store field variables as 1D array
first step of simplifying layout: 1) Solver translates from ip,el tuple (FEM) or cells(1),cells(2),cells(3) triple to list. 2) DAMASK iterates over all points 3) homogenization knows mapping (point,constituent) -> (instance,member)
This commit is contained in:
parent
5d9c931008
commit
3884549e19
|
@ -153,7 +153,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
|
|||
H
|
||||
|
||||
integer(pInt) elCP, & ! crystal plasticity element number
|
||||
i, j, k, l, m, n, ph, homog, mySource
|
||||
i, j, k, l, m, n, ph, homog, mySource,ma
|
||||
|
||||
real(pReal), parameter :: ODD_STRESS = 1e15_pReal, & !< return value for stress if terminallyIll
|
||||
ODD_JACOBIAN = 1e50_pReal !< return value for jacobian if terminallyIll
|
||||
|
@ -161,6 +161,8 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
|
|||
|
||||
elCP = mesh_FEM2DAMASK_elem(elFE)
|
||||
|
||||
ma = (elCP-1) * discretization_nIPs + ip
|
||||
|
||||
if (debugCPFEM%basic .and. elCP == debugCPFEM%element .and. ip == debugCPFEM%ip) then
|
||||
print'(/,a)', '#############################################'
|
||||
print'(a1,a22,1x,i8,a13)', '#','element', elCP, '#'
|
||||
|
@ -184,8 +186,8 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
|
|||
temperature(material_homogenizationAt(elCP))%p(material_homogenizationMemberAt(ip,elCP)) = &
|
||||
temperature_inp
|
||||
end select chosenThermal1
|
||||
homogenization_F0(1:3,1:3,ip,elCP) = ffn
|
||||
homogenization_F(1:3,1:3,ip,elCP) = ffn1
|
||||
homogenization_F0(1:3,1:3,ma) = ffn
|
||||
homogenization_F(1:3,1:3,ma) = ffn1
|
||||
|
||||
if (iand(mode, CPFEM_CALCRESULTS) /= 0_pInt) then
|
||||
|
||||
|
@ -212,17 +214,17 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
|
|||
else terminalIllness
|
||||
|
||||
! translate from P to sigma
|
||||
Kirchhoff = matmul(homogenization_P(1:3,1:3,ip,elCP), transpose(homogenization_F(1:3,1:3,ip,elCP)))
|
||||
J_inverse = 1.0_pReal / math_det33(homogenization_F(1:3,1:3,ip,elCP))
|
||||
Kirchhoff = matmul(homogenization_P(1:3,1:3,ma), transpose(homogenization_F(1:3,1:3,ma)))
|
||||
J_inverse = 1.0_pReal / math_det33(homogenization_F(1:3,1:3,ma))
|
||||
CPFEM_cs(1:6,ip,elCP) = math_sym33to6(J_inverse * Kirchhoff,weighted=.false.)
|
||||
|
||||
! translate from dP/dF to dCS/dE
|
||||
H = 0.0_pReal
|
||||
do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3
|
||||
H(i,j,k,l) = H(i,j,k,l) &
|
||||
+ homogenization_F(j,m,ip,elCP) * homogenization_F(l,n,ip,elCP) &
|
||||
* homogenization_dPdF(i,m,k,n,ip,elCP) &
|
||||
- math_delta(j,l) * homogenization_F(i,m,ip,elCP) * homogenization_P(k,m,ip,elCP) &
|
||||
+ homogenization_F(j,m,ma) * homogenization_F(l,n,ma) &
|
||||
* homogenization_dPdF(i,m,k,n,ma) &
|
||||
- math_delta(j,l) * homogenization_F(i,m,ma) * homogenization_P(k,m,ma) &
|
||||
+ 0.5_pReal * ( Kirchhoff(j,l)*math_delta(i,k) + Kirchhoff(i,k)*math_delta(j,l) &
|
||||
+ Kirchhoff(j,k)*math_delta(i,l) + Kirchhoff(i,l)*math_delta(j,k))
|
||||
enddo; enddo; enddo; enddo; enddo; enddo
|
||||
|
|
|
@ -238,7 +238,7 @@ subroutine grid_mech_FEM_init
|
|||
F = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3)
|
||||
endif restartRead
|
||||
|
||||
homogenization_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
|
||||
homogenization_F0 = reshape(F_lastInc, [3,3,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
|
||||
call utilities_updateCoords(F)
|
||||
call utilities_constitutiveResponse(P_current,P_av,C_volAvg,devNull, & ! stress field, stress avg, global average of stiffness and (min+max)/2
|
||||
F, & ! target F
|
||||
|
@ -359,7 +359,7 @@ subroutine grid_mech_FEM_forward(cutBack,guess,Delta_t,Delta_t_old,t_remaining,&
|
|||
|
||||
F_lastInc = F
|
||||
|
||||
homogenization_F0 = reshape(F, [3,3,1,product(grid(1:2))*grid3])
|
||||
homogenization_F0 = reshape(F, [3,3,product(grid(1:2))*grid3])
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -557,9 +557,9 @@ subroutine formResidual(da_local,x_local, &
|
|||
ii = i-xstart+1; jj = j-ystart+1; kk = k-zstart+1
|
||||
ele = ele + 1
|
||||
f_elem = matmul(transpose(BMat),transpose(P_current(1:3,1:3,ii,jj,kk)))*detJ + &
|
||||
matmul(HGMat,x_elem)*(homogenization_dPdF(1,1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,1,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,1,ele))/3.0_pReal
|
||||
matmul(HGMat,x_elem)*(homogenization_dPdF(1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,ele))/3.0_pReal
|
||||
ctr = 0
|
||||
do kk = 0, 1; do jj = 0, 1; do ii = 0, 1
|
||||
ctr = ctr + 1
|
||||
|
@ -636,18 +636,18 @@ subroutine formJacobian(da_local,x_local,Jac_pre,Jac,dummy,ierr)
|
|||
row = col
|
||||
ele = ele + 1
|
||||
K_ele = 0.0
|
||||
K_ele(1 :8 ,1 :8 ) = HGMat*(homogenization_dPdF(1,1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,1,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,1,ele))/3.0_pReal
|
||||
K_ele(9 :16,9 :16) = HGMat*(homogenization_dPdF(1,1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,1,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,1,ele))/3.0_pReal
|
||||
K_ele(17:24,17:24) = HGMat*(homogenization_dPdF(1,1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,1,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,1,ele))/3.0_pReal
|
||||
K_ele(1 :8 ,1 :8 ) = HGMat*(homogenization_dPdF(1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,ele))/3.0_pReal
|
||||
K_ele(9 :16,9 :16) = HGMat*(homogenization_dPdF(1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,ele))/3.0_pReal
|
||||
K_ele(17:24,17:24) = HGMat*(homogenization_dPdF(1,1,1,1,ele) + &
|
||||
homogenization_dPdF(2,2,2,2,ele) + &
|
||||
homogenization_dPdF(3,3,3,3,ele))/3.0_pReal
|
||||
K_ele = K_ele + &
|
||||
matmul(transpose(BMatFull), &
|
||||
matmul(reshape(reshape(homogenization_dPdF(1:3,1:3,1:3,1:3,1,ele), &
|
||||
matmul(reshape(reshape(homogenization_dPdF(1:3,1:3,1:3,1:3,ele), &
|
||||
shape=[3,3,3,3], order=[2,1,4,3]),shape=[9,9]),BMatFull))*detJ
|
||||
call MatSetValuesStencil(Jac,24,row,24,col,K_ele,ADD_VALUES,ierr)
|
||||
CHKERRQ(ierr)
|
||||
|
|
|
@ -199,7 +199,7 @@ subroutine grid_mech_spectral_basic_init
|
|||
F = reshape(F_lastInc,[9,grid(1),grid(2),grid3])
|
||||
endif restartRead
|
||||
|
||||
homogenization_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
|
||||
homogenization_F0 = reshape(F_lastInc, [3,3,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
|
||||
call utilities_updateCoords(reshape(F,shape(F_lastInc)))
|
||||
call utilities_constitutiveResponse(P,P_av,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2
|
||||
reshape(F,shape(F_lastInc)), & ! target F
|
||||
|
@ -319,7 +319,7 @@ subroutine grid_mech_spectral_basic_forward(cutBack,guess,Delta_t,Delta_t_old,t_
|
|||
rotation_BC%rotate(F_aimDot,active=.true.))
|
||||
F_lastInc = reshape(F,[3,3,grid(1),grid(2),grid3])
|
||||
|
||||
homogenization_F0 = reshape(F,[3,3,1,product(grid(1:2))*grid3])
|
||||
homogenization_F0 = reshape(F,[3,3,product(grid(1:2))*grid3])
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
|
@ -225,7 +225,7 @@ subroutine grid_mech_spectral_polarisation_init
|
|||
F_tau_lastInc = 2.0_pReal*F_lastInc
|
||||
endif restartRead
|
||||
|
||||
homogenization_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
|
||||
homogenization_F0 = reshape(F_lastInc, [3,3,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
|
||||
call utilities_updateCoords(reshape(F,shape(F_lastInc)))
|
||||
call utilities_constitutiveResponse(P,P_av,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2
|
||||
reshape(F,shape(F_lastInc)), & ! target F
|
||||
|
@ -359,7 +359,7 @@ subroutine grid_mech_spectral_polarisation_forward(cutBack,guess,Delta_t,Delta_t
|
|||
F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid3])
|
||||
F_tau_lastInc = reshape(F_tau,[3,3,grid(1),grid(2),grid3])
|
||||
|
||||
homogenization_F0 = reshape(F,[3,3,1,product(grid(1:2))*grid3])
|
||||
homogenization_F0 = reshape(F,[3,3,product(grid(1:2))*grid3])
|
||||
endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -604,7 +604,7 @@ subroutine formResidual(in, FandF_tau, &
|
|||
do k = 1, grid3; do j = 1, grid(2); do i = 1, grid(1)
|
||||
e = e + 1
|
||||
residual_F(1:3,1:3,i,j,k) = &
|
||||
math_mul3333xx33(math_invSym3333(homogenization_dPdF(1:3,1:3,1:3,1:3,1,e) + C_scale), &
|
||||
math_mul3333xx33(math_invSym3333(homogenization_dPdF(1:3,1:3,1:3,1:3,e) + C_scale), &
|
||||
residual_F(1:3,1:3,i,j,k) - matmul(F(1:3,1:3,i,j,k), &
|
||||
math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3))) &
|
||||
+ residual_F_tau(1:3,1:3,i,j,k)
|
||||
|
|
|
@ -810,7 +810,7 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
print'(/,a)', ' ... evaluating constitutive response ......................................'
|
||||
flush(IO_STDOUT)
|
||||
|
||||
homogenization_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
|
||||
homogenization_F = reshape(F,[3,3,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
|
||||
|
||||
call materialpoint_stressAndItsTangent(timeinc) ! calculate P field
|
||||
|
||||
|
@ -829,13 +829,13 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
dPdF_min = huge(1.0_pReal)
|
||||
dPdF_norm_min = huge(1.0_pReal)
|
||||
do i = 1, product(grid(1:2))*grid3
|
||||
if (dPdF_norm_max < sum(homogenization_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)) then
|
||||
dPdF_max = homogenization_dPdF(1:3,1:3,1:3,1:3,1,i)
|
||||
dPdF_norm_max = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)
|
||||
if (dPdF_norm_max < sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)) then
|
||||
dPdF_max = homogenization_dPdF(1:3,1:3,1:3,1:3,i)
|
||||
dPdF_norm_max = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)
|
||||
endif
|
||||
if (dPdF_norm_min > sum(homogenization_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)) then
|
||||
dPdF_min = homogenization_dPdF(1:3,1:3,1:3,1:3,1,i)
|
||||
dPdF_norm_min = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)
|
||||
if (dPdF_norm_min > sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)) then
|
||||
dPdF_min = homogenization_dPdF(1:3,1:3,1:3,1:3,i)
|
||||
dPdF_norm_min = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)
|
||||
endif
|
||||
end do
|
||||
|
||||
|
@ -853,7 +853,7 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
|
||||
C_minmaxAvg = 0.5_pReal*(dPdF_max + dPdF_min)
|
||||
|
||||
C_volAvg = sum(sum(homogenization_dPdF,dim=6),dim=5)
|
||||
C_volAvg = sum(homogenization_dPdF,dim=5)
|
||||
call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
|
||||
if (ierr /= 0) error stop 'MPI error'
|
||||
C_volAvg = C_volAvg * wgt
|
||||
|
|
|
@ -30,12 +30,12 @@ module homogenization
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! General variables for the homogenization at a material point
|
||||
real(pReal), dimension(:,:,:,:), allocatable, public :: &
|
||||
real(pReal), dimension(:,:,:), allocatable, public :: &
|
||||
homogenization_F0, & !< def grad of IP at start of FE increment
|
||||
homogenization_F !< def grad of IP to be reached at end of FE increment
|
||||
real(pReal), dimension(:,:,:,:), allocatable, public :: & !, protected :: & ! Issue with ifort
|
||||
real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort
|
||||
homogenization_P !< first P--K stress of IP
|
||||
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: & !, protected :: &
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: &
|
||||
homogenization_dPdF !< tangent of first P--K stress at IP
|
||||
|
||||
|
||||
|
@ -193,6 +193,7 @@ subroutine materialpoint_stressAndItsTangent(dt)
|
|||
converged
|
||||
logical, dimension(2,discretization_nIPs,discretization_Nelems) :: &
|
||||
doneAndHappy
|
||||
integer :: m
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -227,7 +228,7 @@ subroutine materialpoint_stressAndItsTangent(dt)
|
|||
any(subStep(FEsolving_execIP(1):FEsolving_execIP(2),&
|
||||
FEsolving_execElem(1):FEsolving_execElem(2)) > num%subStepMinHomog))
|
||||
|
||||
!$OMP PARALLEL DO
|
||||
!$OMP PARALLEL DO PRIVATE(m)
|
||||
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
myNgrains = homogenization_Nconstituents(material_homogenizationAt(e))
|
||||
IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
|
@ -297,13 +298,14 @@ subroutine materialpoint_stressAndItsTangent(dt)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! deformation partitioning
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
||||
!$OMP PARALLEL DO PRIVATE(myNgrains,m)
|
||||
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
myNgrains = homogenization_Nconstituents(material_homogenizationAt(e))
|
||||
IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
if(requested(i,e) .and. .not. doneAndHappy(1,i,e)) then ! requested but not yet done
|
||||
call mech_partition(homogenization_F0(1:3,1:3,i,e) &
|
||||
+ (homogenization_F(1:3,1:3,i,e)-homogenization_F0(1:3,1:3,i,e))&
|
||||
m = (e-1)*discretization_nIPs + i
|
||||
call mech_partition(homogenization_F0(1:3,1:3,m) &
|
||||
+ (homogenization_F(1:3,1:3,m)-homogenization_F0(1:3,1:3,m))&
|
||||
*(subStep(i,e)+subFrac(i,e)), &
|
||||
i,e)
|
||||
crystallite_dt(1:myNgrains,i,e) = dt*subStep(i,e) ! propagate materialpoint dt to grains
|
||||
|
@ -321,16 +323,17 @@ subroutine materialpoint_stressAndItsTangent(dt)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state update
|
||||
!$OMP PARALLEL DO
|
||||
!$OMP PARALLEL DO PRIVATE(m)
|
||||
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||
IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2)
|
||||
if (requested(i,e) .and. .not. doneAndHappy(1,i,e)) then
|
||||
if (.not. converged(i,e)) then
|
||||
doneAndHappy(1:2,i,e) = [.true.,.false.]
|
||||
else
|
||||
m = (e-1)*discretization_nIPs + i
|
||||
doneAndHappy(1:2,i,e) = updateState(dt*subStep(i,e), &
|
||||
homogenization_F0(1:3,1:3,i,e) &
|
||||
+ (homogenization_F(1:3,1:3,i,e)-homogenization_F0(1:3,1:3,i,e)) &
|
||||
homogenization_F0(1:3,1:3,m) &
|
||||
+ (homogenization_F(1:3,1:3,m)-homogenization_F0(1:3,1:3,m)) &
|
||||
*(subStep(i,e)+subFrac(i,e)), &
|
||||
i,e)
|
||||
converged(i,e) = all(doneAndHappy(1:2,i,e)) ! converged if done and happy
|
||||
|
|
|
@ -73,10 +73,10 @@ module subroutine mech_init(num_homog)
|
|||
|
||||
print'(/,a)', ' <<<+- homogenization_mech init -+>>>'
|
||||
|
||||
allocate(homogenization_dPdF(3,3,3,3,discretization_nIPs,discretization_Nelems), source=0.0_pReal)
|
||||
homogenization_F0 = spread(spread(math_I3,3,discretization_nIPs),4,discretization_Nelems) ! initialize to identity
|
||||
allocate(homogenization_dPdF(3,3,3,3,discretization_nIPs*discretization_Nelems), source=0.0_pReal)
|
||||
homogenization_F0 = spread(math_I3,3,discretization_nIPs*discretization_Nelems) ! initialize to identity
|
||||
homogenization_F = homogenization_F0 ! initialize to identity
|
||||
allocate(homogenization_P(3,3,discretization_nIPs,discretization_Nelems), source=0.0_pReal)
|
||||
allocate(homogenization_P(3,3,discretization_nIPs*discretization_Nelems), source=0.0_pReal)
|
||||
|
||||
num_homogMech => num_homog%get('mech',defaultVal=emptyDict)
|
||||
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) call mech_none_init
|
||||
|
@ -127,23 +127,24 @@ module subroutine mech_homogenize(ip,el)
|
|||
integer, intent(in) :: &
|
||||
ip, & !< integration point
|
||||
el !< element number
|
||||
integer :: c
|
||||
integer :: c,m
|
||||
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
|
||||
|
||||
|
||||
m = (el-1)* discretization_nIPs + ip
|
||||
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
|
||||
|
||||
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
||||
homogenization_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el)
|
||||
homogenization_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_stressTangent(1,ip,el)
|
||||
homogenization_P(1:3,1:3,m) = crystallite_P(1:3,1:3,1,ip,el)
|
||||
homogenization_dPdF(1:3,1:3,1:3,1:3,m) = crystallite_stressTangent(1,ip,el)
|
||||
|
||||
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
||||
do c = 1, homogenization_Nconstituents(material_homogenizationAt(el))
|
||||
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
|
||||
enddo
|
||||
call mech_isostrain_averageStressAndItsTangent(&
|
||||
homogenization_P(1:3,1:3,ip,el), &
|
||||
homogenization_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
||||
homogenization_P(1:3,1:3,m), &
|
||||
homogenization_dPdF(1:3,1:3,1:3,1:3,m),&
|
||||
crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
|
||||
dPdFs, &
|
||||
homogenization_typeInstance(material_homogenizationAt(el)))
|
||||
|
@ -153,8 +154,8 @@ module subroutine mech_homogenize(ip,el)
|
|||
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
|
||||
enddo
|
||||
call mech_RGC_averageStressAndItsTangent(&
|
||||
homogenization_P(1:3,1:3,ip,el), &
|
||||
homogenization_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
||||
homogenization_P(1:3,1:3,m), &
|
||||
homogenization_dPdF(1:3,1:3,1:3,1:3,m),&
|
||||
crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
|
||||
dPdFs, &
|
||||
homogenization_typeInstance(material_homogenizationAt(el)))
|
||||
|
|
|
@ -140,7 +140,6 @@ contains
|
|||
subroutine material_init(restart)
|
||||
|
||||
logical, intent(in) :: restart
|
||||
integer :: myHomog
|
||||
|
||||
print'(/,a)', ' <<<+- material init -+>>>'; flush(IO_STDOUT)
|
||||
|
||||
|
|
|
@ -164,7 +164,7 @@ subroutine utilities_constitutiveResponse(timeinc,P_av,forwardData)
|
|||
|
||||
cutBack = .false. ! reset cutBack status
|
||||
|
||||
P_av = sum(sum(homogenization_P,dim=4),dim=3) * wgt ! average of P
|
||||
P_av = sum(homogenization_P,dim=3) * wgt
|
||||
call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
|
||||
|
||||
end subroutine utilities_constitutiveResponse
|
||||
|
|
|
@ -316,16 +316,16 @@ subroutine FEM_mech_formResidual(dm_local,xx_local,f_local,dummy,ierr)
|
|||
Vec :: x_local, f_local, xx_local
|
||||
PetscSection :: section
|
||||
PetscScalar, dimension(:), pointer :: x_scal, pf_scal
|
||||
PetscScalar, target :: f_scal(cellDof)
|
||||
PetscReal :: detJ, IcellJMat(dimPlex,dimPlex)
|
||||
PetscReal, pointer,dimension(:) :: pV0, pCellJ, pInvcellJ, basisField, basisFieldDer
|
||||
PetscScalar, dimension(cellDof), target :: f_scal
|
||||
PetscReal :: IcellJMat(dimPlex,dimPlex)
|
||||
PetscReal, dimension(:),pointer :: pV0, pCellJ, pInvcellJ, basisField, basisFieldDer
|
||||
PetscInt :: cellStart, cellEnd, cell, field, face, &
|
||||
qPt, basis, comp, cidx, &
|
||||
numFields
|
||||
PetscReal :: detFAvg
|
||||
PetscReal :: BMat(dimPlex*dimPlex,cellDof)
|
||||
numFields, &
|
||||
bcSize,m
|
||||
PetscReal :: detFAvg, detJ
|
||||
PetscReal, dimension(dimPlex*dimPlex,cellDof) :: BMat
|
||||
|
||||
PetscInt :: bcSize
|
||||
IS :: bcPoints
|
||||
|
||||
|
||||
|
@ -366,6 +366,7 @@ subroutine FEM_mech_formResidual(dm_local,xx_local,f_local,dummy,ierr)
|
|||
CHKERRQ(ierr)
|
||||
IcellJMat = reshape(pInvcellJ,shape=[dimPlex,dimPlex])
|
||||
do qPt = 0, nQuadrature-1
|
||||
m = cell*nQuadrature + qPt+1
|
||||
BMat = 0.0
|
||||
do basis = 0, nBasis-1
|
||||
do comp = 0, dimPlex-1
|
||||
|
@ -375,15 +376,14 @@ subroutine FEM_mech_formResidual(dm_local,xx_local,f_local,dummy,ierr)
|
|||
(((qPt*nBasis + basis)*dimPlex + comp)*dimPlex+comp+1)*dimPlex))
|
||||
enddo
|
||||
enddo
|
||||
homogenization_F(1:dimPlex,1:dimPlex,qPt+1,cell+1) = &
|
||||
reshape(matmul(BMat,x_scal),shape=[dimPlex,dimPlex], order=[2,1])
|
||||
homogenization_F(1:dimPlex,1:dimPlex,m) = reshape(matmul(BMat,x_scal),shape=[dimPlex,dimPlex], order=[2,1])
|
||||
enddo
|
||||
if (num%BBarStabilisation) then
|
||||
detFAvg = math_det33(sum(homogenization_F(1:3,1:3,1:nQuadrature,cell+1),dim=3)/real(nQuadrature))
|
||||
do qPt = 1, nQuadrature
|
||||
homogenization_F(1:dimPlex,1:dimPlex,qPt,cell+1) = &
|
||||
homogenization_F(1:dimPlex,1:dimPlex,qPt,cell+1)* &
|
||||
(detFAvg/math_det33(homogenization_F(1:3,1:3,qPt,cell+1)))**(1.0/real(dimPlex))
|
||||
detFAvg = math_det33(sum(homogenization_F(1:3,1:3,cell*nQuadrature+1:(cell+1)*nQuadrature),dim=3)/real(nQuadrature))
|
||||
do qPt = 0, nQuadrature-1
|
||||
m = cell*nQuadrature + qPt+1
|
||||
homogenization_F(1:dimPlex,1:dimPlex,m) = homogenization_F(1:dimPlex,1:dimPlex,m) &
|
||||
* (detFAvg/math_det33(homogenization_F(1:3,1:3,m)))**(1.0/real(dimPlex))
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
@ -407,6 +407,7 @@ subroutine FEM_mech_formResidual(dm_local,xx_local,f_local,dummy,ierr)
|
|||
IcellJMat = reshape(pInvcellJ,shape=[dimPlex,dimPlex])
|
||||
f_scal = 0.0
|
||||
do qPt = 0, nQuadrature-1
|
||||
m = cell*nQuadrature + qPt+1
|
||||
BMat = 0.0
|
||||
do basis = 0, nBasis-1
|
||||
do comp = 0, dimPlex-1
|
||||
|
@ -418,7 +419,7 @@ subroutine FEM_mech_formResidual(dm_local,xx_local,f_local,dummy,ierr)
|
|||
enddo
|
||||
f_scal = f_scal + &
|
||||
matmul(transpose(BMat), &
|
||||
reshape(transpose(homogenization_P(1:dimPlex,1:dimPlex,qPt+1,cell+1)), &
|
||||
reshape(transpose(homogenization_P(1:dimPlex,1:dimPlex,m)), &
|
||||
shape=[dimPlex*dimPlex]))*qWeights(qPt+1)
|
||||
enddo
|
||||
f_scal = f_scal*abs(detJ)
|
||||
|
@ -463,7 +464,7 @@ subroutine FEM_mech_formJacobian(dm_local,xx_local,Jac_pre,Jac,dummy,ierr)
|
|||
K_eB
|
||||
|
||||
PetscInt :: cellStart, cellEnd, cell, field, face, &
|
||||
qPt, basis, comp, cidx,bcSize
|
||||
qPt, basis, comp, cidx,bcSize, m
|
||||
|
||||
IS :: bcPoints
|
||||
|
||||
|
@ -506,6 +507,7 @@ subroutine FEM_mech_formJacobian(dm_local,xx_local,Jac_pre,Jac,dummy,ierr)
|
|||
FAvg = 0.0
|
||||
BMatAvg = 0.0
|
||||
do qPt = 0, nQuadrature-1
|
||||
m = cell*nQuadrature + qPt + 1
|
||||
BMat = 0.0
|
||||
do basis = 0, nBasis-1
|
||||
do comp = 0, dimPlex-1
|
||||
|
@ -516,7 +518,7 @@ subroutine FEM_mech_formJacobian(dm_local,xx_local,Jac_pre,Jac,dummy,ierr)
|
|||
(((qPt*nBasis + basis)*dimPlex + comp)*dimPlex+comp+1)*dimPlex))
|
||||
enddo
|
||||
enddo
|
||||
MatA = matmul(reshape(reshape(homogenization_dPdF(1:dimPlex,1:dimPlex,1:dimPlex,1:dimPlex,qPt+1,cell+1), &
|
||||
MatA = matmul(reshape(reshape(homogenization_dPdF(1:dimPlex,1:dimPlex,1:dimPlex,1:dimPlex,m), &
|
||||
shape=[dimPlex,dimPlex,dimPlex,dimPlex], order=[2,1,4,3]), &
|
||||
shape=[dimPlex*dimPlex,dimPlex*dimPlex]),BMat)*qWeights(qPt+1)
|
||||
if (num%BBarStabilisation) then
|
||||
|
@ -524,12 +526,11 @@ subroutine FEM_mech_formJacobian(dm_local,xx_local,Jac_pre,Jac,dummy,ierr)
|
|||
FInv = math_inv33(F)
|
||||
K_eA = K_eA + matmul(transpose(BMat),MatA)*math_det33(FInv)**(1.0/real(dimPlex))
|
||||
K_eB = K_eB - &
|
||||
matmul(transpose(matmul(reshape(homogenization_F(1:dimPlex,1:dimPlex,qPt+1,cell+1), &
|
||||
shape=[dimPlex*dimPlex,1]), &
|
||||
matmul(transpose(matmul(reshape(homogenization_F(1:dimPlex,1:dimPlex,m),shape=[dimPlex*dimPlex,1]), &
|
||||
matmul(reshape(FInv(1:dimPlex,1:dimPlex), &
|
||||
shape=[1,dimPlex*dimPlex],order=[2,1]),BMat))),MatA)
|
||||
MatB = MatB + &
|
||||
matmul(reshape(homogenization_F(1:dimPlex,1:dimPlex,qPt+1,cell+1),shape=[1,dimPlex*dimPlex]),MatA)
|
||||
MatB = MatB &
|
||||
+ matmul(reshape(homogenization_F(1:dimPlex,1:dimPlex,m),shape=[1,dimPlex*dimPlex]),MatA)
|
||||
FAvg = FAvg + F
|
||||
BMatAvg = BMatAvg + BMat
|
||||
else
|
||||
|
|
Loading…
Reference in New Issue