storing data per slip system simplifies calculation

This commit is contained in:
Martin Diehl 2018-08-31 13:14:16 +02:00
parent c9bb051261
commit 3431086fdb
1 changed files with 26 additions and 23 deletions

View File

@ -111,7 +111,8 @@ module plastic_dislotwin
p, & !< p-exponent in glide velocity p, & !< p-exponent in glide velocity
q, & !< q-exponent in glide velocity q, & !< q-exponent in glide velocity
r, & !< r-exponent in twin nucleation rate r, & !< r-exponent in twin nucleation rate
s !< s-exponent in trans nucleation rate s, & !< s-exponent in trans nucleation rate
shear_twin !< characteristic shear for twins
real(pReal), dimension(:,:), allocatable, private :: & real(pReal), dimension(:,:), allocatable, private :: &
interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance
interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance
@ -576,6 +577,8 @@ subroutine plastic_dislotwin_init(fileUnit)
prm%qShearBand <= 0.0_pReal) & prm%qShearBand <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')') call IO_error(211_pInt,el=instance,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')')
prm%p = math_expand(prm%p,prm%Nslip)
prm%q = math_expand(prm%q,prm%Nslip)
enddo enddo
allocate(forestProjectionEdge(prm%totalNslip,prm%totalNslip,maxNinstance), source=0.0_pReal) allocate(forestProjectionEdge(prm%totalNslip,prm%totalNslip,maxNinstance), source=0.0_pReal)
@ -1259,8 +1262,8 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
!* Stress ratios !* Stress ratios
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/& stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+prm%tau_peierlsPerSlipFamily(f))) (prm%SolidSolutionStrength+prm%tau_peierlsPerSlipFamily(f)))
StressRatio_p = stressRatio** prm%p(f) StressRatio_p = stressRatio** prm%p(j)
StressRatio_pminus1 = stressRatio**(prm%p(f)-1.0_pReal) StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
@ -1270,15 +1273,15 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
!* Shear rates due to slip !* Shear rates due to slip
gdot_slip(j) = DotGamma0 & gdot_slip(j) = DotGamma0 &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(f)) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q(j)) &
* sign(1.0_pReal,tau_slip(j)) * sign(1.0_pReal,tau_slip(j))
!* Derivatives of shear rates !* Derivatives of shear rates
dgdot_dtauslip(j) = & dgdot_dtauslip(j) = &
abs(gdot_slip(j))*BoltzmannRatio*prm%p(f)& abs(gdot_slip(j))*BoltzmannRatio*prm%p(j)&
*prm%q(f)/& *prm%q(j)/&
(prm%SolidSolutionStrength+prm%tau_peierlsPerSlipFamily(f))*& (prm%SolidSolutionStrength+prm%tau_peierlsPerSlipFamily(f))*&
StressRatio_pminus1*(1-StressRatio_p)**(prm%q(f)-1.0_pReal) StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal)
endif endif
!* Plastic velocity gradient for dislocation glide !* Plastic velocity gradient for dislocation glide
@ -1560,8 +1563,8 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
!* Stress ratios !* Stress ratios
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/& stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+prm%tau_peierlsPerSlipFamily(f))) (prm%SolidSolutionStrength+prm%tau_peierlsPerSlipFamily(f)))
StressRatio_p = stressRatio** prm%p(f) StressRatio_p = stressRatio** prm%p(j)
StressRatio_pminus1 = stressRatio**(prm%p(f)-1.0_pReal) StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
@ -1569,7 +1572,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
!* Shear rates due to slip !* Shear rates due to slip
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** & gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
prm%q(f))*sign(1.0_pReal,tau_slip(j)) prm%q(j))*sign(1.0_pReal,tau_slip(j))
endif endif
!* Multiplication !* Multiplication
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of)) DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
@ -1810,8 +1813,8 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
stressRatio = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/& stressRatio = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierlsPerSlipFamily(f))) prm%tau_peierlsPerSlipFamily(f)))
StressRatio_p = stressRatio** prm%p(f) StressRatio_p = stressRatio** prm%p(j)
StressRatio_pminus1 = stressRatio**(prm%p(f)-1.0_pReal) StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
@ -1822,7 +1825,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
!* Shear rates due to slip !* Shear rates due to slip
plastic_dislotwin_postResults(c+j) = & plastic_dislotwin_postResults(c+j) = &
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
prm%q(f))*sign(1.0_pReal,tau) prm%q(j))*sign(1.0_pReal,tau)
else else
plastic_dislotwin_postResults(c+j) = 0.0_pReal plastic_dislotwin_postResults(c+j) = 0.0_pReal
endif endif
@ -1915,11 +1918,11 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierlsPerSlipFamily(f)))& prm%tau_peierlsPerSlipFamily(f)))&
**prm%p(f) **prm%p(j)
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierlsPerSlipFamily(f)))& prm%tau_peierlsPerSlipFamily(f)))&
**(prm%p(f)-1.0_pReal) **(prm%p(j)-1.0_pReal)
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
@ -1929,7 +1932,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
!* Shear rates due to slip !* Shear rates due to slip
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
prm%q(f))*sign(1.0_pReal,tau) prm%q(j))*sign(1.0_pReal,tau)
else else
gdot_slip(j) = 0.0_pReal gdot_slip(j) = 0.0_pReal
endif endif
@ -2007,11 +2010,11 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierlsPerSlipFamily(f)))& prm%tau_peierlsPerSlipFamily(f)))&
**prm%p(f) **prm%p(j)
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierlsPerSlipFamily(f)))& prm%tau_peierlsPerSlipFamily(f)))&
**(prm%p(f)-1.0_pReal) **(prm%p(j)-1.0_pReal)
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
@ -2021,15 +2024,15 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
!* Shear rates due to slip !* Shear rates due to slip
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
prm%q(f))*sign(1.0_pReal,tau) prm%q(j))*sign(1.0_pReal,tau)
!* Derivatives of shear rates !* Derivatives of shear rates
dgdot_dtauslip = & dgdot_dtauslip = &
abs(gdot_slip(j))*BoltzmannRatio*prm%p(f)& abs(gdot_slip(j))*BoltzmannRatio*prm%p(j)&
*prm%q(f)/& *prm%q(j)/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierlsPerSlipFamily(f))*& prm%tau_peierlsPerSlipFamily(f))*&
StressRatio_pminus1*(1-StressRatio_p)**(prm%q(f)-1.0_pReal) StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal)
else else
gdot_slip(j) = 0.0_pReal gdot_slip(j) = 0.0_pReal