added comments (doxygen conform) to phenopowerlaw, added warning on specifying h0_sliptwin as it has no effect
This commit is contained in:
parent
c783aa1265
commit
324dfda5a2
|
@ -1518,6 +1518,8 @@ subroutine IO_warning(warning_ID,e,i,g,ext_msg)
|
|||
msg = 'Found Spectral solver parameter '
|
||||
case (41_pInt)
|
||||
msg = 'Found PETSc solver parameter '
|
||||
case (42_pInt)
|
||||
msg = 'parameter has no effect '
|
||||
case (47_pInt)
|
||||
msg = 'No valid parameter for FFTW given, using FFTW_PATIENT'
|
||||
case (101_pInt)
|
||||
|
|
|
@ -164,7 +164,7 @@ twin_c 0
|
|||
twin_d 0
|
||||
twin_e 0
|
||||
h0_slipslip 75e6
|
||||
h0_sliptwin 0
|
||||
#h0_sliptwin 0 no effect
|
||||
h0_twinslip 0
|
||||
h0_twintwin 0
|
||||
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
|
||||
|
|
|
@ -16,60 +16,13 @@
|
|||
! You should have received a copy of the GNU General Public License
|
||||
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
||||
!
|
||||
!##############################################################
|
||||
!* $Id$
|
||||
!*****************************************************
|
||||
!* Module: CONSTITUTIVE_PHENOPOWERLAW *
|
||||
!*****************************************************
|
||||
!* contains: *
|
||||
!* - constitutive equations *
|
||||
!* - parameters definition *
|
||||
!*****************************************************
|
||||
|
||||
![Alu]
|
||||
!plasticity phenopowerlaw
|
||||
!(output) resistance_slip
|
||||
!(output) shearrate_slip
|
||||
!(output) resolvedstress_slip
|
||||
!(output) totalshear
|
||||
!(output) resistance_twin
|
||||
!(output) shearrate_twin
|
||||
!(output) resolvedstress_twin
|
||||
!(output) totalvolfrac
|
||||
!lattice_structure hex
|
||||
!covera_ratio 1.587
|
||||
!Nslip 3 3 6 12 # per family
|
||||
!Ntwin 6 6 6 6 # per family
|
||||
!
|
||||
!c11 162.2e9
|
||||
!c12 91.8e9
|
||||
!c13 68.8e9
|
||||
!c33 180.5e9
|
||||
!c44 46.7e9
|
||||
!
|
||||
!gdot0_slip 0.001
|
||||
!n_slip 50
|
||||
!tau0_slip 65e6 22e6 52e6 50e6 # per family
|
||||
!tausat_slip 80e6 180e6 140e6 140e6 # per family
|
||||
!a_slip 1
|
||||
!gdot0_twin 0.001
|
||||
!n_twin 50
|
||||
!tau0_twin 52e6 52e6 52e6 52e6 # per family
|
||||
!s_pr 50e6 # push-up stress for slip saturation due to twinning
|
||||
!twin_b 2
|
||||
!twin_C 25
|
||||
!twin_d 0.1
|
||||
!twin_e 0.1
|
||||
!h0_slipslip 10e6
|
||||
!h0_sliptwin 0
|
||||
!h0_twinslip 625e6
|
||||
!h0_twintwin 400e6
|
||||
!interaction_slipslip 5.5 5.5 1.0 52.0 5.5 5.5 1.0 52.0 27.5 0.2 72.8 1.0 72.8 72.8 27.5 1.1 1.4 5.5 7.7 7.7
|
||||
!interaction_sliptwin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
!interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
||||
!interaction_twintwin 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10
|
||||
!relevantResistance 1
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! $Id$
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief phenomenological crystal plasticity formulation using a powerlaw fitting
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
module constitutive_phenopowerlaw
|
||||
|
||||
use prec, only: pReal,pInt
|
||||
|
@ -82,62 +35,63 @@ module constitutive_phenopowerlaw
|
|||
integer(pInt), dimension(:), allocatable, public :: &
|
||||
constitutive_phenopowerlaw_sizeDotState, &
|
||||
constitutive_phenopowerlaw_sizeState, &
|
||||
constitutive_phenopowerlaw_sizePostResults, & ! cumulative size of post results
|
||||
constitutive_phenopowerlaw_sizePostResults, & !< cumulative size of post results
|
||||
constitutive_phenopowerlaw_structure
|
||||
|
||||
integer(pInt), dimension(:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_Noutput, & ! number of outputs per instance of this constitution
|
||||
constitutive_phenopowerlaw_totalNslip, & ! no. of slip system used in simulation
|
||||
constitutive_phenopowerlaw_totalNtwin ! no. of twin system used in simulation
|
||||
constitutive_phenopowerlaw_Noutput, & !< number of outputs per instance of this constitution
|
||||
constitutive_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation
|
||||
constitutive_phenopowerlaw_totalNtwin !< no. of twin system used in simulation
|
||||
|
||||
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
||||
constitutive_phenopowerlaw_sizePostResult ! size of each post result output
|
||||
constitutive_phenopowerlaw_sizePostResult !< size of each post result output
|
||||
|
||||
integer(pInt), dimension(:,:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_Nslip, & ! active number of slip systems per family
|
||||
constitutive_phenopowerlaw_Ntwin ! active number of twin systems per family
|
||||
constitutive_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family)
|
||||
constitutive_phenopowerlaw_Ntwin !< active number of twin systems per family (input parameter, per family)
|
||||
|
||||
character(len=64), dimension(:,:), allocatable, target, public :: &
|
||||
constitutive_phenopowerlaw_output ! name of each post result output
|
||||
constitutive_phenopowerlaw_output !< name of each post result output
|
||||
|
||||
character(len=32), dimension(:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_structureName
|
||||
|
||||
real(pReal), dimension(:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_CoverA, &
|
||||
constitutive_phenopowerlaw_C11, &
|
||||
constitutive_phenopowerlaw_C12, &
|
||||
constitutive_phenopowerlaw_C13, &
|
||||
constitutive_phenopowerlaw_C33, &
|
||||
constitutive_phenopowerlaw_C44, &
|
||||
constitutive_phenopowerlaw_gdot0_slip, &
|
||||
constitutive_phenopowerlaw_n_slip, &
|
||||
constitutive_phenopowerlaw_n_twin, &
|
||||
constitutive_phenopowerlaw_gdot0_twin
|
||||
constitutive_phenopowerlaw_CoverA, & !< c/a of the crystal (input parameter)
|
||||
constitutive_phenopowerlaw_C11, & !< component 11 of the stiffness matrix (input parameter)
|
||||
constitutive_phenopowerlaw_C12, & !< component 12 of the stiffness matrix (input parameter)
|
||||
constitutive_phenopowerlaw_C13, & !< component 13 of the stiffness matrix (input parameter)
|
||||
constitutive_phenopowerlaw_C33, & !< component 33 of the stiffness matrix (input parameter)
|
||||
constitutive_phenopowerlaw_C44, & !< component 44 of the stiffness matrix (input parameter)
|
||||
constitutive_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter)
|
||||
constitutive_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter)
|
||||
constitutive_phenopowerlaw_n_slip, & !< (inverse?) of the stress exponent for slip (input parameter)
|
||||
constitutive_phenopowerlaw_n_twin !< (inverse?) of the stress exponent for twin (input parameter)
|
||||
|
||||
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_tau0_slip, &
|
||||
constitutive_phenopowerlaw_tausat_slip, &
|
||||
constitutive_phenopowerlaw_tau0_twin
|
||||
constitutive_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family)
|
||||
constitutive_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family)
|
||||
constitutive_phenopowerlaw_tausat_slip !< maximum critical shear stress for slip (input parameter, per family)
|
||||
|
||||
real(pReal), dimension(:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_spr, &
|
||||
constitutive_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning
|
||||
constitutive_phenopowerlaw_twinB, &
|
||||
constitutive_phenopowerlaw_twinC, &
|
||||
constitutive_phenopowerlaw_twinD, &
|
||||
constitutive_phenopowerlaw_twinE, &
|
||||
constitutive_phenopowerlaw_h0_slipslip, &
|
||||
constitutive_phenopowerlaw_h0_sliptwin, &
|
||||
constitutive_phenopowerlaw_h0_twinslip, &
|
||||
constitutive_phenopowerlaw_h0_twintwin, &
|
||||
constitutive_phenopowerlaw_h0_slipslip, & !< reference hardening slip - slip (input parameter)
|
||||
constitutive_phenopowerlaw_h0_sliptwin, & !< reference hardening slip - twin (input parameter, no effect at the moment)
|
||||
constitutive_phenopowerlaw_h0_twinslip, & !< reference hardening twin - slip (input parameter)
|
||||
constitutive_phenopowerlaw_h0_twintwin, & !< reference hardening twin - twin (input parameter)
|
||||
constitutive_phenopowerlaw_a_slip, &
|
||||
constitutive_phenopowerlaw_aTolResistance
|
||||
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_interaction_slipslip, &
|
||||
constitutive_phenopowerlaw_interaction_sliptwin, &
|
||||
constitutive_phenopowerlaw_interaction_twinslip, &
|
||||
constitutive_phenopowerlaw_interaction_twintwin
|
||||
constitutive_phenopowerlaw_interaction_slipslip, & !< interaction factors slip - slip (input parameter)
|
||||
constitutive_phenopowerlaw_interaction_sliptwin, & !< interaction factors slip - twin (input parameter)
|
||||
constitutive_phenopowerlaw_interaction_twinslip, & !< interaction factors twin - slip (input parameter)
|
||||
constitutive_phenopowerlaw_interaction_twintwin !< interaction factors twin - twin (input parameter)
|
||||
|
||||
real(pReal), dimension(:,:,:), allocatable, private :: &
|
||||
constitutive_phenopowerlaw_hardeningMatrix_slipslip, &
|
||||
|
@ -160,11 +114,11 @@ module constitutive_phenopowerlaw
|
|||
|
||||
contains
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief reading in parameters from material config and doing consistency checks
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine constitutive_phenopowerlaw_init(myFile)
|
||||
!**************************************
|
||||
!* Module initialization *
|
||||
!**************************************
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
||||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
||||
use math, only: math_Mandel3333to66, &
|
||||
math_Voigt66to3333
|
||||
use IO
|
||||
|
@ -291,101 +245,103 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
rewind(myFile)
|
||||
section = 0_pInt
|
||||
|
||||
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
|
||||
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
|
||||
read(myFile,'(a1024)',END=100) line
|
||||
enddo
|
||||
|
||||
do ! read thru sections of phase part
|
||||
do ! read thru sections of phase part
|
||||
read(myFile,'(a1024)',END=100) line
|
||||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||||
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
||||
if (IO_getTag(line,'[',']') /= '') then ! next section
|
||||
section = section + 1_pInt ! advance section counter
|
||||
cycle ! skip to next line
|
||||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||||
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
||||
if (IO_getTag(line,'[',']') /= '') then ! next section
|
||||
section = section + 1_pInt ! advance section counter
|
||||
cycle ! skip to next line
|
||||
endif
|
||||
if (section > 0_pInt .and. phase_plasticity(section) == constitutive_phenopowerlaw_label) then ! one of my sections
|
||||
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
|
||||
if (section > 0_pInt .and. phase_plasticity(section) == constitutive_phenopowerlaw_label) then ! one of my sections
|
||||
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
|
||||
positions = IO_stringPos(line,maxNchunks)
|
||||
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
||||
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
||||
select case(tag)
|
||||
case ('plasticity','elasticity')
|
||||
cycle
|
||||
case ('(output)')
|
||||
constitutive_phenopowerlaw_Noutput(i) = constitutive_phenopowerlaw_Noutput(i) + 1_pInt
|
||||
constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
||||
constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = &
|
||||
IO_lc(IO_stringValue(line,positions,2_pInt))
|
||||
case ('lattice_structure')
|
||||
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
||||
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
||||
case ('covera_ratio')
|
||||
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('c11')
|
||||
constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('c12')
|
||||
constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('c13')
|
||||
constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('c33')
|
||||
constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('c44')
|
||||
constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('nslip')
|
||||
forall (j = 1_pInt:lattice_maxNslipFamily)&
|
||||
constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNslipFamily)&
|
||||
constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j)
|
||||
case ('gdot0_slip')
|
||||
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('n_slip')
|
||||
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('tau0_slip')
|
||||
forall (j = 1_pInt:lattice_maxNslipFamily)&
|
||||
constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNslipFamily)&
|
||||
constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case ('tausat_slip')
|
||||
forall (j = 1_pInt:lattice_maxNslipFamily)&
|
||||
constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNslipFamily)&
|
||||
constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case ('a_slip', 'w0_slip')
|
||||
constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('ntwin')
|
||||
forall (j = 1_pInt:lattice_maxNtwinFamily)&
|
||||
constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNtwinFamily)&
|
||||
constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j)
|
||||
case ('gdot0_twin')
|
||||
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('n_twin')
|
||||
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('tau0_twin')
|
||||
forall (j = 1_pInt:lattice_maxNtwinFamily)&
|
||||
constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNtwinFamily)&
|
||||
constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case ('s_pr')
|
||||
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('twin_b')
|
||||
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('twin_c')
|
||||
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('twin_d')
|
||||
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('twin_e')
|
||||
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('h0_slipslip')
|
||||
constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('h0_sliptwin')
|
||||
constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
call IO_warning(42_pInt,ext_msg=trim(tag)//' ('//constitutive_phenopowerlaw_label//')')
|
||||
case ('h0_twinslip')
|
||||
constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('h0_twintwin')
|
||||
constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('atol_resistance')
|
||||
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
|
||||
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
|
||||
case ('interaction_slipslip')
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case ('interaction_sliptwin')
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case ('interaction_twinslip')
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case ('interaction_twintwin')
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
forall (j = 1_pInt:lattice_maxNinteraction) &
|
||||
constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
|
||||
case default
|
||||
call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_phenopowerlaw_label//')')
|
||||
call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_phenopowerlaw_label//')')
|
||||
end select
|
||||
endif
|
||||
enddo
|
||||
|
@ -395,13 +351,13 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure
|
||||
constitutive_phenopowerlaw_CoverA(i))
|
||||
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = &
|
||||
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
|
||||
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
|
||||
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i))
|
||||
constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = &
|
||||
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
|
||||
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
|
||||
constitutive_phenopowerlaw_Ntwin(:,i))
|
||||
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
|
||||
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
|
||||
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
|
||||
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
|
||||
|
||||
if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205_pInt,e=i)
|
||||
if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. &
|
||||
|
@ -427,7 +383,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='n_twin (' &
|
||||
//constitutive_phenopowerlaw_label//')')
|
||||
if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) &
|
||||
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
|
||||
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
|
||||
|
||||
enddo
|
||||
|
||||
|
@ -469,7 +425,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
call IO_error(212_pInt,ext_msg=constitutive_phenopowerlaw_output(o,i)//' ('//constitutive_phenopowerlaw_label//')')
|
||||
end select
|
||||
|
||||
if (mySize > 0_pInt) then ! any meaningful output found
|
||||
if (mySize > 0_pInt) then ! any meaningful output found
|
||||
constitutive_phenopowerlaw_sizePostResult(o,i) = mySize
|
||||
constitutive_phenopowerlaw_sizePostResults(i) = &
|
||||
constitutive_phenopowerlaw_sizePostResults(i) + mySize
|
||||
|
@ -483,7 +439,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
|
||||
myStructure = constitutive_phenopowerlaw_structure(i)
|
||||
|
||||
select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor
|
||||
select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor
|
||||
case(1_pInt) ! cubic(s)
|
||||
forall(k=1_pInt:3_pInt)
|
||||
forall(j=1_pInt:3_pInt) &
|
||||
|
@ -509,12 +465,14 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
constitutive_phenopowerlaw_Cslip_66(:,:,i) = &
|
||||
math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i)))
|
||||
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! interaction slip -- X
|
||||
do f = 1_pInt,lattice_maxNslipFamily
|
||||
index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1_pInt,i))
|
||||
do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
|
||||
do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
|
||||
do o = 1_pInt,lattice_maxNslipFamily
|
||||
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i))
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
|
||||
constitutive_phenopowerlaw_hardeningMatrix_slipslip(index_otherFamily+k,index_myFamily+j,i) = &
|
||||
constitutive_phenopowerlaw_interaction_slipslip(lattice_interactionSlipSlip( &
|
||||
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
|
||||
|
@ -524,7 +482,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
|
||||
do o = 1_pInt,lattice_maxNtwinFamily
|
||||
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i))
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
|
||||
constitutive_phenopowerlaw_hardeningMatrix_sliptwin(index_otherFamily+k,index_myFamily+j,i) = &
|
||||
constitutive_phenopowerlaw_interaction_sliptwin(lattice_interactionSlipTwin( &
|
||||
sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, &
|
||||
|
@ -534,13 +492,15 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
|
||||
enddo; enddo
|
||||
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! interaction twin -- X
|
||||
do f = 1_pInt,lattice_maxNtwinFamily
|
||||
index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1_pInt,i))
|
||||
do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
|
||||
do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
|
||||
|
||||
do o = 1_pInt,lattice_maxNslipFamily
|
||||
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i))
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
|
||||
constitutive_phenopowerlaw_hardeningMatrix_twinslip(index_otherFamily+k,index_myFamily+j,i) = &
|
||||
constitutive_phenopowerlaw_interaction_twinslip(lattice_interactionTwinSlip( &
|
||||
sum(lattice_NslipSystem(1:o-1_pInt,myStructure))+k, &
|
||||
|
@ -550,7 +510,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
|
||||
do o = 1_pInt,lattice_maxNtwinFamily
|
||||
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i))
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
|
||||
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
|
||||
constitutive_phenopowerlaw_hardeningMatrix_twintwin(index_otherFamily+k,index_myFamily+j,i) = &
|
||||
constitutive_phenopowerlaw_interaction_twintwin(lattice_interactionTwinTwin( &
|
||||
sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, &
|
||||
|
@ -561,18 +521,15 @@ subroutine constitutive_phenopowerlaw_init(myFile)
|
|||
enddo; enddo
|
||||
|
||||
! report to out file...
|
||||
|
||||
enddo
|
||||
|
||||
return
|
||||
|
||||
end subroutine constitutive_phenopowerlaw_init
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief initial microstructural state
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function constitutive_phenopowerlaw_stateInit(myInstance)
|
||||
!*********************************************************************
|
||||
!* initial microstructural state *
|
||||
!*********************************************************************
|
||||
use lattice, only: lattice_maxNslipFamily, lattice_maxNtwinFamily
|
||||
|
||||
implicit none
|
||||
|
@ -596,74 +553,64 @@ function constitutive_phenopowerlaw_stateInit(myInstance)
|
|||
sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = &
|
||||
constitutive_phenopowerlaw_tau0_twin(i,myInstance)
|
||||
enddo
|
||||
return
|
||||
|
||||
end function constitutive_phenopowerlaw_stateInit
|
||||
|
||||
|
||||
!*********************************************************************
|
||||
!* absolute state tolerance *
|
||||
!*********************************************************************
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief absolute state tolerance
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function constitutive_phenopowerlaw_aTolState(myInstance)
|
||||
|
||||
implicit none
|
||||
!*** input variables
|
||||
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the plasticity
|
||||
|
||||
!*** output variables
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
|
||||
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this plasticity
|
||||
|
||||
!*** local variables
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the plasticity
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
|
||||
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this plasticity
|
||||
|
||||
constitutive_phenopowerlaw_aTolState = constitutive_phenopowerlaw_aTolResistance(myInstance)
|
||||
|
||||
end function constitutive_phenopowerlaw_aTolState
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief homogenized elacticity matrix
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* homogenized elacticity matrix *
|
||||
!* INPUT: *
|
||||
!* - state : state variables *
|
||||
!* - ipc : component-ID of current integration point *
|
||||
!* - ip : current integration point *
|
||||
!* - el : current element *
|
||||
!*********************************************************************
|
||||
use prec, only: p_vec
|
||||
use mesh, only: mesh_NcpElems,mesh_maxNips
|
||||
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ipc,ip,el
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !component-ID of current integration point
|
||||
ip, & !current integration point
|
||||
el !current element
|
||||
integer(pInt) matID
|
||||
real(pReal), dimension(6,6) :: constitutive_phenopowerlaw_homogenizedC
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
||||
state ! state variables
|
||||
|
||||
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(:,:,matID)
|
||||
|
||||
return
|
||||
|
||||
end function constitutive_phenopowerlaw_homogenizedC
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculate derived quantities from state (dummy subroutine, not used here)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* calculate derived quantities from state (not used here) *
|
||||
!* INPUT: *
|
||||
!* - Tp : temperature *
|
||||
!* - ipc : component-ID of current integration point *
|
||||
!* - ip : current integration point *
|
||||
!* - el : current element *
|
||||
!*********************************************************************
|
||||
|
||||
use prec, only: pReal,pInt,p_vec
|
||||
use mesh, only: mesh_NcpElems,mesh_maxNips
|
||||
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
|
||||
|
||||
implicit none
|
||||
integer(pInt) ipc,ip,el, matID
|
||||
real(pReal) Temperature
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !component-ID of current integration point
|
||||
ip, & !current integration point
|
||||
el !current element
|
||||
integer(pInt) :: matID
|
||||
real(pReal), intent(in) :: Temperature ! temperature
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
||||
|
||||
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
|
@ -671,18 +618,10 @@ subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el
|
|||
end subroutine constitutive_phenopowerlaw_microstructure
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* plastic velocity gradient and its tangent *
|
||||
!* INPUT: *
|
||||
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
||||
!* - ipc : component-ID at current integration point *
|
||||
!* - ip : current integration point *
|
||||
!* - el : current element *
|
||||
!* OUTPUT: *
|
||||
!* - Lp : plastic velocity gradient *
|
||||
!* - dLp_dTstar : derivative of Lp (4th-rank tensor) *
|
||||
!*********************************************************************
|
||||
use prec, only: p_vec
|
||||
use math, only: math_Plain3333to99
|
||||
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
||||
|
@ -691,14 +630,17 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
|
|||
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
|
||||
|
||||
implicit none
|
||||
integer(pInt) ipc,ip,el
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & ! component-ID at current integration point
|
||||
ip, & ! current integration point
|
||||
el ! current element
|
||||
integer(pInt) matID,nSlip,nTwin,f,i,j,k,l,m,n, structID,index_Gamma,index_F,index_myFamily
|
||||
real(pReal) Temperature
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
||||
real(pReal), dimension(6) :: Tstar_v
|
||||
real(pReal), dimension(3,3) :: Lp
|
||||
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333
|
||||
real(pReal), dimension(9,9) :: dLp_dTstar
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
real(pReal), dimension(3,3), intent(out) :: Lp ! plastic velocity gradient
|
||||
real(pReal), dimension(3,3,3,3):: dLp_dTstar3333 ! derivative of Lp (4th-rank tensor)
|
||||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_slip,dgdot_dtauslip,tau_slip
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
|
@ -718,21 +660,21 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
|
|||
dLp_dTstar = 0.0_pReal
|
||||
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
j = j+1_pInt
|
||||
|
||||
!* Calculation of Lp
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of Lp
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
|
||||
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
|
||||
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
|
||||
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
||||
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
||||
gdot_slip(j)*lattice_Sslip(1:3,1:3,index_myFamily+i,structID)
|
||||
|
||||
!* Calculation of the tangent of Lp
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Lp
|
||||
if (gdot_slip(j) /= 0.0_pReal) then
|
||||
dgdot_dtauslip(j) = gdot_slip(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip(j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
|
@ -744,22 +686,22 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
|
|||
enddo
|
||||
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
j = j+1_pInt
|
||||
|
||||
!* Calculation of Lp
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of Lp
|
||||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
||||
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
||||
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
||||
constitutive_phenopowerlaw_gdot0_twin(matID)*&
|
||||
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
|
||||
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
||||
Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID)
|
||||
|
||||
!* Calculation of the tangent of Lp
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Lp
|
||||
if (gdot_twin(j) /= 0.0_pReal) then
|
||||
dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
|
@ -772,21 +714,13 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
|
|||
|
||||
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
|
||||
|
||||
return
|
||||
end subroutine constitutive_phenopowerlaw_LpAndItsTangent
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief of change of microstructure, evolution of state variable
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* rate of change of microstructure *
|
||||
!* INPUT: *
|
||||
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
||||
!* - ipc : component-ID at current integration point *
|
||||
!* - ip : current integration point *
|
||||
!* - el : current element *
|
||||
!* OUTPUT: *
|
||||
!* - constitutive_dotState : evolution of state variable *
|
||||
!*********************************************************************
|
||||
use prec, only: p_vec
|
||||
use lattice, only: lattice_Sslip_v, lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
||||
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
|
||||
|
@ -794,11 +728,14 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
|
||||
|
||||
implicit none
|
||||
integer(pInt) ipc,ip,el
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID at current integration point
|
||||
ip, & !< current integration point
|
||||
el !< current element
|
||||
integer(pInt) matID,nSlip,nTwin,f,i,j, structID,index_Gamma,index_F,index_myFamily
|
||||
real(pReal) Temperature,c_slipslip,c_sliptwin,c_twinslip,c_twintwin, ssat_offset
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
||||
real(pReal), dimension(6) :: Tstar_v
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_slip,tau_slip,h_slipslip,h_sliptwin
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
|
@ -817,8 +754,8 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
|
||||
constitutive_phenopowerlaw_dotState = 0.0_pReal
|
||||
|
||||
!-- system-independent (nonlinear) prefactors to M_xx matrices
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! system-independent (nonlinear) prefactors to M_xx matrices
|
||||
c_slipslip = constitutive_phenopowerlaw_h0_slipslip(matID)*&
|
||||
(1.0_pReal + &
|
||||
constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinB(matID))
|
||||
|
@ -828,22 +765,22 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
c_twintwin = constitutive_phenopowerlaw_h0_twintwin(matID)*&
|
||||
state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID)
|
||||
|
||||
!-- add system-dependent part and calculate dot gammas
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! add system-dependent part and calculate dot gammas
|
||||
ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F))
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
j = j+1_pInt
|
||||
h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction
|
||||
h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction
|
||||
(constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset))** &
|
||||
constitutive_phenopowerlaw_a_slip(matID)
|
||||
|
||||
h_sliptwin(j) = c_sliptwin ! no system-dependent part
|
||||
|
||||
!* Calculation of dot gamma
|
||||
h_sliptwin(j) = c_sliptwin ! no system-dependent part
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of dot gamma
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
|
||||
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
|
||||
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
|
||||
|
@ -851,15 +788,15 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
enddo
|
||||
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
j = j+1_pInt
|
||||
h_twinslip(j) = c_twinslip ! no system-dependent parts
|
||||
h_twinslip(j) = c_twinslip ! no system-dependent parts
|
||||
h_twintwin(j) = c_twintwin
|
||||
|
||||
!* Calculation of dot vol frac
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of dot vol frac
|
||||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
||||
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
||||
constitutive_phenopowerlaw_gdot0_twin(matID)*&
|
||||
|
@ -868,11 +805,11 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
enddo
|
||||
enddo
|
||||
|
||||
!-- calculate the overall hardening based on above
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculate the overall hardening based on above
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
j = j+1_pInt
|
||||
constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j
|
||||
h_slipslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_slipslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
|
||||
|
@ -883,9 +820,9 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
enddo
|
||||
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
j = j+1_pInt
|
||||
constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j
|
||||
h_twinslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twinslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
|
||||
|
@ -898,9 +835,9 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
|
|||
end function constitutive_phenopowerlaw_dotState
|
||||
|
||||
|
||||
!*********************************************************************
|
||||
!* (instantaneous) incremental change of microstructure *
|
||||
!*********************************************************************
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief (instantaneous) incremental change of microstructure
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function constitutive_phenopowerlaw_deltaState(Tstar_v, Temperature, state, g,ip,el)
|
||||
|
||||
use prec, only: pReal, &
|
||||
|
@ -914,66 +851,50 @@ use material, only: homogenization_maxNgrains, &
|
|||
|
||||
implicit none
|
||||
|
||||
!*** input variables
|
||||
integer(pInt), intent(in) :: g, & ! current grain number
|
||||
ip, & ! current integration point
|
||||
el ! current element number
|
||||
real(pReal), intent(in) :: Temperature ! temperature
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
integer(pInt), intent(in) :: g, & ! current grain number
|
||||
ip, & ! current integration point
|
||||
el ! current element number
|
||||
real(pReal), intent(in) :: Temperature ! temperature
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
||||
state ! current microstructural state
|
||||
state ! current microstructural state
|
||||
|
||||
!*** output variables
|
||||
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
|
||||
constitutive_phenopowerlaw_deltaState ! change of state variables / microstructure
|
||||
|
||||
!*** local variables
|
||||
constitutive_phenopowerlaw_deltaState ! change of state variables / microstructure
|
||||
|
||||
|
||||
constitutive_phenopowerlaw_deltaState = 0.0_pReal
|
||||
|
||||
endfunction
|
||||
end function constitutive_phenopowerlaw_deltaState
|
||||
|
||||
|
||||
!****************************************************************
|
||||
!* calculates the rate of change of temperature *
|
||||
!****************************************************************
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates the rate of change of temperature (dummy function)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el)
|
||||
|
||||
!*** variables and functions from other modules ***!
|
||||
use prec, only: pReal,pInt,p_vec
|
||||
use mesh, only: mesh_NcpElems, mesh_maxNips
|
||||
use material, only: homogenization_maxNgrains
|
||||
|
||||
implicit none
|
||||
!*** input variables ***!
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal), intent(in) :: Temperature
|
||||
integer(pInt), intent(in):: ipc, & ! grain number
|
||||
ip, & ! integration point number
|
||||
el ! element number
|
||||
integer(pInt), intent(in):: ipc, & ! grain number
|
||||
ip, & ! integration point number
|
||||
el ! element number
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure
|
||||
|
||||
!*** output variables ***!
|
||||
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
|
||||
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
|
||||
|
||||
! calculate dotTemperature
|
||||
constitutive_phenopowerlaw_dotTemperature = 0.0_pReal
|
||||
|
||||
end function constitutive_phenopowerlaw_dotTemperature
|
||||
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return array of constitutive results
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el)
|
||||
!*********************************************************************
|
||||
!* return array of constitutive results *
|
||||
!* INPUT: *
|
||||
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
||||
!* - dt : current time increment *
|
||||
!* - ipc : component-ID at current integration point *
|
||||
!* - ip : current integration point *
|
||||
!* - el : current element *
|
||||
!*********************************************************************
|
||||
use prec, only: pReal,pInt,p_vec
|
||||
use lattice, only: lattice_Sslip_v,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
||||
lattice_NslipSystem,lattice_NtwinSystem
|
||||
|
@ -981,9 +902,14 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
|
|||
use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance,phase_Noutput
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ipc,ip,el
|
||||
real(pReal), intent(in) :: dt,Temperature
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !component-ID at current integration point
|
||||
ip, & !current integration point
|
||||
el !current element
|
||||
real(pReal), intent(in) :: &
|
||||
dt, & !current time increment
|
||||
Temperature
|
||||
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
|
||||
integer(pInt) matID,o,f,i,c,nSlip,nTwin,j, structID,index_Gamma,index_F,index_myFamily
|
||||
real(pReal) tau
|
||||
|
@ -1010,9 +936,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
|
|||
|
||||
case ('shearrate_slip')
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,structID))
|
||||
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*&
|
||||
|
@ -1023,9 +949,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
|
|||
|
||||
case ('resolvedstress_slip')
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
|
||||
enddo; enddo
|
||||
|
@ -1041,9 +967,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
|
|||
|
||||
case ('shearrate_twin')
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
j = j + 1_pInt
|
||||
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
||||
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
||||
|
@ -1055,9 +981,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
|
|||
|
||||
case ('resolvedstress_twin')
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
|
||||
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
||||
j = j + 1_pInt
|
||||
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
||||
enddo; enddo
|
||||
|
|
Loading…
Reference in New Issue