better readable
This commit is contained in:
parent
34e0dd1c64
commit
32639caec2
|
@ -252,7 +252,7 @@ class DADF5():
|
|||
"""
|
||||
def Cauchy(F,P):
|
||||
sigma = np.einsum('i,ijk,ilk->ijl',1.0/np.linalg.det(F['data']),P['data'],F['data'])
|
||||
sigma = (sigma + np.einsum('ikj',sigma))*0.5 # enforce symmetry
|
||||
sigma = (sigma + np.transpose(sigma,(0,2,1)))*0.5 # enforce symmetry
|
||||
return {
|
||||
'data' : sigma,
|
||||
'label' : 'sigma',
|
||||
|
@ -471,9 +471,9 @@ class DADF5():
|
|||
}
|
||||
|
||||
(U,S,Vh) = np.linalg.svd(defgrad['data']) # singular value decomposition
|
||||
R_inv = np.einsum('ikj',np.matmul(U,Vh)) # inverse rotation of polar decomposition
|
||||
R_inv = np.transpose(np.matmul(U,Vh),(0,2,1)) # transposed rotation of polar decomposition
|
||||
U = np.matmul(R_inv,defgrad['data']) # F = RU
|
||||
(D,V) = np.linalg.eigh((U+np.einsum('ikj',U))*.5) # eigen decomposition (of symmetric(ed) matrix)
|
||||
(D,V) = np.linalg.eigh((U+np.transpose(U,(0,2,1)))*.5) # eigen decomposition (of symmetric(ed) matrix)
|
||||
|
||||
neg = np.where(D < 0.0) # find negative eigenvalues ...
|
||||
D[neg[0],neg[1]] = D[neg[0],neg[1]]* -1 # ... flip value ...
|
||||
|
|
Loading…
Reference in New Issue