
def asQuaternion(self):
|
def asQuaternion(self):
|
||||||
return self.quaternion.asList()
|
return self.quaternion.asList()
|
||||||
|
@ -927,7 +861,7 @@ class Orientation:
|
||||||
M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa
|
M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa
|
||||||
eig, vec = np.linalg.eig(M/N)
|
eig, vec = np.linalg.eig(M/N)
|
||||||
|
|
||||||
return Orientation(quaternion = Quaternion(quatArray = np.real(vec.T[eig.argmax()])),
|
return Orientation(quaternion = Quaternion(quat = np.real(vec.T[eig.argmax()])),
|
||||||
symmetry = reference.symmetry.lattice)
|
symmetry = reference.symmetry.lattice)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -200,9 +200,9 @@ for name in filenames:
|
||||||
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
|
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
|
||||||
alreadyChecked[gID] = True # remember not to check again
|
alreadyChecked[gID] = True # remember not to check again
|
||||||
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
|
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
|
||||||
if disorientation.quaternion.w > cos_disorientation: # within threshold ...
|
if disorientation.quaternion.q > cos_disorientation: # within threshold ...
|
||||||
candidates.append(gID) # remember as potential candidate
|
candidates.append(gID) # remember as potential candidate
|
||||||
if disorientation.quaternion.w >= bestDisorientation.w: # ... and better than current best?
|
if disorientation.quaternion.q >= bestDisorientation.q: # ... and better than current best?
|
||||||
matched = True
|
matched = True
|
||||||
matchedID = gID # remember that grain
|
matchedID = gID # remember that grain
|
||||||
bestDisorientation = disorientation.quaternion
|
bestDisorientation = disorientation.quaternion
|
||||||
|
|
|
@ -64,11 +64,11 @@ if options.dimension is None:
|
||||||
parser.error('no dimension specified.')
|
parser.error('no dimension specified.')
|
||||||
if options.angleaxis is not None:
|
if options.angleaxis is not None:
|
||||||
options.angleaxis = list(map(float,options.angleaxis))
|
options.angleaxis = list(map(float,options.angleaxis))
|
||||||
rotation = damask.Quaternion().fromAngleAxis(np.radians(options.angleaxis[0]) if options.degrees else options.angleaxis[0],
|
rotation = damask.Quaternion.fromAngleAxis(np.radians(options.angleaxis[0]) if options.degrees else options.angleaxis[0],
|
||||||
options.angleaxis[1:4])
|
options.angleaxis[1:4])
|
||||||
elif options.quaternion is not None:
|
elif options.quaternion is not None:
|
||||||
options.quaternion = map(float,options.quaternion)
|
options.quaternion = list(map(float,options.quaternion))
|
||||||
rotation = damask.Quaternion(options.quaternion)
|
rotation = damask.Quaternion(quat=options.quaternion)
|
||||||
else:
|
else:
|
||||||
rotation = damask.Quaternion()
|
rotation = damask.Quaternion()
|
||||||
|
|
||||||
|
|
|
@ -43,7 +43,7 @@ parser.add_option('-e', '--eulers',
|
||||||
parser.add_option('-d', '--degrees',
|
parser.add_option('-d', '--degrees',
|
||||||
dest = 'degrees',
|
dest = 'degrees',
|
||||||
action = 'store_true',
|
action = 'store_true',
|
||||||
help = 'angles are given in degrees [%default]')
|
help = 'all angles are in degrees')
|
||||||
parser.add_option('-m', '--matrix',
|
parser.add_option('-m', '--matrix',
|
||||||
dest = 'matrix',
|
dest = 'matrix',
|
||||||
type = 'string', metavar = 'string',
|
type = 'string', metavar = 'string',
|
||||||
|
@ -71,7 +71,7 @@ parser.add_option('--axes',
|
||||||
parser.add_option('-s', '--symmetry',
|
parser.add_option('-s', '--symmetry',
|
||||||
dest = 'symmetry',
|
dest = 'symmetry',
|
||||||
action = 'extend', metavar = '<string LIST>',
|
action = 'extend', metavar = '<string LIST>',
|
||||||
help = 'crystal symmetry %default {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
|
help = 'crystal symmetry of each phase %default {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
|
||||||
parser.add_option('--homogenization',
|
parser.add_option('--homogenization',
|
||||||
dest = 'homogenization',
|
dest = 'homogenization',
|
||||||
type = 'int', metavar = 'int',
|
type = 'int', metavar = 'int',
|
||||||
|
@ -234,7 +234,7 @@ for name in filenames:
|
||||||
o = damask.Orientation(Eulers = myData[colOri:colOri+3]*toRadians,
|
o = damask.Orientation(Eulers = myData[colOri:colOri+3]*toRadians,
|
||||||
symmetry = mySym)
|
symmetry = mySym)
|
||||||
elif inputtype == 'matrix':
|
elif inputtype == 'matrix':
|
||||||
o = damask.Orientation(matrix = myData[colOri:colOri+9].reshape(3,3).transpose(),
|
o = damask.Orientation(matrix = myData[colOri:colOri+9].reshape(3,3),
|
||||||
symmetry = mySym)
|
symmetry = mySym)
|
||||||
elif inputtype == 'frame':
|
elif inputtype == 'frame':
|
||||||
o = damask.Orientation(matrix = np.hstack((myData[colOri[0]:colOri[0]+3],
|
o = damask.Orientation(matrix = np.hstack((myData[colOri[0]:colOri[0]+3],
|
||||||
|
@ -246,7 +246,7 @@ for name in filenames:
|
||||||
o = damask.Orientation(quaternion = myData[colOri:colOri+4],
|
o = damask.Orientation(quaternion = myData[colOri:colOri+4],
|
||||||
symmetry = mySym)
|
symmetry = mySym)
|
||||||
|
|
||||||
cos_disorientations = -np.ones(1,dtype='f') # largest possible disorientation
|
cos_disorientations = -np.ones(1,dtype=float) # largest possible disorientation
|
||||||
closest_grain = -1 # invalid neighbor
|
closest_grain = -1 # invalid neighbor
|
||||||
|
|
||||||
if options.tolerance > 0.0: # only try to compress orientations if asked to
|
if options.tolerance > 0.0: # only try to compress orientations if asked to
|
||||||
|
@ -258,7 +258,7 @@ for name in filenames:
|
||||||
|
|
||||||
if len(grains) > 0: # check immediate neighborhood first
|
if len(grains) > 0: # check immediate neighborhood first
|
||||||
cos_disorientations = np.array([o.disorientation(orientations[grainID],
|
cos_disorientations = np.array([o.disorientation(orientations[grainID],
|
||||||
SST = False)[0].quaternion.w \
|
SST = False)[0].quaternion.q \
|
||||||
for grainID in grains]) # store disorientation per grainID
|
for grainID in grains]) # store disorientation per grainID
|
||||||
closest_grain = np.argmax(cos_disorientations) # grain among grains with closest orientation to myself
|
closest_grain = np.argmax(cos_disorientations) # grain among grains with closest orientation to myself
|
||||||
match = 'local'
|
match = 'local'
|
||||||
|
@ -269,7 +269,7 @@ for name in filenames:
|
||||||
|
|
||||||
if len(grains) > 0:
|
if len(grains) > 0:
|
||||||
cos_disorientations = np.array([o.disorientation(orientations[grainID],
|
cos_disorientations = np.array([o.disorientation(orientations[grainID],
|
||||||
SST = False)[0].quaternion.w \
|
SST = False)[0].quaternion.q \
|
||||||
for grainID in grains]) # store disorientation per grainID
|
for grainID in grains]) # store disorientation per grainID
|
||||||
closest_grain = np.argmax(cos_disorientations) # grain among grains with closest orientation to myself
|
closest_grain = np.argmax(cos_disorientations) # grain among grains with closest orientation to myself
|
||||||
match = 'global'
|
match = 'global'
|
||||||
|
|
|
@ -244,7 +244,7 @@ for name in filenames:
|
||||||
continue
|
continue
|
||||||
damask.util.report(scriptName,name)
|
damask.util.report(scriptName,name)
|
||||||
|
|
||||||
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed is None else options.randomSeed # random seed per file for second phase
|
randomSeed = int(os.urandom(4).hex(), 16) if options.randomSeed is None else options.randomSeed # random seed per file for second phase
|
||||||
random.seed(randomSeed)
|
random.seed(randomSeed)
|
||||||
|
|
||||||
# ------------------------------------------ read header and data ---------------------------------
|
# ------------------------------------------ read header and data ---------------------------------
|
||||||
|
|
10
src/IO.f90
10
src/IO.f90
|
@ -191,7 +191,9 @@ recursive function IO_recursiveRead(fileName,cnt) result(fileContent)
|
||||||
l,i, &
|
l,i, &
|
||||||
myStat
|
myStat
|
||||||
|
|
||||||
if (merge(cnt,0_pInt,present(cnt))>10_pInt) call IO_error(106_pInt,ext_msg=trim(fileName))
|
if (present(cnt)) then
|
||||||
|
if (cnt>10_pInt) call IO_error(106_pInt,ext_msg=trim(fileName))
|
||||||
|
endif
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! read data as stream
|
! read data as stream
|
||||||
|
@ -684,7 +686,11 @@ function IO_stringValue(string,chunkPos,myChunk,silent)
|
||||||
|
|
||||||
logical :: warn
|
logical :: warn
|
||||||
|
|
||||||
warn = merge(silent,.false.,present(silent))
|
if (present(silent)) then
|
||||||
|
warn = silent
|
||||||
|
else
|
||||||
|
warn = .false.
|
||||||
|
endif
|
||||||
|
|
||||||
IO_stringValue = ''
|
IO_stringValue = ''
|
||||||
valuePresent: if (myChunk > chunkPos(1) .or. myChunk < 1_pInt) then
|
valuePresent: if (myChunk > chunkPos(1) .or. myChunk < 1_pInt) then
|
||||||
|
|
|
@ -513,8 +513,12 @@ character(len=65536) function getString(this,key,defaultVal,raw)
|
||||||
type(tPartitionedStringList), pointer :: item
|
type(tPartitionedStringList), pointer :: item
|
||||||
logical :: found, &
|
logical :: found, &
|
||||||
whole
|
whole
|
||||||
|
if (present(raw)) then
|
||||||
|
whole = raw
|
||||||
|
else
|
||||||
|
whole = .false.
|
||||||
|
endif
|
||||||
|
|
||||||
whole = merge(raw,.false.,present(raw)) ! whole string or white space splitting
|
|
||||||
found = present(defaultVal)
|
found = present(defaultVal)
|
||||||
if (found) then
|
if (found) then
|
||||||
getString = trim(defaultVal)
|
getString = trim(defaultVal)
|
||||||
|
@ -661,7 +665,11 @@ function getStrings(this,key,defaultVal,requiredShape,raw)
|
||||||
cumulative
|
cumulative
|
||||||
|
|
||||||
cumulative = (key(1:1) == '(' .and. key(len_trim(key):len_trim(key)) == ')')
|
cumulative = (key(1:1) == '(' .and. key(len_trim(key):len_trim(key)) == ')')
|
||||||
whole = merge(raw,.false.,present(raw))
|
if (present(raw)) then
|
||||||
|
whole = raw
|
||||||
|
else
|
||||||
|
whole = .false.
|
||||||
|
endif
|
||||||
found = .false.
|
found = .false.
|
||||||
|
|
||||||
item => this
|
item => this
|
||||||
|
|
|
@ -225,7 +225,7 @@ subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar3333, ipc,
|
||||||
+ lattice_thermalExpansion33(1:3,1:3,2,phase)*(T - TRef)**1 & ! linear coefficient
|
+ lattice_thermalExpansion33(1:3,1:3,2,phase)*(T - TRef)**1 & ! linear coefficient
|
||||||
+ lattice_thermalExpansion33(1:3,1:3,3,phase)*(T - TRef)**2 & ! quadratic coefficient
|
+ lattice_thermalExpansion33(1:3,1:3,3,phase)*(T - TRef)**2 & ! quadratic coefficient
|
||||||
) / &
|
) / &
|
||||||
(1.0_pReal \
|
(1.0_pReal &
|
||||||
+ lattice_thermalExpansion33(1:3,1:3,1,phase)*(T - TRef)**1 / 1. &
|
+ lattice_thermalExpansion33(1:3,1:3,1,phase)*(T - TRef)**1 / 1. &
|
||||||
+ lattice_thermalExpansion33(1:3,1:3,2,phase)*(T - TRef)**2 / 2. &
|
+ lattice_thermalExpansion33(1:3,1:3,2,phase)*(T - TRef)**2 / 2. &
|
||||||
+ lattice_thermalExpansion33(1:3,1:3,3,phase)*(T - TRef)**3 / 3. &
|
+ lattice_thermalExpansion33(1:3,1:3,3,phase)*(T - TRef)**3 / 3. &
|
||||||
|
|
|
@ -2625,12 +2625,9 @@ real(pReal) pure function math_clip(a, left, right)
|
||||||
real(pReal), intent(in) :: a
|
real(pReal), intent(in) :: a
|
||||||
real(pReal), intent(in), optional :: left, right
|
real(pReal), intent(in), optional :: left, right
|
||||||
|
|
||||||
|
math_clip = a
|
||||||
math_clip = min ( &
|
if (present(left)) math_clip = max(left,math_clip)
|
||||||
max (merge(left, -huge(a), present(left)), a), &
|
if (present(right)) math_clip = min(right,math_clip)
|
||||||
merge(right, huge(a), present(right)) &
|
|
||||||
)
|
|
||||||
|
|
||||||
if (present(left) .and. present(right)) &
|
if (present(left) .and. present(right)) &
|
||||||
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
|
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
|
||||||
|
|
||||||
|
|
|
@ -120,8 +120,8 @@ subroutine spectral_damage_init()
|
||||||
trim(snes_type) == 'vinewtonssls') then
|
trim(snes_type) == 'vinewtonssls') then
|
||||||
call DMGetGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
|
call DMGetGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
|
||||||
call DMGetGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
|
call DMGetGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
|
||||||
call VecSet(lBound,0.0,ierr); CHKERRQ(ierr)
|
call VecSet(lBound,0.0_pReal,ierr); CHKERRQ(ierr)
|
||||||
call VecSet(uBound,1.0,ierr); CHKERRQ(ierr)
|
call VecSet(uBound,1.0_pReal,ierr); CHKERRQ(ierr)
|
||||||
call SNESVISetVariableBounds(damage_snes,lBound,uBound,ierr) !< variable bounds for variational inequalities like contact mechanics, damage etc.
|
call SNESVISetVariableBounds(damage_snes,lBound,uBound,ierr) !< variable bounds for variational inequalities like contact mechanics, damage etc.
|
||||||
call DMRestoreGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
|
call DMRestoreGlobalVector(damage_grid,lBound,ierr); CHKERRQ(ierr)
|
||||||
call DMRestoreGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
|
call DMRestoreGlobalVector(damage_grid,uBound,ierr); CHKERRQ(ierr)
|
||||||
|
@ -134,7 +134,7 @@ subroutine spectral_damage_init()
|
||||||
xend = xstart + xend - 1
|
xend = xstart + xend - 1
|
||||||
yend = ystart + yend - 1
|
yend = ystart + yend - 1
|
||||||
zend = zstart + zend - 1
|
zend = zstart + zend - 1
|
||||||
call VecSet(solution,1.0,ierr); CHKERRQ(ierr)
|
call VecSet(solution,1.0_pReal,ierr); CHKERRQ(ierr)
|
||||||
allocate(damage_current(grid(1),grid(2),grid3), source=1.0_pReal)
|
allocate(damage_current(grid(1),grid(2),grid3), source=1.0_pReal)
|
||||||
allocate(damage_lastInc(grid(1),grid(2),grid3), source=1.0_pReal)
|
allocate(damage_lastInc(grid(1),grid(2),grid3), source=1.0_pReal)
|
||||||
allocate(damage_stagInc(grid(1),grid(2),grid3), source=1.0_pReal)
|
allocate(damage_stagInc(grid(1),grid(2),grid3), source=1.0_pReal)
|
||||||
|
|
Loading…
Reference in New Issue