IP volume is trivial for spectral solver
This commit is contained in:
parent
0ad3814f24
commit
344e6ca51a
|
@ -127,7 +127,6 @@ integer(pInt), dimension(:,:), allocatable, private :: &
|
|||
mesh_spectral_build_elements, &
|
||||
mesh_spectral_build_ipNeighborhood, &
|
||||
mesh_build_cellnodes, &
|
||||
mesh_build_ipVolumes, &
|
||||
mesh_build_ipCoordinates
|
||||
|
||||
type, public, extends(tMesh) :: tMesh_grid
|
||||
|
@ -190,7 +189,7 @@ subroutine mesh_init(ip,el)
|
|||
implicit none
|
||||
include 'fftw3-mpi.f03'
|
||||
integer(C_INTPTR_T) :: devNull, local_K, local_K_offset
|
||||
integer :: ierr, worldsize
|
||||
integer :: ierr, worldsize, i
|
||||
integer(pInt), intent(in), optional :: el, ip
|
||||
integer(pInt) :: j
|
||||
logical :: myDebug
|
||||
|
@ -244,7 +243,7 @@ subroutine mesh_init(ip,el)
|
|||
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
|
||||
call mesh_build_ipCoordinates
|
||||
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
|
||||
call mesh_build_ipVolumes
|
||||
allocate(mesh_ipVolume(1,theMesh%nElems),source=product([geomSize(1:2),size3]/real([grid(1:2),grid3])))
|
||||
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
|
||||
call mesh_build_ipAreas
|
||||
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
|
||||
|
@ -508,7 +507,7 @@ subroutine mesh_spectral_build_ipNeighborhood
|
|||
integer(pInt) :: &
|
||||
x,y,z, &
|
||||
e
|
||||
allocate(mesh_ipNeighborhood(3,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems),source=0_pInt)
|
||||
allocate(mesh_ipNeighborhood(3,6,1,theMesh%nElems),source=0_pInt)
|
||||
|
||||
e = 0_pInt
|
||||
do z = 0_pInt,grid3-1_pInt
|
||||
|
@ -768,75 +767,6 @@ function mesh_build_cellnodes(nodes,Ncellnodes)
|
|||
end function mesh_build_cellnodes
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
|
||||
!> @details The IP volume is calculated differently depending on the cell type.
|
||||
!> 2D cells assume an element depth of one in order to calculate the volume.
|
||||
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
|
||||
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
|
||||
!> calculated as an average of four tetrahedals with three corners on the cell face
|
||||
!> and one corner at the central ip.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine mesh_build_ipVolumes
|
||||
use math, only: &
|
||||
math_volTetrahedron, &
|
||||
math_areaTriangle
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: e,t,g,c,i,m,f,n
|
||||
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
|
||||
|
||||
|
||||
allocate(mesh_ipVolume(theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
|
||||
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
|
||||
do e = 1_pInt,theMesh%nElems ! loop over cpElems
|
||||
select case (theMesh%elem%cellType)
|
||||
|
||||
case (1_pInt) ! 2D 3node
|
||||
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(3,i,e)))
|
||||
|
||||
case (2_pInt) ! 2D 4node
|
||||
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
|
||||
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
|
||||
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(1,i,e)))
|
||||
|
||||
case (3_pInt) ! 3D 4node
|
||||
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
|
||||
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(4,i,e)))
|
||||
|
||||
case (4_pInt)
|
||||
c = theMesh%elem%cellType ! 3D 8node
|
||||
m = FE_NcellnodesPerCellface(c)
|
||||
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
|
||||
subvolume = 0.0_pReal
|
||||
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
||||
subvolume(n,f) = math_volTetrahedron(&
|
||||
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
|
||||
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
|
||||
mesh_ipCoordinates(1:3,i,e))
|
||||
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
|
||||
enddo
|
||||
|
||||
end select
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
end subroutine mesh_build_ipVolumes
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
|
||||
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
|
||||
|
@ -855,7 +785,6 @@ subroutine mesh_build_ipCoordinates
|
|||
integer(pInt) :: e,c,i,n
|
||||
real(pReal), dimension(3) :: myCoords
|
||||
|
||||
if (.not. allocated(mesh_ipCoordinates)) &
|
||||
allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(c,myCoords)
|
||||
|
|
Loading…
Reference in New Issue