using full precision

This commit is contained in:
Martin Diehl 2018-10-07 18:18:24 +02:00
parent a53488d666
commit 34e0aca564
1 changed files with 36 additions and 36 deletions

View File

@ -1182,12 +1182,12 @@ module lattice
real(pReal), dimension(4,36), parameter, private :: &
lattice_symOperations = reshape([&
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, & ! 2-fold symmetry
0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, &
0.0_pReal, -0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), & ! 2-fold symmetry
0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), -1.0_pReal/sqrt(2.0_pReal), &
0.0_pReal, -1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), -1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
@ -1196,27 +1196,27 @@ real(pReal), dimension(4,36), parameter, private :: &
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
-0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, &
0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
-1.0_pReal/sqrt(2.0_pReal), 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, &
1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
-0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
-1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, &
1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
-0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
-1.0_pReal/sqrt(2.0_pReal), 0.0_pReal, 0.0_pReal, 1.0_pReal/sqrt(2.0_pReal), &
!
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
0.0_pReal, 0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
0.0_pReal, -0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
0.0_pReal, 0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
0.0_pReal, -0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
-0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, &
0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
-0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
0.0_pReal, 0.5_pReal, 2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, &
0.0_pReal, -0.5_pReal, 2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, &
0.0_pReal, 2.0_pReal/sqrt(3.0_pReal), 0.5_pReal, 0.0_pReal, &
0.0_pReal, -2.0_pReal/sqrt(3.0_pReal), 0.5_pReal, 0.0_pReal, &
2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
-2.0_pReal/sqrt(3.0_pReal), 0.0_pReal, 0.0_pReal, 0.5_pReal, &
0.5_pReal, 0.0_pReal, 0.0_pReal, 2.0_pReal/sqrt(3.0_pReal), &
-0.5_pReal, 0.0_pReal, 0.0_pReal, 2.0_pReal/sqrt(3.0_pReal), &
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
],[4,36]) !< Symmetry operations as quaternions 24 for cubic, 12 for hexagonal = 36