averaging possible for rotations and orientations; Rodrigues 3Dvector output only at top-level; code reordering

This commit is contained in:
Philip Eisenlohr 2019-04-12 09:02:00 -04:00
parent 3d6eb76da3
commit 3a7408a213
1 changed files with 104 additions and 82 deletions

View File

@ -260,6 +260,63 @@ class Rotation:
'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ), 'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ),
]) ])
def __mul__(self, other):
"""
Multiplication
Rotation: Details needed (active/passive), rotation of (3,3,3,3)-matrix should be considered
"""
if isinstance(other, Rotation): # rotate a rotation
return self.__class__((self.quaternion * other.quaternion).asArray())
elif isinstance(other, np.ndarray):
if other.shape == (3,): # rotate a single (3)-vector
( x, y, z) = self.quaternion.p
(Vx,Vy,Vz) = other[0:3]
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
B = 2.0 * (x*Vx + y*Vy + z*Vz)
C = 2.0 * P*self.quaternion.q
return np.array([
A*Vx + B*x + C*(y*Vz - z*Vy),
A*Vy + B*y + C*(z*Vx - x*Vz),
A*Vz + B*z + C*(x*Vy - y*Vx),
])
elif other.shape == (3,3,): # rotate a single (3x3)-matrix
return np.dot(self.asMatrix(),np.dot(other,self.asMatrix().T))
elif other.shape == (3,3,3,3):
raise NotImplementedError
else:
return NotImplemented
elif isinstance(other, tuple): # used to rotate a meshgrid-tuple
( x, y, z) = self.quaternion.p
(Vx,Vy,Vz) = other[0:3]
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
B = 2.0 * (x*Vx + y*Vy + z*Vz)
C = 2.0 * P*self.quaternion.q
return np.array([
A*Vx + B*x + C*(y*Vz - z*Vy),
A*Vy + B*y + C*(z*Vx - x*Vz),
A*Vz + B*z + C*(x*Vy - y*Vx),
])
else:
return NotImplemented
def inverse(self):
"""In-place inverse rotation/backward rotation"""
self.quaternion.conjugate()
return self
def inversed(self):
"""Inverse rotation/backward rotation"""
return self.__class__(self.quaternion.conjugated())
def misorientation(self,other):
"""Misorientation"""
return self.__class__(other.quaternion*self.quaternion.conjugated())
################################################################################################ ################################################################################################
# convert to different orientation representations (numpy arrays) # convert to different orientation representations (numpy arrays)
@ -288,7 +345,8 @@ class Rotation:
def asRodrigues(self,vector=False): def asRodrigues(self,vector=False):
"""Rodrigues-Frank vector: ([n_1, n_2, n_3], tan(ω/2))""" """Rodrigues-Frank vector: ([n_1, n_2, n_3], tan(ω/2))"""
return qu2ro(self.quaternion.asArray(),vector) ro = qu2ro(self.quaternion.asArray())
return ro[:3]*ro[3] if vector else ro
def asHomochoric(self): def asHomochoric(self):
"""Homochoric vector: (h_1, h_2, h_3)""" """Homochoric vector: (h_1, h_2, h_3)"""
@ -298,7 +356,7 @@ class Rotation:
return qu2cu(self.quaternion.asArray()) return qu2cu(self.quaternion.asArray())
def asM(self): def asM(self):
"""Intermediate representation useful fro quaternion averaging (see F. Landis Markley et al.)""" """Intermediate representation supporting quaternion averaging (see F. Landis Markley et al.)"""
return self.quaternion.asM() return self.quaternion.asM()
@ -409,62 +467,31 @@ class Rotation:
return cls(ho2qu(ho)) return cls(ho2qu(ho))
def __mul__(self, other): @classmethod
def average(cls,
rotations,
weights = []):
""" """
Multiplication Average rotation
Rotation: Details needed (active/passive), rotation of (3,3,3,3)-matrix should be considered ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
Averaging Quaternions,
Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197.
doi: 10.2514/1.28949
""" """
if isinstance(other, Rotation): # rotate a rotation if not all(isinstance(item, Rotation) for item in rotations):
return self.__class__((self.quaternion * other.quaternion).asArray()) raise TypeError("Only instances of Rotation can be averaged.")
elif isinstance(other, np.ndarray):
if other.shape == (3,): # rotate a single (3)-vector
( x, y, z) = self.quaternion.p
(Vx,Vy,Vz) = other[0:3]
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
B = 2.0 * (x*Vx + y*Vy + z*Vz)
C = 2.0 * P*self.quaternion.q
return np.array([ N = len(rotations)
A*Vx + B*x + C*(y*Vz - z*Vy), if weights == [] or not weights:
A*Vy + B*y + C*(z*Vx - x*Vz), weights = np.ones(N,dtype='i')
A*Vz + B*z + C*(x*Vy - y*Vx),
])
elif other.shape == (3,3,): # rotate a single (3x3)-matrix
return np.dot(self.asMatrix(),np.dot(other,self.asMatrix().T))
elif other.shape == (3,3,3,3):
raise NotImplementedError
else:
return NotImplemented
elif isinstance(other, tuple): # used to rotate a meshgrid-tuple
( x, y, z) = self.quaternion.p
(Vx,Vy,Vz) = other[0:3]
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
B = 2.0 * (x*Vx + y*Vy + z*Vz)
C = 2.0 * P*self.quaternion.q
return np.array([ for i,(r,n) in enumerate(zip(rotations,weights)):
A*Vx + B*x + C*(y*Vz - z*Vy), M = r.asM() * n if i == 0 \
A*Vy + B*y + C*(z*Vx - x*Vz), else M + r.asM() * n # noqa add (multiples) of this rotation to average noqa
A*Vz + B*z + C*(x*Vy - y*Vx), eig, vec = np.linalg.eig(M/N)
])
else:
return NotImplemented
return Rotation.fromQuaternion(np.real(vec.T[eig.argmax()]),acceptHomomorph = True)
def inverse(self):
"""Inverse rotation/backward rotation"""
self.quaternion.conjugate()
return self
def inversed(self):
"""In-place inverse rotation/backward rotation"""
return self.__class__(self.quaternion.conjugated())
def misorientation(self,other):
"""Misorientation"""
return self.__class__(other.quaternion*self.quaternion.conjugated())
# ****************************************************************************************** # ******************************************************************************************
@ -511,7 +538,7 @@ class Symmetry:
return (myOrder > otherOrder) - (myOrder < otherOrder) return (myOrder > otherOrder) - (myOrder < otherOrder)
def symmetryOperations(self,members=[]): def symmetryOperations(self,members=[]):
"""List of symmetry operations as quaternions.""" """List (or single element) of symmetry operations as rotations."""
if self.lattice == 'cubic': if self.lattice == 'cubic':
symQuats = [ symQuats = [
[ 1.0, 0.0, 0.0, 0.0 ], [ 1.0, 0.0, 0.0, 0.0 ],
@ -880,7 +907,7 @@ class Lattice:
# Greninger--Troiano' orientation relationship for fcc <-> bcc transformation # Greninger--Troiano' orientation relationship for fcc <-> bcc transformation
# from Y. He et al./Journal of Applied Crystallography (2006). 39, 72-81 # from Y. He et al./Journal of Applied Crystallography (2006). 39, 72-81
GTdash = {'mapping':{'fcc':0,'bcc':1}, GTprime = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([ 'planes': np.array([
[[ 7, 17, 17],[ 12, 5, 17]], [[ 7, 17, 17],[ 12, 5, 17]],
[[ 17, 7, 17],[ 17, 12, 5]], [[ 17, 7, 17],[ 17, 12, 5]],
@ -1006,7 +1033,7 @@ class Lattice:
def relationOperations(self,model): def relationOperations(self,model):
models={'KS':self.KS, 'GT':self.GT, "GT'":self.GTdash, models={'KS':self.KS, 'GT':self.GT, "GT'":self.GTprime,
'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain} 'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain}
try: try:
relationship = models[model] relationship = models[model]
@ -1154,7 +1181,7 @@ class Orientation:
@classmethod @classmethod
def average(cls, def average(cls,
orientations, orientations,
multiplicity = []): weights = []):
""" """
Average orientation Average orientation
@ -1168,22 +1195,17 @@ class Orientation:
avg = Orientation.average([a,b]) avg = Orientation.average([a,b])
""" """
if not all(isinstance(item, Orientation) for item in orientations): if not all(isinstance(item, Orientation) for item in orientations):
print('got a list of {}'.format(orientations))
raise TypeError("Only instances of Orientation can be averaged.") raise TypeError("Only instances of Orientation can be averaged.")
N = len(orientations) closest = []
if multiplicity == [] or not multiplicity: ref = orientations[0]
multiplicity = np.ones(N,dtype='i') for o in orientations:
closest.append(o.equivalentOrientations(
ref.disorientation(o,
SST = False, # select (o[ther]'s) sym orientation
symmetries = True)[2]).rotation) # with lowest misorientation
ref = orientations[0] # take first as reference return Orientation(Rotation.average(closest,weights),ref.lattice)
for i,(o,n) in enumerate(zip(orientations,multiplicity)):
closest = o.equivalentOrientations(ref.disorientation(o,SST=False,symmetries=True)[2])[0] # select sym orientation with lowest misorientation
M = closest.rotation.asM() * n if i == 0 \
else M + closest.rotation.asM() * n # noqa add (multiples) of this orientation to average noqa
eig, vec = np.linalg.eig(M/N)
return Orientation(Rotation.fromQuaternion(np.real(vec.T[eig.argmax()]),acceptHomomorph = True),
ref.lattice)
#################################################################################################### ####################################################################################################
@ -1275,7 +1297,7 @@ def qu2ax(qu):
return np.array(ax) return np.array(ax)
def qu2ro(qu,vector=False): def qu2ro(qu):
"""Quaternion to Rodrigues vector""" """Quaternion to Rodrigues vector"""
if iszero(qu[0]): if iszero(qu[0]):
ro = [qu[1], qu[2], qu[3], np.inf] ro = [qu[1], qu[2], qu[3], np.inf]
@ -1284,7 +1306,7 @@ def qu2ro(qu,vector=False):
ro = [0.0,0.0,P,0.0] if iszero(s) else \ ro = [0.0,0.0,P,0.0] if iszero(s) else \
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))] # avoid numerical difficulties [ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))] # avoid numerical difficulties
return np.array(ro[:3])*ro[3] if vector else np.array(ro) return np.array(ro)
def qu2ho(qu): def qu2ho(qu):
@ -1354,9 +1376,9 @@ def om2qu(om):
return ax2qu(om2ax(om)) return ax2qu(om2ax(om))
def om2ro(om,vector=False): def om2ro(om):
"""Orientation matrix to Rodriques vector""" """Orientation matrix to Rodriques vector"""
return eu2ro(om2eu(om,vector)) return eu2ro(om2eu(om))
def om2cu(om): def om2cu(om):
@ -1404,7 +1426,7 @@ def eu2ax(eu):
return ax return ax
def eu2ro(eu,vector=False): def eu2ro(eu):
"""Euler angles to Rodrigues vector""" """Euler angles to Rodrigues vector"""
ro = eu2ax(eu) # convert to axis angle representation ro = eu2ax(eu) # convert to axis angle representation
if ro[3] >= np.pi: # Differs from original implementation. check convention 5 if ro[3] >= np.pi: # Differs from original implementation. check convention 5
@ -1414,7 +1436,7 @@ def eu2ro(eu,vector=False):
else: else:
ro[3] = np.tan(ro[3]*0.5) ro[3] = np.tan(ro[3]*0.5)
return ro[:3] * ro[3] if vector else ro return ro
def eu2ho(eu): def eu2ho(eu):
@ -1463,7 +1485,7 @@ def ax2om(ax):
return om if P < 0.0 else om.T return om if P < 0.0 else om.T
def ax2ro(ax,vector=False): def ax2ro(ax):
"""Axis angle to Rodrigues vector""" """Axis angle to Rodrigues vector"""
if iszero(ax[3]): if iszero(ax[3]):
ro = [ 0.0, 0.0, P, 0.0 ] ro = [ 0.0, 0.0, P, 0.0 ]
@ -1473,7 +1495,7 @@ def ax2ro(ax,vector=False):
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \ ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
[np.tan(ax[3]*0.5)] [np.tan(ax[3]*0.5)]
return np.array(ro[:3])*ro[3] if vector else np.array(ro) return np.array(ro)
def ax2qu(ax): def ax2qu(ax):
@ -1594,9 +1616,9 @@ def ho2om(ho):
return ax2om(ho2ax(ho)) return ax2om(ho2ax(ho))
def ho2ro(ho,vector=False): def ho2ro(ho):
"""Axis angle to Rodriques vector""" """Axis angle to Rodriques vector"""
return ax2ro(ho2ax(ho,vector)) return ax2ro(ho2ax(ho))
def ho2qu(ho): def ho2qu(ho):
@ -1619,9 +1641,9 @@ def cu2ax(cu):
return ho2ax(cu2ho(cu)) return ho2ax(cu2ho(cu))
def cu2ro(cu,vector=False): def cu2ro(cu):
"""Cubochoric to Rodrigues vector""" """Cubochoric to Rodrigues vector"""
return ho2ro(cu2ho(cu,vector)) return ho2ro(cu2ho(cu))
def cu2qu(cu): def cu2qu(cu):