Merge remote-tracking branch 'origin/select-mu' into development
This commit is contained in:
commit
38e6f4b49b
|
@ -652,9 +652,9 @@ module function RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
|
|||
|
||||
real(pReal), dimension(6,6) :: C
|
||||
|
||||
|
||||
C = phase_homogenizedC66(material_phaseID(co,ce),material_phaseEntry(co,ce)) ! damage not included!
|
||||
equivalentMu = lattice_equivalent_mu(C,'voigt')
|
||||
|
||||
equivalentMu = lattice_isotropic_mu(C,'isostrain')
|
||||
|
||||
end function equivalentMu
|
||||
|
||||
|
|
163
src/lattice.f90
163
src/lattice.f90
|
@ -376,8 +376,8 @@ module lattice
|
|||
|
||||
public :: &
|
||||
lattice_init, &
|
||||
lattice_equivalent_nu, &
|
||||
lattice_equivalent_mu, &
|
||||
lattice_isotropic_nu, &
|
||||
lattice_isotropic_mu, &
|
||||
lattice_symmetrize_33, &
|
||||
lattice_symmetrize_C66, &
|
||||
lattice_SchmidMatrix_slip, &
|
||||
|
@ -422,7 +422,7 @@ end subroutine lattice_init
|
|||
function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(characteristicShear)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(sum(Ntwin)) :: characteristicShear
|
||||
|
||||
|
@ -496,7 +496,7 @@ end function lattice_characteristicShear_Twin
|
|||
function lattice_C66_twin(Ntwin,C66,lattice,CoverA)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), dimension(6,6), intent(in) :: C66 !< unrotated parent stiffness matrix
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(6,6,sum(Ntwin)) :: lattice_C66_twin
|
||||
|
@ -535,7 +535,7 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
|
|||
cOverA_trans,a_cF,a_cI)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
|
||||
character(len=2), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), dimension(6,6), intent(in) :: C_parent66
|
||||
real(pReal), optional, intent(in) :: cOverA_trans, a_cF, a_cI
|
||||
real(pReal), dimension(6,6,sum(Ntrans)) :: lattice_C66_trans
|
||||
|
@ -647,7 +647,7 @@ function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(
|
|||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-slip interaction
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: interactionMatrix
|
||||
|
||||
integer, dimension(:), allocatable :: NslipMax
|
||||
|
@ -965,7 +965,7 @@ function lattice_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(
|
|||
|
||||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), dimension(sum(Ntwin),sum(Ntwin)) :: interactionMatrix
|
||||
|
||||
integer, dimension(:), allocatable :: NtwinMax
|
||||
|
@ -1064,7 +1064,7 @@ function lattice_interaction_TransByTrans(Ntrans,interactionValues,lattice) resu
|
|||
|
||||
integer, dimension(:), intent(in) :: Ntrans !< number of active trans systems per family
|
||||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for trans-trans interaction
|
||||
character(len=2), intent(in) :: lattice !<Bravais lattice (Pearson symbol) (parent crystal)
|
||||
character(len=*), intent(in) :: lattice !<Bravais lattice (Pearson symbol) (parent crystal)
|
||||
real(pReal), dimension(sum(Ntrans),sum(Ntrans)) :: interactionMatrix
|
||||
|
||||
integer, dimension(:), allocatable :: NtransMax
|
||||
|
@ -1107,7 +1107,7 @@ function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) r
|
|||
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
|
||||
Ntwin !< number of active twin systems per family
|
||||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-twin interaction
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), dimension(sum(Nslip),sum(Ntwin)) :: interactionMatrix
|
||||
|
||||
integer, dimension(:), allocatable :: NslipMax, &
|
||||
|
@ -1267,7 +1267,7 @@ function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice)
|
|||
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
|
||||
Ntrans !< number of active trans systems per family
|
||||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-trans interaction
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol) (parent crystal)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol) (parent crystal)
|
||||
real(pReal), dimension(sum(Nslip),sum(Ntrans)) :: interactionMatrix
|
||||
|
||||
integer, dimension(:), allocatable :: NslipMax, &
|
||||
|
@ -1320,7 +1320,7 @@ function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) r
|
|||
integer, dimension(:), intent(in) :: Ntwin, & !< number of active twin systems per family
|
||||
Nslip !< number of active slip systems per family
|
||||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), dimension(sum(Ntwin),sum(Nslip)) :: interactionMatrix
|
||||
|
||||
integer, dimension(:), allocatable :: NtwinMax, &
|
||||
|
@ -1394,7 +1394,7 @@ end function lattice_interaction_TwinBySlip
|
|||
function lattice_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA
|
||||
real(pReal), dimension(3,3,sum(Nslip)) :: SchmidMatrix
|
||||
|
||||
|
@ -1444,7 +1444,7 @@ end function lattice_SchmidMatrix_slip
|
|||
function lattice_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
|
||||
|
||||
|
@ -1491,7 +1491,7 @@ end function lattice_SchmidMatrix_twin
|
|||
function lattice_SchmidMatrix_trans(Ntrans,lattice_target,cOverA,a_cF,a_cI) result(SchmidMatrix)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
|
||||
character(len=2), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), optional, intent(in) :: cOverA, a_cI, a_cF
|
||||
real(pReal), dimension(3,3,sum(Ntrans)) :: SchmidMatrix
|
||||
|
||||
|
@ -1520,7 +1520,7 @@ end function lattice_SchmidMatrix_trans
|
|||
function lattice_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
|
||||
|
||||
|
@ -1563,7 +1563,7 @@ end function lattice_SchmidMatrix_cleavage
|
|||
function lattice_slip_direction(Nslip,lattice,cOverA) result(d)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(3,sum(Nslip)) :: d
|
||||
|
||||
|
@ -1581,7 +1581,7 @@ end function lattice_slip_direction
|
|||
function lattice_slip_normal(Nslip,lattice,cOverA) result(n)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(3,sum(Nslip)) :: n
|
||||
|
||||
|
@ -1599,7 +1599,7 @@ end function lattice_slip_normal
|
|||
function lattice_slip_transverse(Nslip,lattice,cOverA) result(t)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(3,sum(Nslip)) :: t
|
||||
|
||||
|
@ -1618,7 +1618,7 @@ end function lattice_slip_transverse
|
|||
function lattice_labels_slip(Nslip,lattice) result(labels)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
|
||||
character(len=:), dimension(:), allocatable :: labels
|
||||
|
||||
|
@ -1660,7 +1660,7 @@ pure function lattice_symmetrize_33(T,lattice) result(T_sym)
|
|||
real(pReal), dimension(3,3) :: T_sym
|
||||
|
||||
real(pReal), dimension(3,3), intent(in) :: T
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
|
||||
|
||||
T_sym = 0.0_pReal
|
||||
|
@ -1688,7 +1688,7 @@ pure function lattice_symmetrize_C66(C66,lattice) result(C66_sym)
|
|||
real(pReal), dimension(6,6) :: C66_sym
|
||||
|
||||
real(pReal), dimension(6,6), intent(in) :: C66
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
|
||||
integer :: i,j
|
||||
|
||||
|
@ -1732,7 +1732,7 @@ end function lattice_symmetrize_C66
|
|||
function lattice_labels_twin(Ntwin,lattice) result(labels)
|
||||
|
||||
integer, dimension(:), intent(in) :: Ntwin !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
|
||||
character(len=:), dimension(:), allocatable :: labels
|
||||
|
||||
|
@ -1770,7 +1770,7 @@ end function lattice_labels_twin
|
|||
function slipProjection_transverse(Nslip,lattice,cOverA) result(projection)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
|
||||
|
||||
|
@ -1794,7 +1794,7 @@ end function slipProjection_transverse
|
|||
function slipProjection_direction(Nslip,lattice,cOverA) result(projection)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
|
||||
|
||||
|
@ -1818,7 +1818,7 @@ end function slipProjection_direction
|
|||
function coordinateSystem_slip(Nslip,lattice,cOverA) result(coordinateSystem)
|
||||
|
||||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||||
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
|
||||
|
||||
|
@ -1907,7 +1907,7 @@ function buildCoordinateSystem(active,potential,system,lattice,cOverA)
|
|||
potential !< # of potential systems per family
|
||||
real(pReal), dimension(:,:), intent(in) :: &
|
||||
system
|
||||
character(len=2), intent(in) :: &
|
||||
character(len=*), intent(in) :: &
|
||||
lattice !< Bravais lattice (Pearson symbol)
|
||||
real(pReal), intent(in) :: &
|
||||
cOverA
|
||||
|
@ -2149,62 +2149,85 @@ end function getlabels
|
|||
!> @brief Equivalent Poisson's ratio (ν)
|
||||
!> @details https://doi.org/10.1143/JPSJ.20.635
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function lattice_equivalent_nu(C,assumption) result(nu)
|
||||
pure function lattice_isotropic_nu(C,assumption,lattice) result(nu)
|
||||
|
||||
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
||||
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
||||
character(len=*), intent(in) :: assumption !< Assumption (isostrain = 'Voigt', isostress = 'Reuss')
|
||||
character(len=*), optional, intent(in) :: lattice
|
||||
real(pReal) :: nu
|
||||
|
||||
real(pReal) :: K, mu
|
||||
logical :: error
|
||||
real(pReal), dimension(6,6) :: S
|
||||
character(len=:), allocatable :: lattice_
|
||||
|
||||
|
||||
if (IO_lc(assumption) == 'voigt') then
|
||||
K = (C(1,1)+C(2,2)+C(3,3) +2.0_pReal*(C(1,2)+C(2,3)+C(1,3))) &
|
||||
/ 9.0_pReal
|
||||
elseif (IO_lc(assumption) == 'reuss') then
|
||||
lattice_ = IO_WHITESPACE
|
||||
if (present(lattice)) lattice_ = lattice
|
||||
|
||||
if (IO_lc(assumption) == 'isostrain') then
|
||||
K = sum(C(1:3,1:3)) / 9.0_pReal
|
||||
elseif (IO_lc(assumption) == 'isostress') then
|
||||
call math_invert(S,error,C)
|
||||
if (error) error stop 'matrix inversion failed'
|
||||
K = 1.0_pReal &
|
||||
/ (S(1,1)+S(2,2)+S(3,3) +2.0_pReal*(S(1,2)+S(2,3)+S(1,3)))
|
||||
K = 1.0_pReal / sum(S(1:3,1:3))
|
||||
else
|
||||
error stop 'invalid assumption'
|
||||
end if
|
||||
|
||||
mu = lattice_equivalent_mu(C,assumption)
|
||||
mu = lattice_isotropic_mu(C,assumption,lattice_)
|
||||
nu = (1.5_pReal*K-mu)/(3.0_pReal*K+mu)
|
||||
|
||||
end function lattice_equivalent_nu
|
||||
end function lattice_isotropic_nu
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Equivalent shear modulus (μ)
|
||||
!> @details https://doi.org/10.1143/JPSJ.20.635
|
||||
!> @details Nonlinear Mechanics of Crystals 10.1007/978-94-007-0350-6, pp 563
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function lattice_equivalent_mu(C,assumption) result(mu)
|
||||
pure function lattice_isotropic_mu(C,assumption,lattice) result(mu)
|
||||
|
||||
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
||||
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
||||
character(len=*), intent(in) :: assumption !< Assumption (isostrain = 'Voigt', isostress = 'Reuss')
|
||||
character(len=*), optional, intent(in) :: lattice
|
||||
real(pReal) :: mu
|
||||
|
||||
logical :: error
|
||||
real(pReal), dimension(6,6) :: S
|
||||
character(len=:), allocatable :: lattice_
|
||||
|
||||
|
||||
if (IO_lc(assumption) == 'voigt') then
|
||||
mu = (1.0_pReal*(C(1,1)+C(2,2)+C(3,3)) -1.0_pReal*(C(1,2)+C(2,3)+C(1,3)) +3.0_pReal*(C(4,4)+C(5,5)+C(6,6))) &
|
||||
/ 15.0_pReal
|
||||
elseif (IO_lc(assumption) == 'reuss') then
|
||||
lattice_ = IO_WHITESPACE
|
||||
if (present(lattice)) lattice_ = lattice
|
||||
|
||||
if (IO_lc(assumption) == 'isostrain') then
|
||||
select case(lattice_)
|
||||
case('cF','cI')
|
||||
mu = ( C(1,1) - C(1,2) + C(4,4)*3.0_pReal) / 5.0_pReal
|
||||
case default
|
||||
mu = ( C(1,1)+C(2,2)+C(3,3) &
|
||||
- C(1,2)-C(2,3)-C(1,3) &
|
||||
+(C(4,4)+C(5,5)+C(6,6)) * 3.0_pReal &
|
||||
) / 15.0_pReal
|
||||
end select
|
||||
|
||||
elseif (IO_lc(assumption) == 'isostress') then
|
||||
select case(lattice_)
|
||||
case('cF','cI')
|
||||
mu = 5.0_pReal &
|
||||
/ (4.0_pReal/(C(1,1)-C(1,2)) + 3.0_pReal/C(4,4))
|
||||
case default
|
||||
call math_invert(S,error,C)
|
||||
if (error) error stop 'matrix inversion failed'
|
||||
mu = 15.0_pReal &
|
||||
/ (4.0_pReal*(S(1,1)+S(2,2)+S(3,3)) -4.0_pReal*(S(1,2)+S(2,3)+S(1,3)) +3.0_pReal*(S(4,4)+S(5,5)+S(6,6)))
|
||||
/ (4.0_pReal*(S(1,1)+S(2,2)+S(3,3)-S(1,2)-S(2,3)-S(1,3)) + 3.0_pReal*(S(4,4)+S(5,5)+S(6,6)))
|
||||
end select
|
||||
else
|
||||
error stop 'invalid assumption'
|
||||
end if
|
||||
|
||||
end function lattice_equivalent_mu
|
||||
end function lattice_isotropic_mu
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -2270,16 +2293,52 @@ subroutine selfTest
|
|||
|
||||
call random_number(C)
|
||||
C(1,1) = C(1,1) + C(1,2) + 0.1_pReal
|
||||
C(1,3) = C(1,2)
|
||||
C(3,3) = C(1,1)
|
||||
C(4,4) = 0.5_pReal * (C(1,1) - C(1,2))
|
||||
C = lattice_symmetrize_C66(C,'cI')
|
||||
if (dNeq(C(4,4),lattice_equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/voigt'
|
||||
if (dNeq(C(4,4),lattice_equivalent_mu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_mu/reuss'
|
||||
C(6,6) = C(4,4)
|
||||
|
||||
lambda = C(1,2)
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'voigt')), &
|
||||
lattice_equivalent_nu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_nu/voigt'
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'reuss')), &
|
||||
lattice_equivalent_nu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_nu/reuss'
|
||||
C_cI = lattice_symmetrize_C66(C,'cI')
|
||||
if (dNeq(C_cI(4,4),lattice_isotropic_mu(C_cI,'isostrain','cI'),1.0e-12_pReal)) error stop 'isotropic_mu/isostrain/cI'
|
||||
if (dNeq(C_cI(4,4),lattice_isotropic_mu(C_cI,'isostress','cI'),1.0e-12_pReal)) error stop 'isotropic_mu/isostress/cI'
|
||||
|
||||
lambda = C_cI(1,2)
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_cI,'isostrain','cI')), &
|
||||
lattice_isotropic_nu(C_cI,'isostrain','cI'),1.0e-12_pReal)) error stop 'isotropic_nu/isostrain/cI'
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_cI,'isostress','cI')), &
|
||||
lattice_isotropic_nu(C_cI,'isostress','cI'),1.0e-12_pReal)) error stop 'isotropic_nu/isostress/cI'
|
||||
|
||||
|
||||
C_hP = lattice_symmetrize_C66(C,'hP')
|
||||
if (dNeq(C(4,4),lattice_isotropic_mu(C_hP,'isostrain','hP'),1.0e-12_pReal)) error stop 'isotropic_mu/isostrain/hP'
|
||||
if (dNeq(C(4,4),lattice_isotropic_mu(C_hP,'isostress','hP'),1.0e-12_pReal)) error stop 'isotropic_mu/isostress/hP'
|
||||
|
||||
lambda = C_hP(1,2)
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_hP,'isostrain','hP')), &
|
||||
lattice_isotropic_nu(C_hP,'isostrain','hP'),1.0e-12_pReal)) error stop 'isotropic_nu/isostrain/hP'
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_hP,'isostress','hP')), &
|
||||
lattice_isotropic_nu(C_hP,'isostress','hP'),1.0e-12_pReal)) error stop 'isotropic_nu/isostress/hP'
|
||||
|
||||
C_tI = lattice_symmetrize_C66(C,'tI')
|
||||
if (dNeq(C(6,6),lattice_isotropic_mu(C_tI,'isostrain','tI'),1.0e-12_pReal)) error stop 'isotropic_mu/isostrain/tI'
|
||||
if (dNeq(C(6,6),lattice_isotropic_mu(C_tI,'isostress','tI'),1.0e-12_pReal)) error stop 'isotropic_mu/isostress/tI'
|
||||
|
||||
lambda = C_tI(1,2)
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_tI,'isostrain','tI')), &
|
||||
lattice_isotropic_nu(C_tI,'isostrain','tI'),1.0e-12_pReal)) error stop 'isotropic_nu/isostrain/tI'
|
||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_tI,'isostress','tI')), &
|
||||
lattice_isotropic_nu(C_tI,'isostress','tI'),1.0e-12_pReal)) error stop 'isotropic_nu/isostress/tI'
|
||||
|
||||
call random_number(C)
|
||||
C = lattice_symmetrize_C66(C,'cI')
|
||||
if (dNeq(lattice_isotropic_mu(C,'isostrain','cI'), lattice_isotropic_mu(C,'isostrain','hP'), 1.0e-9_pReal)) &
|
||||
error stop 'isotropic_mu/isostrain/cI-hP'
|
||||
if (dNeq(lattice_isotropic_nu(C,'isostrain','cF'), lattice_isotropic_nu(C,'isostrain','cI'), 1.0e-9_pReal)) &
|
||||
error stop 'isotropic_nu/isostrain/cF-tI'
|
||||
if (dNeq(lattice_isotropic_mu(C,'isostress','cI'), lattice_isotropic_mu(C,'isostress'), 1.0e-9_pReal)) &
|
||||
error stop 'isotropic_mu/isostress/cI-hP'
|
||||
if (dNeq(lattice_isotropic_nu(C,'isostress','cF'), lattice_isotropic_nu(C,'isostress'), 1.0e-9_pReal)) &
|
||||
error stop 'isotropic_nu/isostress/cF-tI'
|
||||
|
||||
end subroutine selfTest
|
||||
|
||||
|
|
|
@ -169,14 +169,16 @@ submodule(phase) mechanical
|
|||
integer, intent(in) :: ph, en
|
||||
end function elastic_C66
|
||||
|
||||
pure module function elastic_mu(ph,en) result(mu)
|
||||
pure module function elastic_mu(ph,en,isotropic_bound) result(mu)
|
||||
real(pReal) :: mu
|
||||
integer, intent(in) :: ph, en
|
||||
character(len=*), intent(in) :: isotropic_bound
|
||||
end function elastic_mu
|
||||
|
||||
pure module function elastic_nu(ph,en) result(nu)
|
||||
pure module function elastic_nu(ph,en,isotropic_bound) result(nu)
|
||||
real(pReal) :: nu
|
||||
integer, intent(in) :: ph, en
|
||||
character(len=*), intent(in) :: isotropic_bound
|
||||
end function elastic_nu
|
||||
|
||||
end interface
|
||||
|
|
|
@ -102,16 +102,21 @@ end function elastic_C66
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return shear modulus
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure module function elastic_mu(ph,en) result(mu)
|
||||
pure module function elastic_mu(ph,en,isotropic_bound) result(mu)
|
||||
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
en
|
||||
character(len=*), intent(in) :: isotropic_bound
|
||||
real(pReal) :: &
|
||||
mu
|
||||
|
||||
|
||||
mu = lattice_equivalent_mu(elastic_C66(ph,en),'voigt')
|
||||
associate(prm => param(ph))
|
||||
|
||||
mu = lattice_isotropic_mu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph))
|
||||
|
||||
end associate
|
||||
|
||||
end function elastic_mu
|
||||
|
||||
|
@ -119,16 +124,21 @@ end function elastic_mu
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return Poisson ratio
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure module function elastic_nu(ph,en) result(nu)
|
||||
pure module function elastic_nu(ph,en,isotropic_bound) result(nu)
|
||||
|
||||
integer, intent(in) :: &
|
||||
ph, &
|
||||
en
|
||||
character(len=*), intent(in) :: isotropic_bound
|
||||
real(pReal) :: &
|
||||
nu
|
||||
|
||||
|
||||
nu = lattice_equivalent_nu(elastic_C66(ph,en),'voigt')
|
||||
associate(prm => param(ph))
|
||||
|
||||
nu = lattice_isotropic_nu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph))
|
||||
|
||||
end associate
|
||||
|
||||
end function elastic_nu
|
||||
|
||||
|
|
|
@ -35,6 +35,8 @@ submodule(phase:plastic) dislotungsten
|
|||
P_nS_neg
|
||||
integer :: &
|
||||
sum_N_sl !< total number of active slip system
|
||||
character(len=:), allocatable :: &
|
||||
isotropic_bound
|
||||
character(len=pStringLen), allocatable, dimension(:) :: &
|
||||
output
|
||||
logical :: &
|
||||
|
@ -131,6 +133,8 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||||
#endif
|
||||
|
||||
prm%isotropic_bound = pl%get_asString('isotropic_bound',defaultVal='isostrain')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! slip related parameters
|
||||
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
||||
|
@ -333,7 +337,7 @@ module function dislotungsten_dotState(Mp,ph,en) result(dotState)
|
|||
dot_rho_dip => dotState(indexDotState(ph)%rho_dip(1):indexDotState(ph)%rho_dip(2)), &
|
||||
dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
T = thermal_T(ph,en)
|
||||
|
||||
call kinetics(Mp,T,ph,en,&
|
||||
|
@ -384,7 +388,7 @@ module subroutine dislotungsten_dependentState(ph,en)
|
|||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
dst%tau_pass(:,en) = elastic_mu(ph,en)*prm%b_sl &
|
||||
dst%tau_pass(:,en) = elastic_mu(ph,en,prm%isotropic_bound)*prm%b_sl &
|
||||
* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
|
||||
|
||||
Lambda_sl_inv = 1.0_pReal/prm%D &
|
||||
|
|
|
@ -73,7 +73,8 @@ submodule(phase:plastic) dislotwin
|
|||
integer, allocatable, dimension(:,:) :: &
|
||||
fcc_twinNucleationSlipPair ! ToDo: Better name? Is also use for trans
|
||||
character(len=:), allocatable :: &
|
||||
lattice_tr
|
||||
lattice_tr, &
|
||||
isotropic_bound
|
||||
character(len=pStringLen), allocatable, dimension(:) :: &
|
||||
output
|
||||
logical :: &
|
||||
|
@ -186,6 +187,8 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
|||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||||
#endif
|
||||
|
||||
prm%isotropic_bound = pl%get_asString('isotropic_bound',defaultVal='isostrain')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! slip related parameters
|
||||
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
||||
|
@ -644,8 +647,8 @@ module function dislotwin_dotState(Mp,ph,en) result(dotState)
|
|||
dot_f_tw => dotState(indexDotState(ph)%f_tw(1):indexDotState(ph)%f_tw(2)), &
|
||||
dot_f_tr => dotState(indexDotState(ph)%f_tr(1):indexDotState(ph)%f_tr(2)))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
T = thermal_T(ph,en)
|
||||
|
||||
f_matrix = 1.0_pReal &
|
||||
|
@ -732,7 +735,7 @@ module subroutine dislotwin_dependentState(ph,en)
|
|||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
sumf_tw = sum(stt%f_tw(1:prm%sum_N_tw,en))
|
||||
sumf_tr = sum(stt%f_tr(1:prm%sum_N_tr,en))
|
||||
|
||||
|
@ -930,8 +933,8 @@ pure subroutine kinetics_tw(Mp,T,abs_dot_gamma_sl,ph,en,&
|
|||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
Gamma_sf = prm%Gamma_sf%at(T)
|
||||
|
||||
tau_hat = 3.0_pReal*prm%b_tw(1)*mu/prm%L_tw &
|
||||
|
@ -1006,8 +1009,8 @@ pure subroutine kinetics_tr(Mp,T,abs_dot_gamma_sl,ph,en,&
|
|||
|
||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
Gamma_sf = prm%Gamma_sf%at(T)
|
||||
|
||||
tau_hat = 3.0_pReal*prm%b_tr(1)*mu/prm%L_tr &
|
||||
|
|
|
@ -115,6 +115,8 @@ submodule(phase:plastic) nonlocal
|
|||
sum_N_sl = 0
|
||||
integer, dimension(:), allocatable :: &
|
||||
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
|
||||
character(len=:), allocatable :: &
|
||||
isotropic_bound
|
||||
character(len=pStringLen), dimension(:), allocatable :: &
|
||||
output
|
||||
logical :: &
|
||||
|
@ -241,6 +243,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
|||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||||
#endif
|
||||
|
||||
prm%isotropic_bound = pl%get_asString('isotropic_bound',defaultVal='isostrain')
|
||||
prm%atol_rho = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
||||
|
||||
ini%N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
||||
|
@ -609,8 +612,8 @@ module subroutine nonlocal_dependentState(ph, en)
|
|||
|
||||
associate(prm => param(ph),dst => dependentState(ph), stt => state(ph))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
rho = getRho(ph,en)
|
||||
|
||||
stt%rho_forest(:,en) = matmul(prm%forestProjection_Edge, sum(abs(rho(:,edg)),2)) &
|
||||
|
@ -880,8 +883,8 @@ module subroutine plastic_nonlocal_deltaState(Mp,ph,en)
|
|||
|
||||
associate(prm => param(ph),dst => dependentState(ph),del => deltaState(ph))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
|
||||
!*** shortcut to state variables
|
||||
forall (s = 1:prm%sum_N_sl, t = 1:4) v(s,t) = plasticState(ph)%state(iV(s,t,ph),en)
|
||||
|
@ -994,8 +997,8 @@ module subroutine nonlocal_dotState(Mp,timestep, &
|
|||
|
||||
associate(prm => param(ph), dst => dependentState(ph), dot => dotState(ph), stt => state(ph))
|
||||
|
||||
mu = elastic_mu(ph,en)
|
||||
nu = elastic_nu(ph,en)
|
||||
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||
Temperature = thermal_T(ph,en)
|
||||
|
||||
tau = 0.0_pReal
|
||||
|
|
Loading…
Reference in New Issue