IP volume is trivial for spectral solver

This commit is contained in:
Martin Diehl 2019-05-12 23:56:44 +02:00
parent 0ad3814f24
commit 344e6ca51a
1 changed files with 4 additions and 75 deletions

View File

@ -127,7 +127,6 @@ integer(pInt), dimension(:,:), allocatable, private :: &
mesh_spectral_build_elements, &
mesh_spectral_build_ipNeighborhood, &
mesh_build_cellnodes, &
mesh_build_ipVolumes, &
mesh_build_ipCoordinates
type, public, extends(tMesh) :: tMesh_grid
@ -190,7 +189,7 @@ subroutine mesh_init(ip,el)
implicit none
include 'fftw3-mpi.f03'
integer(C_INTPTR_T) :: devNull, local_K, local_K_offset
integer :: ierr, worldsize
integer :: ierr, worldsize, i
integer(pInt), intent(in), optional :: el, ip
integer(pInt) :: j
logical :: myDebug
@ -244,7 +243,7 @@ subroutine mesh_init(ip,el)
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
call mesh_build_ipCoordinates
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
call mesh_build_ipVolumes
allocate(mesh_ipVolume(1,theMesh%nElems),source=product([geomSize(1:2),size3]/real([grid(1:2),grid3])))
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
call mesh_build_ipAreas
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
@ -508,7 +507,7 @@ subroutine mesh_spectral_build_ipNeighborhood
integer(pInt) :: &
x,y,z, &
e
allocate(mesh_ipNeighborhood(3,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems),source=0_pInt)
allocate(mesh_ipNeighborhood(3,6,1,theMesh%nElems),source=0_pInt)
e = 0_pInt
do z = 0_pInt,grid3-1_pInt
@ -768,75 +767,6 @@ function mesh_build_cellnodes(nodes,Ncellnodes)
end function mesh_build_cellnodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of one in order to calculate the volume.
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
!> calculated as an average of four tetrahedals with three corners on the cell face
!> and one corner at the central ip.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipVolumes
use math, only: &
math_volTetrahedron, &
math_areaTriangle
implicit none
integer(pInt) :: e,t,g,c,i,m,f,n
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
allocate(mesh_ipVolume(theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
do e = 1_pInt,theMesh%nElems ! loop over cpElems
select case (theMesh%elem%cellType)
case (1_pInt) ! 2D 3node
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)))
case (2_pInt) ! 2D 4node
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
mesh_cellnode(1:3,mesh_cell(1,i,e)))
case (3_pInt) ! 3D 4node
forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)))
case (4_pInt)
c = theMesh%elem%cellType ! 3D 8node
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element
subvolume = 0.0_pReal
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
subvolume(n,f) = math_volTetrahedron(&
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
mesh_ipCoordinates(1:3,i,e))
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipVolumes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
@ -855,7 +785,6 @@ subroutine mesh_build_ipCoordinates
integer(pInt) :: e,c,i,n
real(pReal), dimension(3) :: myCoords
if (.not. allocated(mesh_ipCoordinates)) &
allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(c,myCoords)