Merge branch 'development' of magit1.mpie.de:damask/DAMASK into development

This commit is contained in:
Philip Eisenlohr 2016-04-22 13:13:42 -05:00
commit 382727f2d6
16 changed files with 186652 additions and 187847 deletions

1
.gitattributes vendored
View File

@ -6,3 +6,4 @@
# Denote all files that are truly binary and should not be modified.
*.png binary
*.jpg binary
*.cae binary

View File

@ -6,10 +6,6 @@
!> @brief input/output functions, partly depending on chosen solver
!--------------------------------------------------------------------------------------------------
module IO
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pInt, &
pReal
@ -18,22 +14,8 @@ module IO
private
character(len=5), parameter, public :: &
IO_EOF = '#EOF#' !< end of file string
#ifdef HDF
integer(HID_T), public, protected :: tempCoordinates, tempResults
integer(HID_T), private :: resultsFile, tempFile
integer(pInt), private :: currentInc
#endif
public :: &
#ifdef HDF
HDF5_mappingConstitutive, &
HDF5_mappingHomogenization, &
HDF5_mappingCells, &
HDF5_addGroup ,&
HDF5_forwardResults, &
HDF5_addScalarDataset, &
IO_formatIntToString ,&
#endif
IO_init, &
IO_read, &
IO_checkAndRewind, &
@ -117,9 +99,6 @@ subroutine IO_init
#include "compilation_info.f90"
endif mainProcess
#ifdef HDF
call HDF5_createJobFile
#endif
end subroutine IO_init
@ -1944,526 +1923,4 @@ recursive function abaqus_assembleInputFile(unit1,unit2) result(createSuccess)
end function abaqus_assembleInputFile
#endif
#ifdef HDF
!--------------------------------------------------------------------------------------------------
!> @brief creates and initializes HDF5 output files
!--------------------------------------------------------------------------------------------------
subroutine HDF5_createJobFile
use hdf5
use DAMASK_interface, only: &
getSolverWorkingDirectoryName, &
getSolverJobName
implicit none
integer :: hdferr
integer(SIZE_T) :: typeSize
character(len=1024) :: path
integer(HID_T) :: prp_id
integer(SIZE_T), parameter :: increment = 104857600 ! increase temp file in memory in 100MB steps
!--------------------------------------------------------------------------------------------------
! initialize HDF5 library and check if integer and float type size match
call h5open_f(hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_createJobFile: h5open_f')
call h5tget_size_f(H5T_NATIVE_INTEGER,typeSize, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_createJobFile: h5tget_size_f (int)')
if (int(pInt,SIZE_T)/=typeSize) call IO_error(0_pInt,ext_msg='pInt does not match H5T_NATIVE_INTEGER')
call h5tget_size_f(H5T_NATIVE_DOUBLE,typeSize, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_createJobFile: h5tget_size_f (double)')
if (int(pReal,SIZE_T)/=typeSize) call IO_error(0_pInt,ext_msg='pReal does not match H5T_NATIVE_DOUBLE')
!--------------------------------------------------------------------------------------------------
! open file
path = trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.'//'DAMASKout'
call h5fcreate_f(path,H5F_ACC_TRUNC_F,resultsFile,hdferr)
if (hdferr < 0) call IO_error(100_pInt,ext_msg=path)
call HDF5_addStringAttribute(resultsFile,'createdBy','$Id$')
!--------------------------------------------------------------------------------------------------
! open temp file
path = trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.'//'DAMASKoutTemp'
call h5pcreate_f(H5P_FILE_ACCESS_F, prp_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_createJobFile: h5pcreate_f')
call h5pset_fapl_core_f(prp_id, increment, .false., hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_createJobFile: h5pset_fapl_core_f')
call h5fcreate_f(path,H5F_ACC_TRUNC_F,tempFile,hdferr)
if (hdferr < 0) call IO_error(100_pInt,ext_msg=path)
!--------------------------------------------------------------------------------------------------
! create mapping groups in out file
call HDF5_closeGroup(HDF5_addGroup("mapping"))
call HDF5_closeGroup(HDF5_addGroup("results"))
call HDF5_closeGroup(HDF5_addGroup("coordinates"))
!--------------------------------------------------------------------------------------------------
! create results group in temp file
tempResults = HDF5_addGroup("results",tempFile)
tempCoordinates = HDF5_addGroup("coordinates",tempFile)
end subroutine HDF5_createJobFile
!--------------------------------------------------------------------------------------------------
!> @brief creates and initializes HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine HDF5_closeJobFile()
use hdf5
implicit none
integer :: hdferr
call h5fclose_f(resultsFile,hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_closeJobFile: h5fclose_f')
end subroutine HDF5_closeJobFile
!--------------------------------------------------------------------------------------------------
!> @brief adds a new group to the results file, or if loc is present at the given location
!--------------------------------------------------------------------------------------------------
integer(HID_T) function HDF5_addGroup(path,loc)
use hdf5
implicit none
character(len=*), intent(in) :: path
integer(HID_T), intent(in),optional :: loc
integer :: hdferr
if (present(loc)) then
call h5gcreate_f(loc, trim(path), HDF5_addGroup, hdferr)
else
call h5gcreate_f(resultsFile, trim(path), HDF5_addGroup, hdferr)
endif
if (hdferr < 0) call IO_error(1_pInt,ext_msg = 'HDF5_addGroup: h5gcreate_f ('//trim(path)//' )')
end function HDF5_addGroup
!--------------------------------------------------------------------------------------------------
!> @brief adds a new group to the results file
!--------------------------------------------------------------------------------------------------
integer(HID_T) function HDF5_openGroup(path)
use hdf5
implicit none
character(len=*), intent(in) :: path
integer :: hdferr
call h5gopen_f(resultsFile, trim(path), HDF5_openGroup, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg = 'HDF5_openGroup: h5gopen_f ('//trim(path)//' )')
end function HDF5_openGroup
!--------------------------------------------------------------------------------------------------
!> @brief closes a group
!--------------------------------------------------------------------------------------------------
subroutine HDF5_closeGroup(ID)
use hdf5
implicit none
integer(HID_T), intent(in) :: ID
integer :: hdferr
call h5gclose_f(ID, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg = 'HDF5_closeGroup: h5gclose_f')
end subroutine HDF5_closeGroup
!--------------------------------------------------------------------------------------------------
!> @brief adds a new group to the results file
!--------------------------------------------------------------------------------------------------
subroutine HDF5_addStringAttribute(entity,attrLabel,attrValue)
use hdf5
implicit none
integer(HID_T), intent(in) :: entity
character(len=*), intent(in) :: attrLabel, attrValue
integer :: hdferr
integer(HID_T) :: attr_id, space_id, type_id
call h5screate_f(H5S_SCALAR_F,space_id,hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5screate_f')
call h5tcopy_f(H5T_NATIVE_CHARACTER, type_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5tcopy_f')
call h5tset_size_f(type_id, int(len(trim(attrValue)),HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5tset_size_f')
call h5acreate_f(entity, trim(attrLabel),type_id,space_id,attr_id,hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5acreate_f')
call h5awrite_f(attr_id, type_id, trim(attrValue), int([1],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5awrite_f')
call h5aclose_f(attr_id,hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5aclose_f')
call h5sclose_f(space_id,hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_addStringAttribute: h5sclose_f')
end subroutine HDF5_addStringAttribute
!--------------------------------------------------------------------------------------------------
!> @brief adds the unique mapping from spatial position and constituent ID to results
!--------------------------------------------------------------------------------------------------
subroutine HDF5_mappingConstitutive(mapping)
use hdf5
implicit none
integer(pInt), intent(in), dimension(:,:,:) :: mapping
integer :: hdferr, NmatPoints,Nconstituents
integer(HID_T) :: mapping_id, dtype_id, dset_id, space_id,instance_id,position_id
Nconstituents=size(mapping,1)
NmatPoints=size(mapping,2)
mapping_ID = HDF5_openGroup("mapping")
!--------------------------------------------------------------------------------------------------
! create dataspace
call h5screate_simple_f(2, int([Nconstituents,NmatPoints],HSIZE_T), space_id, hdferr, &
int([Nconstituents,NmatPoints],HSIZE_T))
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive')
!--------------------------------------------------------------------------------------------------
! compound type
call h5tcreate_f(H5T_COMPOUND_F, 6_SIZE_T, dtype_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tcreate_f dtype_id')
call h5tinsert_f(dtype_id, "Constitutive Instance", 0_SIZE_T, H5T_STD_U16LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tinsert_f 0')
call h5tinsert_f(dtype_id, "Position in Instance Results", 2_SIZE_T, H5T_STD_U32LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tinsert_f 2')
!--------------------------------------------------------------------------------------------------
! create Dataset
call h5dcreate_f(mapping_id, "Constitutive", dtype_id, space_id, dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive')
!--------------------------------------------------------------------------------------------------
! Create memory types (one compound datatype for each member)
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), instance_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tcreate_f instance_id')
call h5tinsert_f(instance_id, "Constitutive Instance", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tinsert_f instance_id')
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), position_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tcreate_f position_id')
call h5tinsert_f(position_id, "Position in Instance Results", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tinsert_f position_id')
!--------------------------------------------------------------------------------------------------
! write data by fields in the datatype. Fields order is not important.
call h5dwrite_f(dset_id, position_id, mapping(1:Nconstituents,1:NmatPoints,1), &
int([Nconstituents, NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5dwrite_f position_id')
call h5dwrite_f(dset_id, instance_id, mapping(1:Nconstituents,1:NmatPoints,2), &
int([Nconstituents, NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5dwrite_f instance_id')
!--------------------------------------------------------------------------------------------------
!close types, dataspaces
call h5tclose_f(dtype_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tclose_f dtype_id')
call h5tclose_f(position_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tclose_f position_id')
call h5tclose_f(instance_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5tclose_f instance_id')
call h5dclose_f(dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5dclose_f')
call h5sclose_f(space_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5sclose_f')
call HDF5_closeGroup(mapping_ID)
end subroutine HDF5_mappingConstitutive
!--------------------------------------------------------------------------------------------------
!> @brief adds the unique mapping from spatial position and constituent ID to results
!--------------------------------------------------------------------------------------------------
subroutine HDF5_mappingCrystallite(mapping)
use hdf5
implicit none
integer(pInt), intent(in), dimension(:,:,:) :: mapping
integer :: hdferr, NmatPoints,Nconstituents
integer(HID_T) :: mapping_id, dtype_id, dset_id, space_id,instance_id,position_id
Nconstituents=size(mapping,1)
NmatPoints=size(mapping,2)
mapping_ID = HDF5_openGroup("mapping")
!--------------------------------------------------------------------------------------------------
! create dataspace
call h5screate_simple_f(2, int([Nconstituents,NmatPoints],HSIZE_T), space_id, hdferr, &
int([Nconstituents,NmatPoints],HSIZE_T))
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite')
!--------------------------------------------------------------------------------------------------
! compound type
call h5tcreate_f(H5T_COMPOUND_F, 6_SIZE_T, dtype_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tcreate_f dtype_id')
call h5tinsert_f(dtype_id, "Crystallite Instance", 0_SIZE_T, H5T_STD_U16LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tinsert_f 0')
call h5tinsert_f(dtype_id, "Position in Instance Results", 2_SIZE_T, H5T_STD_U32LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tinsert_f 2')
!--------------------------------------------------------------------------------------------------
! create Dataset
call h5dcreate_f(mapping_id, "Crystallite", dtype_id, space_id, dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite')
!--------------------------------------------------------------------------------------------------
! Create memory types (one compound datatype for each member)
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), instance_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tcreate_f instance_id')
call h5tinsert_f(instance_id, "Crystallite Instance", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tinsert_f instance_id')
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), position_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tcreate_f position_id')
call h5tinsert_f(position_id, "Position in Instance Results", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tinsert_f position_id')
!--------------------------------------------------------------------------------------------------
! write data by fields in the datatype. Fields order is not important.
call h5dwrite_f(dset_id, position_id, mapping(1:Nconstituents,1:NmatPoints,1), &
int([Nconstituents, NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5dwrite_f position_id')
call h5dwrite_f(dset_id, instance_id, mapping(1:Nconstituents,1:NmatPoints,2), &
int([Nconstituents, NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5dwrite_f instance_id')
!--------------------------------------------------------------------------------------------------
!close types, dataspaces
call h5tclose_f(dtype_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tclose_f dtype_id')
call h5tclose_f(position_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tclose_f position_id')
call h5tclose_f(instance_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5tclose_f instance_id')
call h5dclose_f(dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5dclose_f')
call h5sclose_f(space_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCrystallite: h5sclose_f')
call HDF5_closeGroup(mapping_ID)
end subroutine HDF5_mappingCrystallite
!--------------------------------------------------------------------------------------------------
!> @brief adds the unique mapping from spatial position to results
!--------------------------------------------------------------------------------------------------
subroutine HDF5_mappingHomogenization(mapping)
use hdf5
implicit none
integer(pInt), intent(in), dimension(:,:) :: mapping
integer :: hdferr, NmatPoints
integer(HID_T) :: mapping_id, dtype_id, dset_id, space_id,instance_id,position_id,elem_id,ip_id
NmatPoints=size(mapping,1)
mapping_ID = HDF5_openGroup("mapping")
!--------------------------------------------------------------------------------------------------
! create dataspace
call h5screate_simple_f(1, int([NmatPoints],HSIZE_T), space_id, hdferr, &
int([NmatPoints],HSIZE_T))
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization')
!--------------------------------------------------------------------------------------------------
! compound type
call h5tcreate_f(H5T_COMPOUND_F, 11_SIZE_T, dtype_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tcreate_f dtype_id')
call h5tinsert_f(dtype_id, "Homogenization Instance", 0_SIZE_T, H5T_STD_U16LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f 0')
call h5tinsert_f(dtype_id, "Position in Instance Results", 2_SIZE_T, H5T_STD_U32LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f 2')
call h5tinsert_f(dtype_id, "Element Number", 6_SIZE_T, H5T_STD_U32LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f 6')
call h5tinsert_f(dtype_id, "Material Point Number", 10_SIZE_T, H5T_STD_U8LE, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f 10')
!--------------------------------------------------------------------------------------------------
! create Dataset
call h5dcreate_f(mapping_id, "Homogenization", dtype_id, space_id, dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization')
!--------------------------------------------------------------------------------------------------
! Create memory types (one compound datatype for each member)
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), instance_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tcreate_f instance_id')
call h5tinsert_f(instance_id, "Homogenization Instance", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f instance_id')
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), position_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tcreate_f position_id')
call h5tinsert_f(position_id, "Position in Instance Results", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f position_id')
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), elem_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tcreate_f elem_id')
call h5tinsert_f(elem_id, "Element Number", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f elem_id')
call h5tcreate_f(H5T_COMPOUND_F, int(pInt,SIZE_T), ip_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tcreate_f ip_id')
call h5tinsert_f(ip_id, "Material Point Number", 0_SIZE_T, H5T_NATIVE_INTEGER, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tinsert_f ip_id')
!--------------------------------------------------------------------------------------------------
! write data by fields in the datatype. Fields order is not important.
call h5dwrite_f(dset_id, position_id, mapping(1:NmatPoints,1), &
int([NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5dwrite_f position_id')
call h5dwrite_f(dset_id, instance_id, mapping(1:NmatPoints,2), &
int([NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5dwrite_f position_id')
call h5dwrite_f(dset_id, elem_id, mapping(1:NmatPoints,3), &
int([NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5dwrite_f elem_id')
call h5dwrite_f(dset_id, ip_id, mapping(1:NmatPoints,4), &
int([NmatPoints],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5dwrite_f ip_id')
!--------------------------------------------------------------------------------------------------
!close types, dataspaces
call h5tclose_f(dtype_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tclose_f dtype_id')
call h5tclose_f(position_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tclose_f position_id')
call h5tclose_f(instance_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tclose_f instance_id')
call h5tclose_f(ip_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tclose_f ip_id')
call h5tclose_f(elem_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5tclose_f elem_id')
call h5dclose_f(dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5dclose_f')
call h5sclose_f(space_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingHomogenization: h5sclose_f')
call HDF5_closeGroup(mapping_ID)
end subroutine HDF5_mappingHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief adds the unique cell to node mapping
!--------------------------------------------------------------------------------------------------
subroutine HDF5_mappingCells(mapping)
use hdf5
implicit none
integer(pInt), intent(in), dimension(:) :: mapping
integer :: hdferr, Nnodes
integer(HID_T) :: mapping_id, dset_id, space_id
Nnodes=size(mapping)
mapping_ID = HDF5_openGroup("mapping")
!--------------------------------------------------------------------------------------------------
! create dataspace
call h5screate_simple_f(1, int([Nnodes],HSIZE_T), space_id, hdferr, &
int([Nnodes],HSIZE_T))
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCells: h5screate_simple_f')
!--------------------------------------------------------------------------------------------------
! create Dataset
call h5dcreate_f(mapping_id, "Cell",H5T_NATIVE_INTEGER, space_id, dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCells')
!--------------------------------------------------------------------------------------------------
! write data by fields in the datatype. Fields order is not important.
call h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, mapping, int([Nnodes],HSIZE_T), hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingCells: h5dwrite_f instance_id')
!--------------------------------------------------------------------------------------------------
!close types, dataspaces
call h5dclose_f(dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5dclose_f')
call h5sclose_f(space_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='IO_mappingConstitutive: h5sclose_f')
call HDF5_closeGroup(mapping_ID)
end subroutine HDF5_mappingCells
!--------------------------------------------------------------------------------------------------
!> @brief creates a new scalar dataset in the given group location
!--------------------------------------------------------------------------------------------------
subroutine HDF5_addScalarDataset(group,nnodes,label,SIunit)
use hdf5
implicit none
integer(HID_T), intent(in) :: group
integer(pInt), intent(in) :: nnodes
character(len=*), intent(in) :: SIunit,label
integer :: hdferr
integer(HID_T) :: dset_id, space_id
!--------------------------------------------------------------------------------------------------
! create dataspace
call h5screate_simple_f(1, int([Nnodes],HSIZE_T), space_id, hdferr, &
int([Nnodes],HSIZE_T))
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_addScalarDataset: h5screate_simple_f')
!--------------------------------------------------------------------------------------------------
! create Dataset
call h5dcreate_f(group, trim(label),H5T_NATIVE_DOUBLE, space_id, dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_addScalarDataset: h5dcreate_f')
call HDF5_addStringAttribute(dset_id,'unit',trim(SIunit))
!--------------------------------------------------------------------------------------------------
!close types, dataspaces
call h5dclose_f(dset_id, hdferr)
if (hdferr < 0) call IO_error(1_pInt,ext_msg='HDF5_addScalarDataset: h5dclose_f')
call h5sclose_f(space_id, hdferr)
end subroutine HDF5_addScalarDataset
!--------------------------------------------------------------------------------------------------
!> @brief returns nicely formatted string of integer value
!--------------------------------------------------------------------------------------------------
function IO_formatIntToString(myInt)
implicit none
integer(pInt), intent(in) :: myInt
character(len=1_pInt + int(log10(real(myInt)),pInt)) :: IO_formatIntToString
write(IO_formatIntToString,'('//IO_intOut(myInt)//')') myInt
end function
!--------------------------------------------------------------------------------------------------
!> @brief copies the current temp results to the actual results file
!--------------------------------------------------------------------------------------------------
subroutine HDF5_forwardResults
use hdf5
implicit none
integer :: hdferr
integer(HID_T) :: new_loc_id
new_loc_id = HDF5_openGroup("results")
currentInc = currentInc + 1_pInt
call h5ocopy_f(tempFile, 'results', new_loc_id,dst_name=IO_formatIntToString(currentInc), hdferr=hdferr)
if (hdferr < 0_pInt) call IO_error(1_pInt,ext_msg='HDF5_forwardResults: h5ocopy_f')
call HDF5_closeGroup(new_loc_id)
end subroutine HDF5_forwardResults
#endif
end module IO

View File

@ -309,7 +309,7 @@ KINEMATICS_FILES = \
kinematics_vacancy_strain.o kinematics_hydrogen_strain.o
PLASTIC_FILES = \
plastic_dislotwin.o plastic_disloUCLA.o plastic_isotropic.o plastic_j2.o \
plastic_dislotwin.o plastic_disloUCLA.o plastic_isotropic.o \
plastic_phenopowerlaw.o plastic_titanmod.o plastic_nonlocal.o plastic_none.o \
plastic_phenoplus.o
@ -579,9 +579,6 @@ plastic_phenoplus.o: plastic_phenoplus.f90 \
plastic_isotropic.o: plastic_isotropic.f90 \
lattice.o
plastic_j2.o: plastic_j2.f90 \
lattice.o
plastic_none.o: plastic_none.f90 \
lattice.o
ifeq "$(F90)" "gfortran"

View File

@ -28,7 +28,6 @@
#include "kinematics_hydrogen_strain.f90"
#include "plastic_none.f90"
#include "plastic_isotropic.f90"
#include "plastic_j2.f90"
#include "plastic_phenopowerlaw.f90"
#include "plastic_phenoplus.f90"
#include "plastic_titanmod.f90"

View File

@ -69,7 +69,6 @@ subroutine constitutive_init()
ELASTICITY_hooke_ID, &
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_j2_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, &
PLASTICITY_dislotwin_ID, &
@ -93,7 +92,6 @@ subroutine constitutive_init()
ELASTICITY_HOOKE_label, &
PLASTICITY_NONE_label, &
PLASTICITY_ISOTROPIC_label, &
PLASTICITY_J2_label, &
PLASTICITY_PHENOPOWERLAW_label, &
PLASTICITY_PHENOPLUS_label, &
PLASTICITY_DISLOTWIN_label, &
@ -114,7 +112,6 @@ subroutine constitutive_init()
use plastic_none
use plastic_isotropic
use plastic_j2
use plastic_phenopowerlaw
use plastic_phenoplus
use plastic_dislotwin
@ -160,7 +157,6 @@ subroutine constitutive_init()
! parse plasticities from config file
if (any(phase_plasticity == PLASTICITY_NONE_ID)) call plastic_none_init
if (any(phase_plasticity == PLASTICITY_ISOTROPIC_ID)) call plastic_isotropic_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_J2_ID)) call plastic_j2_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID)) call plastic_phenopowerlaw_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_PHENOPLUS_ID)) call plastic_phenoplus_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_DISLOTWIN_ID)) call plastic_dislotwin_init(FILEUNIT)
@ -217,11 +213,6 @@ subroutine constitutive_init()
thisNoutput => plastic_isotropic_Noutput
thisOutput => plastic_isotropic_output
thisSize => plastic_isotropic_sizePostResult
case (PLASTICITY_J2_ID) plasticityType
outputName = PLASTICITY_J2_label
thisNoutput => plastic_j2_Noutput
thisOutput => plastic_j2_output
thisSize => plastic_j2_sizePostResult
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
outputName = PLASTICITY_PHENOPOWERLAW_label
thisNoutput => plastic_phenopowerlaw_Noutput
@ -513,7 +504,6 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
thermalMapping, &
PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
PLASTICITY_J2_ID, &
PLASTICITY_PHENOPOWERLAW_ID, &
PLASTICITY_PHENOPLUS_ID, &
PLASTICITY_DISLOTWIN_ID, &
@ -522,8 +512,6 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
PLASTICITY_NONLOCAL_ID
use plastic_isotropic, only: &
plastic_isotropic_LpAndItsTangent
use plastic_j2, only: &
plastic_j2_LpAndItsTangent
use plastic_phenopowerlaw, only: &
plastic_phenopowerlaw_LpAndItsTangent
use plastic_phenoplus, only: &
@ -574,8 +562,6 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
dLp_dMstar = 0.0_pReal
case (PLASTICITY_ISOTROPIC_ID) plasticityType
call plastic_isotropic_LpAndItsTangent(Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_J2_ID) plasticityType
call plastic_j2_LpAndItsTangent(Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
call plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPLUS_ID) plasticityType
@ -903,7 +889,6 @@ subroutine constitutive_collectDotState(Tstar_v, FeArray, FpArray, subdt, subfra
homogenization_maxNgrains, &
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_j2_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, &
PLASTICITY_dislotwin_ID, &
@ -916,8 +901,6 @@ subroutine constitutive_collectDotState(Tstar_v, FeArray, FpArray, subdt, subfra
SOURCE_thermal_externalheat_ID
use plastic_isotropic, only: &
plastic_isotropic_dotState
use plastic_j2, only: &
plastic_j2_dotState
use plastic_phenopowerlaw, only: &
plastic_phenopowerlaw_dotState
use plastic_phenoplus, only: &
@ -971,8 +954,6 @@ subroutine constitutive_collectDotState(Tstar_v, FeArray, FpArray, subdt, subfra
plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el)))
case (PLASTICITY_ISOTROPIC_ID) plasticityType
call plastic_isotropic_dotState (Tstar_v,ipc,ip,el)
case (PLASTICITY_J2_ID) plasticityType
call plastic_j2_dotState (Tstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
call plastic_phenopowerlaw_dotState(Tstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPLUS_ID) plasticityType
@ -1117,7 +1098,6 @@ function constitutive_postResults(Tstar_v, FeArray, ipc, ip, el)
homogenization_maxNgrains, &
PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
PLASTICITY_J2_ID, &
PLASTICITY_PHENOPOWERLAW_ID, &
PLASTICITY_PHENOPLUS_ID, &
PLASTICITY_DISLOTWIN_ID, &
@ -1130,8 +1110,6 @@ function constitutive_postResults(Tstar_v, FeArray, ipc, ip, el)
SOURCE_damage_anisoDuctile_ID
use plastic_isotropic, only: &
plastic_isotropic_postResults
use plastic_j2, only: &
plastic_j2_postResults
use plastic_phenopowerlaw, only: &
plastic_phenopowerlaw_postResults
use plastic_phenoplus, only: &
@ -1185,8 +1163,6 @@ function constitutive_postResults(Tstar_v, FeArray, ipc, ip, el)
constitutive_postResults(startPos:endPos) = plastic_titanmod_postResults(ipc,ip,el)
case (PLASTICITY_ISOTROPIC_ID) plasticityType
constitutive_postResults(startPos:endPos) = plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
case (PLASTICITY_J2_ID) plasticityType
constitutive_postResults(startPos:endPos) = plastic_j2_postResults(Tstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
constitutive_postResults(startPos:endPos) = &
plastic_phenopowerlaw_postResults(Tstar_v,ipc,ip,el)

View File

@ -71,12 +71,6 @@ contains
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init
#ifdef HDF
use hdf5, only: &
HID_T
use IO, only : &
HDF5_mappingHomogenization
#endif
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: &
math_I3
@ -131,12 +125,6 @@ subroutine homogenization_init
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
logical :: knownHomogenization, knownThermal, knownDamage, knownVacancyflux, knownPorosity, knownHydrogenflux
#ifdef HDF
integer(pInt), dimension(:,:), allocatable :: mapping
integer(pInt), dimension(:), allocatable :: InstancePosition
allocate(mapping(mesh_ncpelems,4),source=0_pInt)
allocate(InstancePosition(material_Nhomogenization),source=0_pInt)
#endif
!--------------------------------------------------------------------------------------------------
@ -396,17 +384,6 @@ subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
! allocate and initialize global state and postresutls variables
#ifdef HDF
elementLooping: do e = 1,mesh_NcpElems
myInstance = homogenization_typeInstance(mesh_element(3,e))
IpLooping: do i = 1,FE_Nips(FE_geomtype(mesh_element(2,e)))
InstancePosition(myInstance) = InstancePosition(myInstance)+1_pInt
mapping(e,1:4) = [instancePosition(myinstance),myinstance,e,i]
enddo IpLooping
enddo elementLooping
call HDF5_mappingHomogenization(mapping)
#endif
homogenization_maxSizePostResults = 0_pInt
thermal_maxSizePostResults = 0_pInt
damage_maxSizePostResults = 0_pInt

View File

@ -24,7 +24,6 @@ module material
ELASTICITY_hooke_label = 'hooke', &
PLASTICITY_none_label = 'none', &
PLASTICITY_isotropic_label = 'isotropic', &
PLASTICITY_j2_label = 'j2', &
PLASTICITY_phenopowerlaw_label = 'phenopowerlaw', &
PLASTICITY_phenoplus_label = 'phenoplus', &
PLASTICITY_dislotwin_label = 'dislotwin', &
@ -74,7 +73,6 @@ module material
enumerator :: PLASTICITY_undefined_ID, &
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_j2_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, &
PLASTICITY_dislotwin_ID, &
@ -313,7 +311,6 @@ module material
ELASTICITY_hooke_ID ,&
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_J2_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, &
PLASTICITY_dislotwin_ID, &
@ -351,9 +348,6 @@ module material
HYDROGENFLUX_cahnhilliard_ID, &
HOMOGENIZATION_none_ID, &
HOMOGENIZATION_isostrain_ID, &
#ifdef HDF
material_NconstituentsPhase, &
#endif
HOMOGENIZATION_RGC_ID
private :: &
@ -982,8 +976,6 @@ subroutine material_parsePhase(fileUnit,myPart)
phase_plasticity(section) = PLASTICITY_NONE_ID
case (PLASTICITY_ISOTROPIC_label)
phase_plasticity(section) = PLASTICITY_ISOTROPIC_ID
case (PLASTICITY_J2_label)
phase_plasticity(section) = PLASTICITY_J2_ID
case (PLASTICITY_PHENOPOWERLAW_label)
phase_plasticity(section) = PLASTICITY_PHENOPOWERLAW_ID
case (PLASTICITY_PHENOPLUS_label)
@ -1603,14 +1595,4 @@ subroutine material_populateGrains
end subroutine material_populateGrains
#ifdef HDF
integer(pInt) pure function material_NconstituentsPhase(matID)
implicit none
integer(pInt), intent(in) :: matID
material_NconstituentsPhase = count(microstructure_phase == matID)
end function
#endif
end module material

View File

@ -4525,17 +4525,9 @@ subroutine mesh_write_cellGeom
VTK_geo, &
VTK_con, &
VTK_end
#ifdef HDF
use IO, only: &
HDF5_mappingCells
#endif
implicit none
integer(I4P), dimension(1:mesh_Ncells) :: celltype
integer(I4P), dimension(mesh_Ncells*(1_pInt+FE_maxNcellnodesPerCell)) :: cellconnection
#ifdef HDF
integer(pInt), dimension(mesh_Ncells*FE_maxNcellnodesPerCell) :: cellconnectionHDF5
integer(pInt) :: j2=0_pInt
#endif
integer(I4P):: error
integer(I4P):: g, c, e, CellID, i, j
@ -4550,16 +4542,8 @@ subroutine mesh_write_cellGeom
cellconnection(j+1_pInt:j+FE_NcellnodesPerCell(c)+1_pInt) &
= [FE_NcellnodesPerCell(c),mesh_cell(1:FE_NcellnodesPerCell(c),i,e)-1_pInt] ! number of cellnodes per cell & list of global cellnode IDs belnging to this cell (cellnode counting starts at 0)
j = j + FE_NcellnodesPerCell(c) + 1_pInt
#ifdef HDF
cellconnectionHDF5(j2+1_pInt:j2+FE_NcellnodesPerCell(c)) &
= mesh_cell(1:FE_NcellnodesPerCell(c),i,e)-1_pInt
j2=j2 + FE_ncellnodesPerCell(c)
#endif
enddo
enddo
#ifdef HDF
call HDF5_mappingCells(cellconnectionHDF5(1:j2))
#endif
error=VTK_ini(output_format = 'ASCII', &
title=trim(getSolverJobName())//' cell mesh', &

View File

@ -497,28 +497,23 @@ real(pReal) :: &
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
if (param(instance)%dilatation) then
if (norm_Tstar_sph <= 0.0_pReal) then ! Tstar == 0 --> both Li and dLi_dTstar are zero
Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal
else
gamma_dot = param(instance)%gdot0 &
* (sqrt(1.5_pReal) * norm_Tstar_sph / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
**param(instance)%n
if (param(instance)%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero
gamma_dot = param(instance)%gdot0 &
* (sqrt(1.5_pReal) * norm_Tstar_sph / param(instance)%fTaylor / state(instance)%flowstress(of) ) &
**param(instance)%n
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/param(instance)%fTaylor
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/param(instance)%fTaylor
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Li
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Li
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,m,n) = (param(instance)%n-1.0_pReal) * &
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
dLi_dTstar_3333 = gamma_dot / param(instance)%fTaylor * &
dLi_dTstar_3333 / norm_Tstar_sph
endif
dLi_dTstar_3333 = gamma_dot / param(instance)%fTaylor * &
dLi_dTstar_3333 / norm_Tstar_sph
else
Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal

View File

@ -1,564 +0,0 @@
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (J2) plasticity
!> @details Isotropic (J2) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module plastic_j2
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pReal,&
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_j2_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_j2_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_j2_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_j2_Noutput !< number of outputs per instance
real(pReal), dimension(:), allocatable, private :: &
plastic_j2_fTaylor, & !< Taylor factor
plastic_j2_tau0, & !< initial plastic stress
plastic_j2_gdot0, & !< reference velocity
plastic_j2_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
plastic_j2_h0, &
plastic_j2_h0_slopeLnRate, &
plastic_j2_tausat, & !< final plastic stress
plastic_j2_a, &
plastic_j2_aTolResistance, &
plastic_j2_aTolShear, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
plastic_j2_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
plastic_j2_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
plastic_j2_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
plastic_j2_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
enum, bind(c)
enumerator :: undefined_ID, &
flowstress_ID, &
strainrate_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
plastic_j2_outputID !< ID of each post result output
#ifdef HDF
type plastic_j2_tOutput
real(pReal), dimension(:), allocatable, private :: &
flowstress, &
strainrate
logical :: flowstressActive = .false., strainrateActive = .false. ! if we can write the output block wise, this is not needed anymore because we can do an if(allocated(xxx))
end type plastic_j2_tOutput
type(plastic_j2_tOutput), allocatable, dimension(:) :: plastic_j2_Output2
integer(HID_T), allocatable, dimension(:) :: outID
#endif
public :: &
plastic_j2_init, &
plastic_j2_LpAndItsTangent, &
plastic_j2_dotState, &
plastic_j2_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_j2_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
#ifdef HDF
use hdf5
#endif
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use numerics, only: &
analyticJaco, &
worldrank, &
numerics_integrator
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp, &
#ifdef HDF
tempResults, &
HDF5_addGroup, &
HDF5_addScalarDataset,&
#endif
IO_EOF
use material, only: &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_J2_label, &
PLASTICITY_J2_ID, &
material_phase, &
plasticState, &
MATERIAL_partPhase
use lattice
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
o, &
phase, &
maxNinstance, &
instance, &
mySize, &
sizeDotState, &
sizeState, &
sizeDeltaState
character(len=65536) :: &
tag = '', &
line = ''
integer(pInt) :: NofMyPhase
#ifdef HDF
character(len=5) :: &
str1
integer(HID_T) :: ID,ID2,ID4
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_J2_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_plasticity == PLASTICITY_J2_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef HDF
allocate(plastic_j2_Output2(maxNinstance))
allocate(outID(maxNinstance))
#endif
allocate(plastic_j2_sizePostResults(maxNinstance), source=0_pInt)
allocate(plastic_j2_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(plastic_j2_output(maxval(phase_Noutput), maxNinstance))
plastic_j2_output = ''
allocate(plastic_j2_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(plastic_j2_Noutput(maxNinstance), source=0_pInt)
allocate(plastic_j2_fTaylor(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tau0(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_gdot0(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_n(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_h0(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_a(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_aTolResistance(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_aTolShear (maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
allocate(plastic_j2_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_J2_ID) then
instance = phase_plasticityInstance(phase)
endif
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_J2_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('flowstress')
plastic_j2_Noutput(instance) = plastic_j2_Noutput(instance) + 1_pInt
plastic_j2_outputID(plastic_j2_Noutput(instance),instance) = flowstress_ID
plastic_j2_output(plastic_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case ('strainrate')
plastic_j2_Noutput(instance) = plastic_j2_Noutput(instance) + 1_pInt
plastic_j2_outputID(plastic_j2_Noutput(instance),instance) = strainrate_ID
plastic_j2_output(plastic_j2_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
case default
end select
case ('tau0')
plastic_j2_tau0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_tau0(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('gdot0')
plastic_j2_gdot0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_gdot0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('n')
plastic_j2_n(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_n(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('h0')
plastic_j2_h0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('h0_slope','slopelnrate')
plastic_j2_h0_slopeLnRate(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat')
plastic_j2_tausat(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_tausat(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('tausat_sinhfita')
plastic_j2_tausat_SinhFitA(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitb')
plastic_j2_tausat_SinhFitB(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitc')
plastic_j2_tausat_SinhFitC(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitd')
plastic_j2_tausat_SinhFitD(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('a', 'w0')
plastic_j2_a(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_a(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('taylorfactor')
plastic_j2_fTaylor(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_fTaylor(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('atol_resistance')
plastic_j2_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_j2_aTolResistance(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')')
case ('atol_shear')
plastic_j2_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt)
case default
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
myPhase: if (phase_plasticity(phase) == PLASTICITY_j2_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_plasticityInstance(phase)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (plastic_j2_aTolShear(instance) <= 0.0_pReal) &
plastic_j2_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_j2_Noutput(instance)
select case(plastic_j2_outputID(o,instance))
case(flowstress_ID,strainrate_ID)
mySize = 1_pInt
case default
end select
outputFound: if (mySize > 0_pInt) then
plastic_j2_sizePostResult(o,instance) = mySize
plastic_j2_sizePostResults(instance) = &
plastic_j2_sizePostResults(instance) + mySize
endif outputFound
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! allocate state arrays
sizeState = 2_pInt
sizeDotState = sizeState
sizeDeltaState = 0_pInt
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = plastic_j2_sizePostResults(instance)
plasticState(phase)%nSlip = 1
plasticState(phase)%nTwin = 0
plasticState(phase)%nTrans= 0
allocate(plasticState(phase)%aTolState ( sizeState))
plasticState(phase)%aTolState(1) = plastic_j2_aTolResistance(instance)
plasticState(phase)%aTolState(2) = plastic_j2_aTolShear(instance)
allocate(plasticState(phase)%state0 ( sizeState,NofMyPhase))
plasticState(phase)%state0(1,1:NofMyPhase) = plastic_j2_tau0(instance)
plasticState(phase)%state0(2,1:NofMyPhase) = 0.0_pReal
allocate(plasticState(phase)%partionedState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%subState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase),source=0.0_pReal)
if (.not. analyticJaco) then
allocate(plasticState(phase)%state_backup ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NofMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NofMyPhase)
endif myPhase
enddo initializeInstances
end subroutine plastic_j2_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_j2_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = plastic_j2_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_dev / (plastic_j2_fTaylor(instance) * &
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) &
**plastic_j2_n(instance)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/plastic_j2_fTaylor(instance)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (plastic_j2_n(instance)-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / plastic_j2_fTaylor(instance) * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine plastic_j2_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_j2_dotState(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation resistance
norm_Tstar_dev !< euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of deviatoric part of 2nd Piola-Kirchhoff stress
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = plastic_j2_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!-----------------------------------------------------------------------------------
(plastic_j2_fTaylor(instance)*plasticState(ph)%state(1,of)) )**plastic_j2_n(instance)
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (abs(plastic_j2_tausat_SinhFitA(instance)) <= tiny(0.0_pReal)) then
saturation = plastic_j2_tausat(instance)
else
saturation = ( plastic_j2_tausat(instance) &
+ ( log( ( gamma_dot / plastic_j2_tausat_SinhFitA(instance)&
)**(1.0_pReal / plastic_j2_tausat_SinhFitD(instance))&
+ sqrt( ( gamma_dot / plastic_j2_tausat_SinhFitA(instance) &
)**(2.0_pReal / plastic_j2_tausat_SinhFitD(instance)) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / plastic_j2_tausat_SinhFitC(instance)) &
/ ( plastic_j2_tausat_SinhFitB(instance) &
* (gamma_dot / plastic_j2_gdot0(instance))**(1.0_pReal / plastic_j2_n(instance)) &
) &
)
endif
hardening = ( plastic_j2_h0(instance) + plastic_j2_h0_slopeLnRate(instance) * log(gamma_dot) ) &
* abs( 1.0_pReal - plasticState(ph)%state(1,of)/saturation )**plastic_j2_a(instance) &
* sign(1.0_pReal, 1.0_pReal - plasticState(ph)%state(1,of)/saturation)
else
hardening = 0.0_pReal
endif
plasticState(ph)%dotState(1,of) = hardening * gamma_dot
plasticState(ph)%dotState(2,of) = gamma_dot
end subroutine plastic_j2_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_j2_postResults(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
material_phase, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(plastic_j2_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
plastic_j2_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v ! deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_dev ! euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph, & !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
c, &
o
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! calculate deviatoric part of 2nd Piola-Kirchhoff stress and its norm
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
c = 0_pInt
plastic_j2_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,plastic_j2_Noutput(instance)
select case(plastic_j2_outputID(o,instance))
case (flowstress_ID)
plastic_j2_postResults(c+1_pInt) = plasticState(ph)%state(1,of)
c = c + 1_pInt
case (strainrate_ID)
plastic_j2_postResults(c+1_pInt) = &
plastic_j2_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
/ &!----------------------------------------------------------------------------------
(plastic_j2_fTaylor(instance) * plasticState(ph)%state(1,of)) ) ** plastic_j2_n(instance)
c = c + 1_pInt
end select
enddo outputsLoop
end function plastic_j2_postResults
end module plastic_j2

View File

@ -3,7 +3,7 @@
# Kuo, J. C., Mikrostrukturmechanik von Bikristallen mit Kippkorngrenzen. Shaker-Verlag 2004. http://edoc.mpg.de/204079
elasticity hooke
plasticity j2
plasticity isotropic
(output) flowstress
(output) strainrate

File diff suppressed because it is too large Load Diff

View File

@ -36,7 +36,7 @@ parser.add_option('--no-volume','-v',
dest = 'volume',
action = 'store_false',
help = 'omit volume mismatch')
parser.set_defaults(coords = 'ipinitialcoord',
parser.set_defaults(coords = 'pos',
defgrad = 'f',
shape = True,
volume = True,

View File

@ -76,9 +76,9 @@ for name in filenames:
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray(options.coords)
table.data_readArray()
coords = [np.unique(table.data[:,i]) for i in xrange(3)]
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i')

View File

@ -1003,7 +1003,8 @@ fileOpen = False
assembleHeader = True
header = []
standard = ['inc'] + \
['time'] if options.time else [] + \
{True: ['time'],
False:[]}[options.time] + \
['elem','node','ip','grain','1_pos','2_pos','3_pos']
# --------------------------- loop over positions --------------------------------

View File

@ -38,7 +38,7 @@ parser.set_defaults(coords = 'pos',
if filenames == []: filenames = [None]
for name in filenames:
isGeom = name.endswith('.geom')
isGeom = name is not None and name.endswith('.geom')
try: table = damask.ASCIItable(name = name,
buffered = False,
labeled = not isGeom,