use consistent "shape" keyword when shape not clear from input data
This commit is contained in:
parent
a925a99f43
commit
378b8b2396
|
@ -1011,7 +1011,7 @@ class Rotation:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_ODF(weights: np.ndarray,
|
def from_ODF(weights: np.ndarray,
|
||||||
phi: np.ndarray,
|
phi: np.ndarray,
|
||||||
N: int = 500,
|
shape: Tuple[int, ...] = None,
|
||||||
degrees: bool = True,
|
degrees: bool = True,
|
||||||
fractions: bool = True,
|
fractions: bool = True,
|
||||||
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
||||||
|
@ -1024,9 +1024,9 @@ class Rotation:
|
||||||
Texture intensity values (probability density or volume fraction) at Euler space grid points.
|
Texture intensity values (probability density or volume fraction) at Euler space grid points.
|
||||||
phi : numpy.ndarray, shape (n,3)
|
phi : numpy.ndarray, shape (n,3)
|
||||||
Grid coordinates in Euler space at which weights are defined.
|
Grid coordinates in Euler space at which weights are defined.
|
||||||
N : integer, optional
|
shape : tuple of ints, optional
|
||||||
Number of discrete orientations to be sampled from the given ODF.
|
Shape of the array of discrete rotations sampled from the given ODF.
|
||||||
Defaults to 500.
|
Defaults to None, which gives a single rotation.
|
||||||
degrees : bool, optional
|
degrees : bool, optional
|
||||||
Euler space grid coordinates are in degrees. Defaults to True.
|
Euler space grid coordinates are in degrees. Defaults to True.
|
||||||
fractions : bool, optional
|
fractions : bool, optional
|
||||||
|
@ -1038,7 +1038,7 @@ class Rotation:
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
samples : damask.Rotation, shape (N)
|
samples : damask.Rotation
|
||||||
Array of sampled rotations that approximate the input ODF.
|
Array of sampled rotations that approximate the input ODF.
|
||||||
|
|
||||||
Notes
|
Notes
|
||||||
|
@ -1063,13 +1063,14 @@ class Rotation:
|
||||||
dg = 1.0 if fractions else _dg(phi,degrees)
|
dg = 1.0 if fractions else _dg(phi,degrees)
|
||||||
dV_V = dg * np.maximum(0.0,weights.squeeze())
|
dV_V = dg * np.maximum(0.0,weights.squeeze())
|
||||||
|
|
||||||
return Rotation.from_Euler_angles(phi[util.hybrid_IA(dV_V,N,rng_seed)],degrees)
|
N = 1 if shape is None else np.prod(shape)
|
||||||
|
return Rotation.from_Euler_angles(phi[util.hybrid_IA(dV_V,N,rng_seed)],degrees).reshape((-1,) if shape is None else shape)
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_spherical_component(center: 'Rotation',
|
def from_spherical_component(center: 'Rotation',
|
||||||
sigma: float,
|
sigma: float,
|
||||||
N: int = 500,
|
shape: Tuple[int, ...] = None,
|
||||||
degrees: bool = True,
|
degrees: bool = True,
|
||||||
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
rng_seed: NumpyRngSeed = None) -> 'Rotation':
|
||||||
"""
|
"""
|
||||||
|
@ -1081,8 +1082,9 @@ class Rotation:
|
||||||
Central Rotation.
|
Central Rotation.
|
||||||
sigma : float
|
sigma : float
|
||||||
Standard deviation of (Gaussian) misorientation distribution.
|
Standard deviation of (Gaussian) misorientation distribution.
|
||||||
N : int, optional
|
shape : tuple of ints, optional
|
||||||
Number of samples. Defaults to 500.
|
Shape of the array of sampled rotations.
|
||||||
|
Defaults to None, which gives a single rotation.
|
||||||
degrees : bool, optional
|
degrees : bool, optional
|
||||||
sigma is given in degrees. Defaults to True.
|
sigma is given in degrees. Defaults to True.
|
||||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||||
|
@ -1092,20 +1094,21 @@ class Rotation:
|
||||||
"""
|
"""
|
||||||
rng = np.random.default_rng(rng_seed)
|
rng = np.random.default_rng(rng_seed)
|
||||||
sigma = np.radians(sigma) if degrees else sigma
|
sigma = np.radians(sigma) if degrees else sigma
|
||||||
|
N = 1 if shape is None else np.prod(shape)
|
||||||
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
|
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
|
||||||
omega = abs(rng.normal(scale=sigma,size=N))
|
omega = abs(rng.normal(scale=sigma,size=N))
|
||||||
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
|
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
|
||||||
np.sqrt(1-u**2)*np.sin(Theta),
|
np.sqrt(1-u**2)*np.sin(Theta),
|
||||||
u, omega])
|
u, omega])
|
||||||
|
|
||||||
return Rotation.from_axis_angle(p) * center
|
return Rotation.from_axis_angle(p).reshape((-1,) if shape is None else shape) * center
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_fiber_component(alpha: IntSequence,
|
def from_fiber_component(alpha: IntSequence,
|
||||||
beta: IntSequence,
|
beta: IntSequence,
|
||||||
sigma: float = 0.0,
|
sigma: float = 0.0,
|
||||||
N: int = 500,
|
shape: Tuple[int, ...] = None,
|
||||||
degrees: bool = True,
|
degrees: bool = True,
|
||||||
rng_seed: NumpyRngSeed = None):
|
rng_seed: NumpyRngSeed = None):
|
||||||
"""
|
"""
|
||||||
|
@ -1120,8 +1123,9 @@ class Rotation:
|
||||||
sigma : float, optional
|
sigma : float, optional
|
||||||
Standard deviation of (Gaussian) misorientation distribution.
|
Standard deviation of (Gaussian) misorientation distribution.
|
||||||
Defaults to 0.
|
Defaults to 0.
|
||||||
N : int, optional
|
shape : tuple of ints, optional
|
||||||
Number of samples. Defaults to 500.
|
Shape of the array of sampled rotations.
|
||||||
|
Defaults to None, which gives a single rotation.
|
||||||
degrees : bool, optional
|
degrees : bool, optional
|
||||||
sigma, alpha, and beta are given in degrees.
|
sigma, alpha, and beta are given in degrees.
|
||||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||||
|
@ -1139,6 +1143,7 @@ class Rotation:
|
||||||
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
|
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
|
||||||
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame
|
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame
|
||||||
|
|
||||||
|
N = 1 if shape is None else np.prod(shape)
|
||||||
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
|
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
|
||||||
omega = abs(rng.normal(scale=sigma_,size=N))
|
omega = abs(rng.normal(scale=sigma_,size=N))
|
||||||
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
|
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
|
||||||
|
@ -1148,9 +1153,9 @@ class Rotation:
|
||||||
f = np.column_stack((np.broadcast_to(d_lab,(N,3)),rng.random(N)*np.pi))
|
f = np.column_stack((np.broadcast_to(d_lab,(N,3)),rng.random(N)*np.pi))
|
||||||
f[::2,:3] *= -1 # flip half the rotation axes to negative sense
|
f[::2,:3] *= -1 # flip half the rotation axes to negative sense
|
||||||
|
|
||||||
return R_align.broadcast_to(N) \
|
return (R_align.broadcast_to(N)
|
||||||
* Rotation.from_axis_angle(p,normalize=True) \
|
* Rotation.from_axis_angle(p,normalize=True)
|
||||||
* Rotation.from_axis_angle(f)
|
* Rotation.from_axis_angle(f)).reshape((-1,) if shape is None else shape)
|
||||||
|
|
||||||
|
|
||||||
####################################################################################################
|
####################################################################################################
|
||||||
|
|
|
@ -146,14 +146,14 @@ class TestOrientation:
|
||||||
|
|
||||||
def test_from_spherical_component(self):
|
def test_from_spherical_component(self):
|
||||||
assert np.all(Orientation.from_spherical_component(center=Rotation(),
|
assert np.all(Orientation.from_spherical_component(center=Rotation(),
|
||||||
sigma=0.0,N=1,family='triclinic').as_matrix()
|
sigma=0.0,shape=1,family='triclinic').as_matrix()
|
||||||
== np.eye(3))
|
== np.eye(3))
|
||||||
|
|
||||||
def test_from_fiber_component(self):
|
def test_from_fiber_component(self):
|
||||||
r = Rotation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
|
r = Rotation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
|
||||||
sigma=0.0,N=1,rng_seed=0)
|
sigma=0.0,shape=1,rng_seed=0)
|
||||||
assert np.all(Orientation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
|
assert np.all(Orientation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
|
||||||
sigma=0.0,N=1,rng_seed=0,family='triclinic').quaternion
|
sigma=0.0,shape=None,rng_seed=0,family='triclinic').quaternion
|
||||||
== r.quaternion)
|
== r.quaternion)
|
||||||
|
|
||||||
@pytest.mark.parametrize('kwargs',[
|
@pytest.mark.parametrize('kwargs',[
|
||||||
|
|
|
@ -6,6 +6,7 @@ from damask import Rotation
|
||||||
from damask import Table
|
from damask import Table
|
||||||
from damask import _rotation
|
from damask import _rotation
|
||||||
from damask import grid_filters
|
from damask import grid_filters
|
||||||
|
from damask import util
|
||||||
|
|
||||||
n = 1000
|
n = 1000
|
||||||
atol=1.e-4
|
atol=1.e-4
|
||||||
|
@ -1055,12 +1056,12 @@ class TestRotation:
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize('sigma',[5,10,15,20])
|
@pytest.mark.parametrize('sigma',[5,10,15,20])
|
||||||
@pytest.mark.parametrize('N',[1000,10000,100000])
|
@pytest.mark.parametrize('shape',[1000,10000,100000,(10,100)])
|
||||||
def test_spherical_component(self,N,sigma):
|
def test_spherical_component(self,sigma,shape):
|
||||||
p = []
|
p = []
|
||||||
for run in range(5):
|
for run in range(5):
|
||||||
c = Rotation.from_random()
|
c = Rotation.from_random()
|
||||||
o = Rotation.from_spherical_component(c,sigma,N)
|
o = Rotation.from_spherical_component(c,sigma,shape)
|
||||||
_, angles = c.misorientation(o).as_axis_angle(pair=True,degrees=True)
|
_, angles = c.misorientation(o).as_axis_angle(pair=True,degrees=True)
|
||||||
angles[::2] *= -1 # flip angle for every second to symmetrize distribution
|
angles[::2] *= -1 # flip angle for every second to symmetrize distribution
|
||||||
|
|
||||||
|
@ -1072,8 +1073,8 @@ class TestRotation:
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize('sigma',[5,10,15,20])
|
@pytest.mark.parametrize('sigma',[5,10,15,20])
|
||||||
@pytest.mark.parametrize('N',[1000,10000,100000])
|
@pytest.mark.parametrize('shape',[1000,10000,100000,(10,100)])
|
||||||
def test_from_fiber_component(self,N,sigma):
|
def test_from_fiber_component(self,sigma,shape):
|
||||||
p = []
|
p = []
|
||||||
for run in range(5):
|
for run in range(5):
|
||||||
alpha = np.random.random()*2*np.pi,np.arccos(np.random.random())
|
alpha = np.random.random()*2*np.pi,np.arccos(np.random.random())
|
||||||
|
@ -1084,9 +1085,9 @@ class TestRotation:
|
||||||
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
|
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
|
||||||
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
|
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
|
||||||
|
|
||||||
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False)
|
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),shape,False)
|
||||||
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1))
|
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,tuple(util.aslist(shape))+(3,)),n@f_in_S),-1,1))
|
||||||
dist = np.array(angles) * (np.random.randint(0,2,N)*2-1)
|
dist = np.array(angles) * (np.random.randint(0,2,util.aslist(shape))*2-1)
|
||||||
|
|
||||||
p.append(stats.normaltest(dist)[1])
|
p.append(stats.normaltest(dist)[1])
|
||||||
|
|
||||||
|
@ -1097,8 +1098,8 @@ class TestRotation:
|
||||||
|
|
||||||
@pytest.mark.parametrize('fractions',[True,False])
|
@pytest.mark.parametrize('fractions',[True,False])
|
||||||
@pytest.mark.parametrize('degrees',[True,False])
|
@pytest.mark.parametrize('degrees',[True,False])
|
||||||
@pytest.mark.parametrize('N',[2**13,2**14,2**15])
|
@pytest.mark.parametrize('shape',[2**13,2**14,2**15,(2**8,2**6)])
|
||||||
def test_ODF_cell(self,ref_path,fractions,degrees,N):
|
def test_ODF_cell(self,ref_path,fractions,degrees,shape):
|
||||||
steps = np.array([144,36,36])
|
steps = np.array([144,36,36])
|
||||||
limits = np.array([360.,90.,90.])
|
limits = np.array([360.,90.,90.])
|
||||||
rng = tuple(zip(np.zeros(3),limits))
|
rng = tuple(zip(np.zeros(3),limits))
|
||||||
|
@ -1107,14 +1108,14 @@ class TestRotation:
|
||||||
Eulers = grid_filters.coordinates0_point(steps,limits)
|
Eulers = grid_filters.coordinates0_point(steps,limits)
|
||||||
Eulers = np.radians(Eulers) if not degrees else Eulers
|
Eulers = np.radians(Eulers) if not degrees else Eulers
|
||||||
|
|
||||||
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees,fractions).as_Euler_angles(True)
|
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),shape,degrees,fractions).as_Euler_angles(True)
|
||||||
weights_r = np.histogramdd(Eulers_r,steps,rng)[0].flatten(order='F')/N * np.sum(weights)
|
weights_r = np.histogramdd(Eulers_r.reshape(-1,3),steps,rng)[0].flatten(order='F')/np.prod(shape) * np.sum(weights)
|
||||||
|
|
||||||
if fractions: assert np.sqrt(((weights_r - weights) ** 2).mean()) < 4
|
if fractions: assert np.sqrt(((weights_r - weights) ** 2).mean()) < 4
|
||||||
|
|
||||||
@pytest.mark.parametrize('degrees',[True,False])
|
@pytest.mark.parametrize('degrees',[True,False])
|
||||||
@pytest.mark.parametrize('N',[2**13,2**14,2**15])
|
@pytest.mark.parametrize('shape',[2**13,2**14,2**15,(2**8,2**6)])
|
||||||
def test_ODF_node(self,ref_path,degrees,N):
|
def test_ODF_node(self,ref_path,degrees,shape):
|
||||||
steps = np.array([144,36,36])
|
steps = np.array([144,36,36])
|
||||||
limits = np.array([360.,90.,90.])
|
limits = np.array([360.,90.,90.])
|
||||||
rng = tuple(zip(-limits/steps*.5,limits-limits/steps*.5))
|
rng = tuple(zip(-limits/steps*.5,limits-limits/steps*.5))
|
||||||
|
@ -1125,8 +1126,8 @@ class TestRotation:
|
||||||
Eulers = grid_filters.coordinates0_node(steps,limits)[:-1,:-1,:-1]
|
Eulers = grid_filters.coordinates0_node(steps,limits)[:-1,:-1,:-1]
|
||||||
Eulers = np.radians(Eulers) if not degrees else Eulers
|
Eulers = np.radians(Eulers) if not degrees else Eulers
|
||||||
|
|
||||||
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees).as_Euler_angles(True)
|
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),shape,degrees).as_Euler_angles(True)
|
||||||
weights_r = np.histogramdd(Eulers_r,steps,rng)[0].flatten(order='F')/N * np.sum(weights)
|
weights_r = np.histogramdd(Eulers_r.reshape(-1,3),steps,rng)[0].flatten(order='F')/np.prod(shape) * np.sum(weights)
|
||||||
|
|
||||||
assert np.sqrt(((weights_r - weights) ** 2).mean()) < 5
|
assert np.sqrt(((weights_r - weights) ** 2).mean()) < 5
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue