Merge branch 'python-style' into 'development'
Python style See merge request damask/DAMASK!132
This commit is contained in:
commit
31136100c6
|
@ -6,27 +6,27 @@
|
|||
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are
|
||||
# Redistribution and use in source and binary forms, with or without modification, are
|
||||
# permitted provided that the following conditions are met:
|
||||
#
|
||||
# - Redistributions of source code must retain the above copyright notice, this list
|
||||
# - Redistributions of source code must retain the above copyright notice, this list
|
||||
# of conditions and the following disclaimer.
|
||||
# - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
# list of conditions and the following disclaimer in the documentation and/or
|
||||
# - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
# list of conditions and the following disclaimer in the documentation and/or
|
||||
# other materials provided with the distribution.
|
||||
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
# of its contributors may be used to endorse or promote products derived from
|
||||
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
# of its contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
####################################################################################################
|
||||
|
||||
|
@ -44,7 +44,7 @@ def CubeToBall(cube):
|
|||
----------
|
||||
cube : numpy.ndarray
|
||||
coordinates of a point in a uniform refinable cubical grid.
|
||||
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
|
@ -52,37 +52,37 @@ def CubeToBall(cube):
|
|||
|
||||
"""
|
||||
if np.abs(np.max(cube))>np.pi**(2./3.) * 0.5:
|
||||
raise ValueError
|
||||
|
||||
raise ValueError
|
||||
|
||||
# transform to the sphere grid via the curved square, and intercept the zero point
|
||||
if np.allclose(cube,0.0,rtol=0.0,atol=1.0e-300):
|
||||
ball = np.zeros(3)
|
||||
ball = np.zeros(3)
|
||||
else:
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
p = get_order(cube)
|
||||
XYZ = cube[p] * sc
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
p = get_order(cube)
|
||||
XYZ = cube[p] * sc
|
||||
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-300):
|
||||
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = R1*2.0**0.25/beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
||||
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-300):
|
||||
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = R1*2.0**0.25/beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
||||
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
||||
c = np.sum(T**2)
|
||||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
ball = ball[p]
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
||||
c = np.sum(T**2)
|
||||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
ball = ball[p]
|
||||
|
||||
return ball
|
||||
|
||||
|
@ -103,46 +103,46 @@ def BallToCube(ball):
|
|||
|
||||
"""
|
||||
rs = np.linalg.norm(ball)
|
||||
if rs > R1:
|
||||
raise ValueError
|
||||
|
||||
if rs > R1:
|
||||
raise ValueError
|
||||
|
||||
if np.allclose(ball,0.0,rtol=0.0,atol=1.0e-300):
|
||||
cube = np.zeros(3)
|
||||
cube = np.zeros(3)
|
||||
else:
|
||||
p = get_order(ball)
|
||||
xyz3 = ball[p]
|
||||
p = get_order(ball)
|
||||
xyz3 = ball[p]
|
||||
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
||||
# inverse M_2
|
||||
qxy = np.sum(xyz2**2)
|
||||
|
||||
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-300):
|
||||
Tinv = np.zeros(2)
|
||||
else:
|
||||
q2 = qxy + np.max(np.abs(xyz2))**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (beta/np.sqrt(2.0)/R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
||||
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
||||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
||||
# inverse M_2
|
||||
qxy = np.sum(xyz2**2)
|
||||
|
||||
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-300):
|
||||
Tinv = np.zeros(2)
|
||||
else:
|
||||
q2 = qxy + np.max(np.abs(xyz2))**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (beta/np.sqrt(2.0)/R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
||||
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
||||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p]
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p]
|
||||
|
||||
return cube
|
||||
|
||||
|
||||
def get_order(xyz):
|
||||
"""
|
||||
Get order of the coordinates.
|
||||
|
||||
Depending on the pyramid in which the point is located, the order need to be adjusted.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xyz : numpy.ndarray
|
||||
|
@ -157,10 +157,10 @@ def get_order(xyz):
|
|||
"""
|
||||
if (abs(xyz[0])<= xyz[2]) and (abs(xyz[1])<= xyz[2]) or \
|
||||
(abs(xyz[0])<=-xyz[2]) and (abs(xyz[1])<=-xyz[2]):
|
||||
return [0,1,2]
|
||||
return [0,1,2]
|
||||
elif (abs(xyz[2])<= xyz[0]) and (abs(xyz[1])<= xyz[0]) or \
|
||||
(abs(xyz[2])<=-xyz[0]) and (abs(xyz[1])<=-xyz[0]):
|
||||
return [1,2,0]
|
||||
return [1,2,0]
|
||||
elif (abs(xyz[0])<= xyz[1]) and (abs(xyz[2])<= xyz[1]) or \
|
||||
(abs(xyz[0])<=-xyz[1]) and (abs(xyz[2])<=-xyz[1]):
|
||||
return [2,0,1]
|
||||
return [2,0,1]
|
||||
|
|
|
@ -13,7 +13,9 @@ from .asciitable import ASCIItable # noqa
|
|||
|
||||
from .config import Material # noqa
|
||||
from .colormaps import Colormap, Color # noqa
|
||||
from .orientation import Symmetry, Lattice, Rotation, Orientation # noqa
|
||||
from .rotation import Rotation # noqa
|
||||
from .lattice import Symmetry, Lattice# noqa
|
||||
from .orientation import Orientation # noqa
|
||||
from .result import Result # noqa
|
||||
from .result import Result as DADF5 # noqa
|
||||
|
||||
|
|
|
@ -1,359 +1,355 @@
|
|||
import numpy as np
|
||||
|
||||
class Color():
|
||||
"""Color representation in and conversion between different color-spaces."""
|
||||
"""Color representation in and conversion between different color-spaces."""
|
||||
|
||||
__slots__ = [
|
||||
'model',
|
||||
'color',
|
||||
'__dict__',
|
||||
]
|
||||
__slots__ = [
|
||||
'model',
|
||||
'color',
|
||||
'__dict__',
|
||||
]
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self,
|
||||
model = 'RGB',
|
||||
color = np.zeros(3,'d')):
|
||||
"""
|
||||
Create a Color object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : string
|
||||
color model
|
||||
color : numpy.ndarray
|
||||
vector representing the color according to the selected model
|
||||
def __init__(self,
|
||||
model = 'RGB',
|
||||
color = np.zeros(3,'d')):
|
||||
"""
|
||||
Create a Color object.
|
||||
|
||||
"""
|
||||
self.__transforms__ = \
|
||||
{'HSV': {'index': 0, 'next': self._HSV2HSL},
|
||||
'HSL': {'index': 1, 'next': self._HSL2RGB, 'prev': self._HSL2HSV},
|
||||
'RGB': {'index': 2, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL},
|
||||
'XYZ': {'index': 3, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB},
|
||||
'CIELAB': {'index': 4, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ},
|
||||
'MSH': {'index': 5, 'prev': self._MSH2CIELAB},
|
||||
}
|
||||
Parameters
|
||||
----------
|
||||
model : string
|
||||
color model
|
||||
color : numpy.ndarray
|
||||
vector representing the color according to the selected model
|
||||
|
||||
model = model.upper()
|
||||
if model not in list(self.__transforms__.keys()): model = 'RGB'
|
||||
if model == 'RGB' and max(color) > 1.0: # are we RGB255 ?
|
||||
for i in range(3):
|
||||
color[i] /= 255.0 # rescale to RGB
|
||||
"""
|
||||
self.__transforms__ = \
|
||||
{'HSV': {'index': 0, 'next': self._HSV2HSL},
|
||||
'HSL': {'index': 1, 'next': self._HSL2RGB, 'prev': self._HSL2HSV},
|
||||
'RGB': {'index': 2, 'next': self._RGB2XYZ, 'prev': self._RGB2HSL},
|
||||
'XYZ': {'index': 3, 'next': self._XYZ2CIELAB, 'prev': self._XYZ2RGB},
|
||||
'CIELAB': {'index': 4, 'next': self._CIELAB2MSH, 'prev': self._CIELAB2XYZ},
|
||||
'MSH': {'index': 5, 'prev': self._MSH2CIELAB},
|
||||
}
|
||||
|
||||
if model == 'HSL': # are we HSL ?
|
||||
if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue?
|
||||
while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range
|
||||
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
|
||||
model = model.upper()
|
||||
if model not in list(self.__transforms__.keys()): model = 'RGB'
|
||||
if model == 'RGB' and max(color) > 1.0: # are we RGB255 ?
|
||||
for i in range(3):
|
||||
color[i] /= 255.0 # rescale to RGB
|
||||
|
||||
self.model = model
|
||||
self.color = np.array(color,'d')
|
||||
if model == 'HSL': # are we HSL ?
|
||||
if abs(color[0]) > 1.0: color[0] /= 360.0 # with angular hue?
|
||||
while color[0] >= 1.0: color[0] -= 1.0 # rewind to proper range
|
||||
while color[0] < 0.0: color[0] += 1.0 # rewind to proper range
|
||||
|
||||
self.model = model
|
||||
self.color = np.array(color,'d')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __repr__(self):
|
||||
"""Color model and values."""
|
||||
return 'Model: %s Color: %s'%(self.model,str(self.color))
|
||||
def __repr__(self):
|
||||
"""Color model and values."""
|
||||
return 'Model: %s Color: %s'%(self.model,str(self.color))
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __str__(self):
|
||||
"""Color model and values."""
|
||||
return self.__repr__()
|
||||
def __str__(self):
|
||||
"""Color model and values."""
|
||||
return self.__repr__()
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def convertTo(self,toModel = 'RGB'):
|
||||
"""
|
||||
Change the color model permanently.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
toModel : string
|
||||
color model
|
||||
def convert_to(self,toModel = 'RGB'):
|
||||
"""
|
||||
Change the color model permanently.
|
||||
|
||||
"""
|
||||
toModel = toModel.upper()
|
||||
if toModel not in list(self.__transforms__.keys()): return
|
||||
Parameters
|
||||
----------
|
||||
toModel : string
|
||||
color model
|
||||
|
||||
sourcePos = self.__transforms__[self.model]['index']
|
||||
targetPos = self.__transforms__[toModel]['index']
|
||||
"""
|
||||
toModel = toModel.upper()
|
||||
if toModel not in list(self.__transforms__.keys()): return
|
||||
|
||||
while sourcePos < targetPos:
|
||||
self.__transforms__[self.model]['next']()
|
||||
sourcePos += 1
|
||||
sourcePos = self.__transforms__[self.model]['index']
|
||||
targetPos = self.__transforms__[toModel]['index']
|
||||
|
||||
while sourcePos > targetPos:
|
||||
self.__transforms__[self.model]['prev']()
|
||||
sourcePos -= 1
|
||||
return self
|
||||
while sourcePos < targetPos:
|
||||
self.__transforms__[self.model]['next']()
|
||||
sourcePos += 1
|
||||
|
||||
while sourcePos > targetPos:
|
||||
self.__transforms__[self.model]['prev']()
|
||||
sourcePos -= 1
|
||||
return self
|
||||
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def expressAs(self,asModel = 'RGB'):
|
||||
"""
|
||||
Return the color in a different model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
asModel : string
|
||||
color model
|
||||
def express_as(self,asModel = 'RGB'):
|
||||
"""
|
||||
Return the color in a different model.
|
||||
|
||||
"""
|
||||
return self.__class__(self.model,self.color).convertTo(asModel)
|
||||
Parameters
|
||||
----------
|
||||
asModel : string
|
||||
color model
|
||||
|
||||
"""
|
||||
return self.__class__(self.model,self.color).convert_to(asModel)
|
||||
|
||||
|
||||
|
||||
def _HSV2HSL(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) V(alue or brightness) to H(ue) S(aturation) L(uminance).
|
||||
def _HSV2HSL(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) V(alue or brightness) to H(ue) S(aturation) L(uminance).
|
||||
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSV': return
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSV': return
|
||||
|
||||
converted = Color('HSL',np.array([
|
||||
self.color[0],
|
||||
1. if self.color[2] == 0.0 or (self.color[1] == 0.0 and self.color[2] == 1.0) \
|
||||
else self.color[1]*self.color[2]/(1.-abs(self.color[2]*(2.-self.color[1])-1.)),
|
||||
0.5*self.color[2]*(2.-self.color[1]),
|
||||
]))
|
||||
converted = Color('HSL',np.array([
|
||||
self.color[0],
|
||||
1. if self.color[2] == 0.0 or (self.color[1] == 0.0 and self.color[2] == 1.0) \
|
||||
else self.color[1]*self.color[2]/(1.-abs(self.color[2]*(2.-self.color[1])-1.)),
|
||||
0.5*self.color[2]*(2.-self.color[1]),
|
||||
]))
|
||||
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _HSL2HSV(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to H(ue) S(aturation) V(alue or brightness).
|
||||
def _HSL2HSV(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to H(ue) S(aturation) V(alue or brightness).
|
||||
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
All values are in the range [0,1]
|
||||
http://codeitdown.com/hsl-hsb-hsv-color
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
|
||||
h = self.color[0]
|
||||
b = self.color[2]+0.5*(self.color[1]*(1.-abs(2*self.color[2]-1)))
|
||||
s = 1.0 if b == 0.0 else 2.*(b-self.color[2])/b
|
||||
h = self.color[0]
|
||||
b = self.color[2]+0.5*(self.color[1]*(1.-abs(2*self.color[2]-1)))
|
||||
s = 1.0 if b == 0.0 else 2.*(b-self.color[2])/b
|
||||
|
||||
converted = Color('HSV',np.array([h,s,b]))
|
||||
converted = Color('HSV',np.array([h,s,b]))
|
||||
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _HSL2RGB(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue).
|
||||
def _HSL2RGB(self):
|
||||
"""
|
||||
Convert H(ue) S(aturation) L(uminance) to R(red) G(reen) B(lue).
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/HSL_and_HSV
|
||||
"""
|
||||
if self.model != 'HSL': return
|
||||
|
||||
sextant = self.color[0]*6.0
|
||||
c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1]
|
||||
x = c*(1.0 - abs(sextant%2 - 1.0))
|
||||
m = self.color[2] - 0.5*c
|
||||
sextant = self.color[0]*6.0
|
||||
c = (1.0 - abs(2.0 * self.color[2] - 1.0))*self.color[1]
|
||||
x = c*(1.0 - abs(sextant%2 - 1.0))
|
||||
m = self.color[2] - 0.5*c
|
||||
|
||||
converted = Color('RGB',np.array([
|
||||
[c+m, x+m, m],
|
||||
[x+m, c+m, m],
|
||||
[m, c+m, x+m],
|
||||
[m, x+m, c+m],
|
||||
[x+m, m, c+m],
|
||||
[c+m, m, x+m],
|
||||
][int(sextant)],'d'))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('RGB',np.array([
|
||||
[c+m, x+m, m],
|
||||
[x+m, c+m, m],
|
||||
[m, c+m, x+m],
|
||||
[m, x+m, c+m],
|
||||
[x+m, m, c+m],
|
||||
[c+m, m, x+m],
|
||||
][int(sextant)],'d'))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _RGB2HSL(self):
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance).
|
||||
def _RGB2HSL(self):
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to H(ue) S(aturation) L(uminance).
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
All values are in the range [0,1]
|
||||
from http://130.113.54.154/~monger/hsl-rgb.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
|
||||
HSL = np.zeros(3,'d')
|
||||
maxcolor = self.color.max()
|
||||
mincolor = self.color.min()
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
HSL = np.zeros(3,'d')
|
||||
maxcolor = self.color.max()
|
||||
mincolor = self.color.min()
|
||||
HSL[2] = (maxcolor + mincolor)/2.0
|
||||
if(mincolor == maxcolor):
|
||||
HSL[0] = 0.0
|
||||
HSL[1] = 0.0
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 - maxcolor - mincolor)
|
||||
if (maxcolor == self.color[0]):
|
||||
HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[1]):
|
||||
HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[2]):
|
||||
HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0 # scaling to 360 might be dangerous for small values
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
if (HSL[2]<0.5):
|
||||
HSL[1] = (maxcolor - mincolor)/(maxcolor + mincolor)
|
||||
else:
|
||||
HSL[1] = (maxcolor - mincolor)/(2.0 - maxcolor - mincolor)
|
||||
if (maxcolor == self.color[0]):
|
||||
HSL[0] = 0.0 + (self.color[1] - self.color[2])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[1]):
|
||||
HSL[0] = 2.0 + (self.color[2] - self.color[0])/(maxcolor - mincolor)
|
||||
elif (maxcolor == self.color[2]):
|
||||
HSL[0] = 4.0 + (self.color[0] - self.color[1])/(maxcolor - mincolor)
|
||||
HSL[0] = HSL[0]*60.0 # scaling to 360 might be dangerous for small values
|
||||
if (HSL[0] < 0.0):
|
||||
HSL[0] = HSL[0] + 360.0
|
||||
for i in range(2):
|
||||
HSL[i+1] = min(HSL[i+1],1.0)
|
||||
HSL[i+1] = max(HSL[i+1],0.0)
|
||||
|
||||
converted = Color('HSL', HSL)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('HSL', HSL)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
|
||||
def _RGB2XYZ(self):
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to CIE XYZ.
|
||||
def _RGB2XYZ(self):
|
||||
"""
|
||||
Convert R(ed) G(reen) B(lue) to CIE XYZ.
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'RGB': return
|
||||
|
||||
XYZ = np.zeros(3,'d')
|
||||
RGB_lin = np.zeros(3,'d')
|
||||
convert = np.array([[0.412453,0.357580,0.180423],
|
||||
[0.212671,0.715160,0.072169],
|
||||
[0.019334,0.119193,0.950227]])
|
||||
XYZ = np.zeros(3,'d')
|
||||
RGB_lin = np.zeros(3,'d')
|
||||
convert = np.array([[0.412453,0.357580,0.180423],
|
||||
[0.212671,0.715160,0.072169],
|
||||
[0.019334,0.119193,0.950227]])
|
||||
|
||||
for i in range(3):
|
||||
if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
|
||||
else: RGB_lin[i] = self.color[i] /12.92
|
||||
XYZ = np.dot(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
for i in range(3):
|
||||
if (self.color[i] > 0.04045): RGB_lin[i] = ((self.color[i]+0.0555)/1.0555)**2.4
|
||||
else: RGB_lin[i] = self.color[i] /12.92
|
||||
XYZ = np.dot(convert,RGB_lin)
|
||||
for i in range(3):
|
||||
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
XYZ[i] = max(XYZ[i],0.0)
|
||||
|
||||
converted = Color('XYZ', XYZ)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('XYZ', XYZ)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
|
||||
def _XYZ2RGB(self):
|
||||
"""
|
||||
Convert CIE XYZ to R(ed) G(reen) B(lue).
|
||||
def _XYZ2RGB(self):
|
||||
"""
|
||||
Convert CIE XYZ to R(ed) G(reen) B(lue).
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ':
|
||||
return
|
||||
All values are in the range [0,1]
|
||||
from http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ':
|
||||
return
|
||||
|
||||
convert = np.array([[ 3.240479,-1.537150,-0.498535],
|
||||
[-0.969256, 1.875992, 0.041556],
|
||||
[ 0.055648,-0.204043, 1.057311]])
|
||||
RGB_lin = np.dot(convert,self.color)
|
||||
RGB = np.zeros(3,'d')
|
||||
convert = np.array([[ 3.240479,-1.537150,-0.498535],
|
||||
[-0.969256, 1.875992, 0.041556],
|
||||
[ 0.055648,-0.204043, 1.057311]])
|
||||
RGB_lin = np.dot(convert,self.color)
|
||||
RGB = np.zeros(3,'d')
|
||||
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else: RGB[i] = RGB_lin[i] *12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
for i in range(3):
|
||||
if (RGB_lin[i] > 0.0031308): RGB[i] = ((RGB_lin[i])**(1.0/2.4))*1.0555-0.0555
|
||||
else: RGB[i] = RGB_lin[i] *12.92
|
||||
for i in range(3):
|
||||
RGB[i] = min(RGB[i],1.0)
|
||||
RGB[i] = max(RGB[i],0.0)
|
||||
|
||||
maxVal = max(RGB) # clipping colors according to the display gamut
|
||||
if (maxVal > 1.0): RGB /= maxVal
|
||||
maxVal = max(RGB) # clipping colors according to the display gamut
|
||||
if (maxVal > 1.0): RGB /= maxVal
|
||||
|
||||
converted = Color('RGB', RGB)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('RGB', RGB)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
|
||||
def _CIELAB2XYZ(self):
|
||||
"""
|
||||
Convert CIE Lab to CIE XYZ.
|
||||
def _CIELAB2XYZ(self):
|
||||
"""
|
||||
Convert CIE Lab to CIE XYZ.
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
All values are in the range [0,1]
|
||||
from http://www.easyrgb.com/index.php?X=MATH&H=07#text7
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = np.zeros(3,'d')
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = np.zeros(3,'d')
|
||||
|
||||
XYZ[1] = (self.color[0] + 16.0 ) / 116.0
|
||||
XYZ[0] = XYZ[1] + self.color[1]/ 500.0
|
||||
XYZ[2] = XYZ[1] - self.color[2]/ 200.0
|
||||
XYZ[1] = (self.color[0] + 16.0 ) / 116.0
|
||||
XYZ[0] = XYZ[1] + self.color[1]/ 500.0
|
||||
XYZ[2] = XYZ[1] - self.color[2]/ 200.0
|
||||
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 6./29. ): XYZ[i] = XYZ[i]**3.
|
||||
else: XYZ[i] = 108./841. * (XYZ[i] - 4./29.)
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 6./29. ): XYZ[i] = XYZ[i]**3.
|
||||
else: XYZ[i] = 108./841. * (XYZ[i] - 4./29.)
|
||||
|
||||
converted = Color('XYZ', XYZ*ref_white)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
def _XYZ2CIELAB(self):
|
||||
"""
|
||||
Convert CIE XYZ to CIE Lab.
|
||||
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/Lab_color_space,
|
||||
http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ': return
|
||||
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = self.color/ref_white
|
||||
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0)
|
||||
else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0
|
||||
|
||||
converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0,
|
||||
500.0 * (XYZ[0] - XYZ[1]),
|
||||
200.0 * (XYZ[1] - XYZ[2]) ]))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('XYZ', XYZ*ref_white)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _CIELAB2MSH(self):
|
||||
"""
|
||||
Convert CIE Lab to Msh colorspace.
|
||||
def _XYZ2CIELAB(self):
|
||||
"""
|
||||
Convert CIE XYZ to CIE Lab.
|
||||
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
All values are in the range [0,1]
|
||||
from http://en.wikipedia.org/wiki/Lab_color_space,
|
||||
http://www.cs.rit.edu/~ncs/color/t_convert.html
|
||||
"""
|
||||
if self.model != 'XYZ': return
|
||||
|
||||
Msh = np.zeros(3,'d')
|
||||
Msh[0] = np.sqrt(np.dot(self.color,self.color))
|
||||
if (Msh[0] > 0.001):
|
||||
Msh[1] = np.arccos(self.color[0]/Msh[0])
|
||||
if (self.color[1] != 0.0):
|
||||
Msh[2] = np.arctan2(self.color[2],self.color[1])
|
||||
ref_white = np.array([.95047, 1.00000, 1.08883],'d') # Observer = 2, Illuminant = D65
|
||||
XYZ = self.color/ref_white
|
||||
|
||||
converted = Color('MSH', Msh)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
for i in range(len(XYZ)):
|
||||
if (XYZ[i] > 216./24389 ): XYZ[i] = XYZ[i]**(1.0/3.0)
|
||||
else: XYZ[i] = (841./108. * XYZ[i]) + 16.0/116.0
|
||||
|
||||
converted = Color('CIELAB', np.array([ 116.0 * XYZ[1] - 16.0,
|
||||
500.0 * (XYZ[0] - XYZ[1]),
|
||||
200.0 * (XYZ[1] - XYZ[2]) ]))
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _MSH2CIELAB(self):
|
||||
"""
|
||||
Convert Msh colorspace to CIE Lab.
|
||||
def _CIELAB2MSH(self):
|
||||
"""
|
||||
Convert CIE Lab to Msh colorspace.
|
||||
|
||||
with s,h in radians
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'MSH': return
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'CIELAB': return
|
||||
|
||||
Lab = np.zeros(3,'d')
|
||||
Lab[0] = self.color[0] * np.cos(self.color[1])
|
||||
Lab[1] = self.color[0] * np.sin(self.color[1]) * np.cos(self.color[2])
|
||||
Lab[2] = self.color[0] * np.sin(self.color[1]) * np.sin(self.color[2])
|
||||
Msh = np.zeros(3,'d')
|
||||
Msh[0] = np.sqrt(np.dot(self.color,self.color))
|
||||
if (Msh[0] > 0.001):
|
||||
Msh[1] = np.arccos(self.color[0]/Msh[0])
|
||||
if (self.color[1] != 0.0):
|
||||
Msh[2] = np.arctan2(self.color[2],self.color[1])
|
||||
|
||||
converted = Color('CIELAB', Lab)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
converted = Color('MSH', Msh)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
def _MSH2CIELAB(self):
|
||||
"""
|
||||
Convert Msh colorspace to CIE Lab.
|
||||
|
||||
with s,h in radians
|
||||
from http://www.cs.unm.edu/~kmorel/documents/ColorMaps/DivergingColorMapWorkshop.xls
|
||||
"""
|
||||
if self.model != 'MSH': return
|
||||
|
||||
Lab = np.zeros(3,'d')
|
||||
Lab[0] = self.color[0] * np.cos(self.color[1])
|
||||
Lab[1] = self.color[0] * np.sin(self.color[1]) * np.cos(self.color[2])
|
||||
Lab[2] = self.color[0] * np.sin(self.color[1]) * np.sin(self.color[2])
|
||||
|
||||
converted = Color('CIELAB', Lab)
|
||||
self.model = converted.model
|
||||
self.color = converted.color
|
||||
|
||||
|
||||
class Colormap():
|
||||
|
@ -416,7 +412,7 @@ class Colormap():
|
|||
):
|
||||
"""
|
||||
Create a Colormap object.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
left : Color
|
||||
|
@ -498,13 +494,13 @@ class Colormap():
|
|||
def interpolate_linear(lo, hi, frac):
|
||||
"""Linear interpolation between lo and hi color at given fraction; output in model of lo color."""
|
||||
interpolation = (1.0 - frac) * np.array(lo.color[:]) \
|
||||
+ frac * np.array(hi.expressAs(lo.model).color[:])
|
||||
+ frac * np.array(hi.express_as(lo.model).color[:])
|
||||
|
||||
return Color(lo.model,interpolation)
|
||||
|
||||
if self.interpolate == 'perceptualuniform':
|
||||
return interpolate_Msh(self.left.expressAs('MSH').color,
|
||||
self.right.expressAs('MSH').color,fraction)
|
||||
return interpolate_Msh(self.left.express_as('MSH').color,
|
||||
self.right.express_as('MSH').color,fraction)
|
||||
elif self.interpolate == 'linear':
|
||||
return interpolate_linear(self.left,
|
||||
self.right,fraction)
|
||||
|
@ -528,7 +524,7 @@ class Colormap():
|
|||
"""
|
||||
format = format.lower() # consistent comparison basis
|
||||
frac = 0.5*(np.array(crop) + 1.0) # rescale crop range to fractions
|
||||
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).expressAs(model).color for i in range(steps)]
|
||||
colors = [self.color(float(i)/(steps-1)*(frac[1]-frac[0])+frac[0]).express_as(model).color for i in range(steps)]
|
||||
if format == 'paraview':
|
||||
colormap = ['[\n {{\n "ColorSpace": "RGB", "Name": "{}", "DefaultMap": true,\n "RGBPoints" : ['.format(name)] \
|
||||
+ [' {:4d},{:8.6f},{:8.6f},{:8.6f},'.format(i,color[0],color[1],color[2],) \
|
||||
|
|
|
@ -80,7 +80,7 @@ class Geom():
|
|||
if size is not None:
|
||||
self.set_size(size)
|
||||
elif rescale:
|
||||
self.set_size(self.get_grid()/grid_old*self.size)
|
||||
self.set_size(self.get_grid()/grid_old*self.size)
|
||||
|
||||
message = ['grid a b c: {}'.format(' x '.join(map(str,grid_old)))]
|
||||
if np.any(grid_old != self.get_grid()):
|
||||
|
@ -269,7 +269,7 @@ class Geom():
|
|||
comments = []
|
||||
for i,line in enumerate(content[:header_length]):
|
||||
items = line.lower().strip().split()
|
||||
key = items[0] if len(items) > 0 else ''
|
||||
key = items[0] if items else ''
|
||||
if key == 'grid':
|
||||
grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
|
||||
elif key == 'size':
|
||||
|
@ -524,7 +524,7 @@ class Geom():
|
|||
"""Renumber sorted microstructure indices to 1,...,N."""
|
||||
renumbered = np.empty(self.get_grid(),dtype=self.microstructure.dtype)
|
||||
for i, oldID in enumerate(np.unique(self.microstructure)):
|
||||
renumbered = np.where(self.microstructure == oldID, i+1, renumbered)
|
||||
renumbered = np.where(self.microstructure == oldID, i+1, renumbered)
|
||||
|
||||
return self.update(renumbered)
|
||||
#self.add_comments('tbd')
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
from scipy import spatial
|
||||
import numpy as np
|
||||
|
||||
def __ks(size,grid,first_order=False):
|
||||
def _ks(size,grid,first_order=False):
|
||||
"""
|
||||
Get wave numbers operator.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
|
||||
"""
|
||||
k_sk = np.where(np.arange(grid[0])>grid[0]//2,np.arange(grid[0])-grid[0],np.arange(grid[0]))/size[0]
|
||||
|
@ -30,14 +30,14 @@ def curl(size,field):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
|
||||
"""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field.shape[:3],True)
|
||||
k_s = _ks(size,field.shape[:3],True)
|
||||
|
||||
e = np.zeros((3, 3, 3))
|
||||
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol
|
||||
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol
|
||||
e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
|
@ -54,11 +54,11 @@ def divergence(size,field):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
|
||||
"""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field.shape[:3],True)
|
||||
k_s = _ks(size,field.shape[:3],True)
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
divergence = (np.einsum('ijkl,ijkl ->ijk', k_s,field_fourier)*2.0j*np.pi if n == 3 else # vector, 3 -> 1
|
||||
|
@ -74,11 +74,11 @@ def gradient(size,field):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
|
||||
"""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field.shape[:3],True)
|
||||
k_s = _ks(size,field.shape[:3],True)
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
gradient = (np.einsum('ijkl,ijkm->ijkm', field_fourier,k_s)*2.0j*np.pi if n == 1 else # scalar, 1 -> 3
|
||||
|
@ -96,7 +96,7 @@ def cell_coord0(grid,size,origin=np.zeros(3)):
|
|||
grid : numpy.ndarray
|
||||
number of grid points.
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
origin : numpy.ndarray, optional
|
||||
physical origin of the periodic field. Default is [0.0,0.0,0.0].
|
||||
|
||||
|
@ -108,7 +108,8 @@ def cell_coord0(grid,size,origin=np.zeros(3)):
|
|||
np.linspace(start[0],end[0],grid[0]),
|
||||
indexing = 'ij')
|
||||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
|
||||
def cell_displacement_fluct(size,F):
|
||||
"""
|
||||
|
@ -117,14 +118,14 @@ def cell_displacement_fluct(size,F):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
"""
|
||||
integrator = 0.5j*size/np.pi
|
||||
|
||||
k_s = __ks(size,F.shape[:3],False)
|
||||
k_s = _ks(size,F.shape[:3],False)
|
||||
k_s_squared = np.einsum('...l,...l',k_s,k_s)
|
||||
k_s_squared[0,0,0] = 1.0
|
||||
|
||||
|
@ -136,6 +137,7 @@ def cell_displacement_fluct(size,F):
|
|||
|
||||
return np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
|
||||
|
||||
|
||||
def cell_displacement_avg(size,F):
|
||||
"""
|
||||
Cell center displacement field from average part of the deformation gradient field.
|
||||
|
@ -143,7 +145,7 @@ def cell_displacement_avg(size,F):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
|
@ -151,6 +153,7 @@ def cell_displacement_avg(size,F):
|
|||
F_avg = np.average(F,axis=(0,1,2))
|
||||
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),cell_coord0(F.shape[:3][::-1],size))
|
||||
|
||||
|
||||
def cell_displacement(size,F):
|
||||
"""
|
||||
Cell center displacement field from deformation gradient field.
|
||||
|
@ -158,13 +161,14 @@ def cell_displacement(size,F):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
"""
|
||||
return cell_displacement_avg(size,F) + cell_displacement_fluct(size,F)
|
||||
|
||||
|
||||
def cell_coord(size,F,origin=np.zeros(3)):
|
||||
"""
|
||||
Cell center positions.
|
||||
|
@ -172,7 +176,7 @@ def cell_coord(size,F,origin=np.zeros(3)):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
origin : numpy.ndarray, optional
|
||||
|
@ -181,6 +185,7 @@ def cell_coord(size,F,origin=np.zeros(3)):
|
|||
"""
|
||||
return cell_coord0(F.shape[:3][::-1],size,origin) + cell_displacement(size,F)
|
||||
|
||||
|
||||
def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
||||
"""
|
||||
Return grid 'DNA', i.e. grid, size, and origin from array of cell positions.
|
||||
|
@ -200,11 +205,11 @@ def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
|||
size = grid/np.maximum(grid-1,1) * (maxcorner-mincorner)
|
||||
delta = size/grid
|
||||
origin = mincorner - delta*.5
|
||||
|
||||
|
||||
# 1D/2D: size/origin combination undefined, set origin to 0.0
|
||||
size [np.where(grid==1)] = origin[np.where(grid==1)]*2.
|
||||
origin[np.where(grid==1)] = 0.0
|
||||
|
||||
|
||||
if grid.prod() != len(coord0):
|
||||
raise ValueError('Data count {} does not match grid {}.'.format(len(coord0),grid))
|
||||
|
||||
|
@ -221,6 +226,7 @@ def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
|||
|
||||
return (grid,size,origin)
|
||||
|
||||
|
||||
def coord0_check(coord0):
|
||||
"""
|
||||
Check whether coordinates lie on a regular grid.
|
||||
|
@ -234,7 +240,6 @@ def coord0_check(coord0):
|
|||
cell_coord0_gridSizeOrigin(coord0,ordered=True)
|
||||
|
||||
|
||||
|
||||
def node_coord0(grid,size,origin=np.zeros(3)):
|
||||
"""
|
||||
Nodal positions (undeformed).
|
||||
|
@ -244,7 +249,7 @@ def node_coord0(grid,size,origin=np.zeros(3)):
|
|||
grid : numpy.ndarray
|
||||
number of grid points.
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
origin : numpy.ndarray, optional
|
||||
physical origin of the periodic field. Default is [0.0,0.0,0.0].
|
||||
|
||||
|
@ -253,8 +258,9 @@ def node_coord0(grid,size,origin=np.zeros(3)):
|
|||
np.linspace(origin[1],size[1]+origin[1],1+grid[1]),
|
||||
np.linspace(origin[0],size[0]+origin[0],1+grid[0]),
|
||||
indexing = 'ij')
|
||||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
|
||||
def node_displacement_fluct(size,F):
|
||||
"""
|
||||
|
@ -263,13 +269,14 @@ def node_displacement_fluct(size,F):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
"""
|
||||
return cell_2_node(cell_displacement_fluct(size,F))
|
||||
|
||||
|
||||
def node_displacement_avg(size,F):
|
||||
"""
|
||||
Nodal displacement field from average part of the deformation gradient field.
|
||||
|
@ -277,7 +284,7 @@ def node_displacement_avg(size,F):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
|
@ -285,6 +292,7 @@ def node_displacement_avg(size,F):
|
|||
F_avg = np.average(F,axis=(0,1,2))
|
||||
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),node_coord0(F.shape[:3][::-1],size))
|
||||
|
||||
|
||||
def node_displacement(size,F):
|
||||
"""
|
||||
Nodal displacement field from deformation gradient field.
|
||||
|
@ -292,13 +300,14 @@ def node_displacement(size,F):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
"""
|
||||
return node_displacement_avg(size,F) + node_displacement_fluct(size,F)
|
||||
|
||||
|
||||
def node_coord(size,F,origin=np.zeros(3)):
|
||||
"""
|
||||
Nodal positions.
|
||||
|
@ -306,7 +315,7 @@ def node_coord(size,F,origin=np.zeros(3)):
|
|||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
physical size of the periodic field.
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
origin : numpy.ndarray, optional
|
||||
|
@ -315,22 +324,25 @@ def node_coord(size,F,origin=np.zeros(3)):
|
|||
"""
|
||||
return node_coord0(F.shape[:3][::-1],size,origin) + node_displacement(size,F)
|
||||
|
||||
|
||||
def cell_2_node(cell_data):
|
||||
"""Interpolate periodic cell data to nodal data."""
|
||||
n = ( cell_data + np.roll(cell_data,1,(0,1,2))
|
||||
+ np.roll(cell_data,1,(0,)) + np.roll(cell_data,1,(1,)) + np.roll(cell_data,1,(2,))
|
||||
+ np.roll(cell_data,1,(0,1)) + np.roll(cell_data,1,(1,2)) + np.roll(cell_data,1,(2,0)))*0.125
|
||||
|
||||
|
||||
return np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
|
||||
|
||||
|
||||
def node_2_cell(node_data):
|
||||
"""Interpolate periodic nodal data to cell data."""
|
||||
c = ( node_data + np.roll(node_data,1,(0,1,2))
|
||||
+ np.roll(node_data,1,(0,)) + np.roll(node_data,1,(1,)) + np.roll(node_data,1,(2,))
|
||||
+ np.roll(node_data,1,(0,1)) + np.roll(node_data,1,(1,2)) + np.roll(node_data,1,(2,0)))*0.125
|
||||
|
||||
|
||||
return c[:-1,:-1,:-1]
|
||||
|
||||
|
||||
def node_coord0_gridSizeOrigin(coord0,ordered=False):
|
||||
"""
|
||||
Return grid 'DNA', i.e. grid, size, and origin from array of nodal positions.
|
||||
|
@ -349,7 +361,7 @@ def node_coord0_gridSizeOrigin(coord0,ordered=False):
|
|||
grid = np.array(list(map(len,coords)),'i') - 1
|
||||
size = maxcorner-mincorner
|
||||
origin = mincorner
|
||||
|
||||
|
||||
if (grid+1).prod() != len(coord0):
|
||||
raise ValueError('Data count {} does not match grid {}.'.format(len(coord0),grid))
|
||||
|
||||
|
|
|
@ -0,0 +1,641 @@
|
|||
import numpy as np
|
||||
|
||||
from .rotation import Rotation
|
||||
|
||||
P = -1
|
||||
|
||||
# ******************************************************************************************
|
||||
class Symmetry:
|
||||
"""
|
||||
Symmetry operations for lattice systems.
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Crystal_system
|
||||
|
||||
"""
|
||||
|
||||
lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',]
|
||||
|
||||
def __init__(self, symmetry = None):
|
||||
"""
|
||||
Symmetry Definition.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
symmetry : str, optional
|
||||
label of the crystal system
|
||||
|
||||
"""
|
||||
if symmetry is not None and symmetry.lower() not in Symmetry.lattices:
|
||||
raise KeyError('Symmetry/crystal system "{}" is unknown'.format(symmetry))
|
||||
|
||||
self.lattice = symmetry.lower() if isinstance(symmetry,str) else symmetry
|
||||
|
||||
|
||||
def __copy__(self):
|
||||
"""Copy."""
|
||||
return self.__class__(self.lattice)
|
||||
|
||||
copy = __copy__
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Readable string."""
|
||||
return '{}'.format(self.lattice)
|
||||
|
||||
|
||||
def __eq__(self, other):
|
||||
"""
|
||||
Equal to other.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Symmetry
|
||||
Symmetry to check for equality.
|
||||
|
||||
"""
|
||||
return self.lattice == other.lattice
|
||||
|
||||
def __neq__(self, other):
|
||||
"""
|
||||
Not Equal to other.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Symmetry
|
||||
Symmetry to check for inequality.
|
||||
|
||||
"""
|
||||
return not self.__eq__(other)
|
||||
|
||||
def __cmp__(self,other):
|
||||
"""
|
||||
Linear ordering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Symmetry
|
||||
Symmetry to check for for order.
|
||||
|
||||
"""
|
||||
myOrder = Symmetry.lattices.index(self.lattice)
|
||||
otherOrder = Symmetry.lattices.index(other.lattice)
|
||||
return (myOrder > otherOrder) - (myOrder < otherOrder)
|
||||
|
||||
def symmetryOperations(self,members=[]):
|
||||
"""List (or single element) of symmetry operations as rotations."""
|
||||
if self.lattice == 'cubic':
|
||||
symQuats = [
|
||||
[ 1.0, 0.0, 0.0, 0.0 ],
|
||||
[ 0.0, 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, 0.0, 0.0, 1.0 ],
|
||||
[ 0.0, 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2) ],
|
||||
[ 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.0, -0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.5, 0.5, 0.5, 0.5 ],
|
||||
[-0.5, 0.5, 0.5, 0.5 ],
|
||||
[-0.5, 0.5, 0.5, -0.5 ],
|
||||
[-0.5, 0.5, -0.5, 0.5 ],
|
||||
[-0.5, -0.5, 0.5, 0.5 ],
|
||||
[-0.5, -0.5, 0.5, -0.5 ],
|
||||
[-0.5, -0.5, -0.5, 0.5 ],
|
||||
[-0.5, 0.5, -0.5, -0.5 ],
|
||||
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
[-0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2), 0.0 ],
|
||||
[-0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2), 0.0 ],
|
||||
[-0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0, 0.0 ],
|
||||
[-0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0, 0.0 ],
|
||||
]
|
||||
elif self.lattice == 'hexagonal':
|
||||
symQuats = [
|
||||
[ 1.0, 0.0, 0.0, 0.0 ],
|
||||
[-0.5*np.sqrt(3), 0.0, 0.0, -0.5 ],
|
||||
[ 0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
|
||||
[ 0.0, 0.0, 0.0, 1.0 ],
|
||||
[-0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
|
||||
[-0.5*np.sqrt(3), 0.0, 0.0, 0.5 ],
|
||||
[ 0.0, 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, -0.5*np.sqrt(3), 0.5, 0.0 ],
|
||||
[ 0.0, 0.5, -0.5*np.sqrt(3), 0.0 ],
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, -0.5, -0.5*np.sqrt(3), 0.0 ],
|
||||
[ 0.0, 0.5*np.sqrt(3), 0.5, 0.0 ],
|
||||
]
|
||||
elif self.lattice == 'tetragonal':
|
||||
symQuats = [
|
||||
[ 1.0, 0.0, 0.0, 0.0 ],
|
||||
[ 0.0, 1.0, 0.0, 0.0 ],
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
[ 0.0, 0.0, 0.0, 1.0 ],
|
||||
[ 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.0, -0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
|
||||
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
||||
]
|
||||
elif self.lattice == 'orthorhombic':
|
||||
symQuats = [
|
||||
[ 1.0,0.0,0.0,0.0 ],
|
||||
[ 0.0,1.0,0.0,0.0 ],
|
||||
[ 0.0,0.0,1.0,0.0 ],
|
||||
[ 0.0,0.0,0.0,1.0 ],
|
||||
]
|
||||
else:
|
||||
symQuats = [
|
||||
[ 1.0,0.0,0.0,0.0 ],
|
||||
]
|
||||
|
||||
symOps = list(map(Rotation,
|
||||
np.array(symQuats)[np.atleast_1d(members) if members != [] else range(len(symQuats))]))
|
||||
try:
|
||||
iter(members) # asking for (even empty) list of members?
|
||||
except TypeError:
|
||||
return symOps[0] # no, return rotation object
|
||||
else:
|
||||
return symOps # yes, return list of rotations
|
||||
|
||||
|
||||
def inFZ(self,rodrigues):
|
||||
"""
|
||||
Check whether given Rodriques-Frank vector falls into fundamental zone of own symmetry.
|
||||
|
||||
Fundamental zone in Rodrigues space is point symmetric around origin.
|
||||
"""
|
||||
if (len(rodrigues) != 3):
|
||||
raise ValueError('Input is not a Rodriques-Frank vector.\n')
|
||||
|
||||
if np.any(rodrigues == np.inf): return False
|
||||
|
||||
Rabs = abs(rodrigues)
|
||||
|
||||
if self.lattice == 'cubic':
|
||||
return np.sqrt(2.0)-1.0 >= Rabs[0] \
|
||||
and np.sqrt(2.0)-1.0 >= Rabs[1] \
|
||||
and np.sqrt(2.0)-1.0 >= Rabs[2] \
|
||||
and 1.0 >= Rabs[0] + Rabs[1] + Rabs[2]
|
||||
elif self.lattice == 'hexagonal':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2] \
|
||||
and 2.0 >= np.sqrt(3)*Rabs[0] + Rabs[1] \
|
||||
and 2.0 >= np.sqrt(3)*Rabs[1] + Rabs[0] \
|
||||
and 2.0 >= np.sqrt(3) + Rabs[2]
|
||||
elif self.lattice == 'tetragonal':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] \
|
||||
and np.sqrt(2.0) >= Rabs[0] + Rabs[1] \
|
||||
and np.sqrt(2.0) >= Rabs[2] + 1.0
|
||||
elif self.lattice == 'orthorhombic':
|
||||
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2]
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def inDisorientationSST(self,rodrigues):
|
||||
"""
|
||||
Check whether given Rodriques-Frank vector (of misorientation) falls into standard stereographic triangle of own symmetry.
|
||||
|
||||
References
|
||||
----------
|
||||
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
|
||||
https://doi.org/10.1107/S0108767391006864
|
||||
|
||||
"""
|
||||
if (len(rodrigues) != 3):
|
||||
raise ValueError('Input is not a Rodriques-Frank vector.\n')
|
||||
R = rodrigues
|
||||
|
||||
epsilon = 0.0
|
||||
if self.lattice == 'cubic':
|
||||
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'hexagonal':
|
||||
return R[0] >= np.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'tetragonal':
|
||||
return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
elif self.lattice == 'orthorhombic':
|
||||
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def inSST(self,
|
||||
vector,
|
||||
proper = False,
|
||||
color = False):
|
||||
"""
|
||||
Check whether given vector falls into standard stereographic triangle of own symmetry.
|
||||
|
||||
proper considers only vectors with z >= 0, hence uses two neighboring SSTs.
|
||||
Return inverse pole figure color if requested.
|
||||
Bases are computed from
|
||||
|
||||
basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,1.]/np.sqrt(2.), # direction of green
|
||||
[1.,1.,1.]/np.sqrt(3.)]).T), # direction of blue
|
||||
'hexagonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,0.], # direction of green
|
||||
[np.sqrt(3.),1.,0.]/np.sqrt(4.)]).T), # direction of blue
|
||||
'tetragonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,0.], # direction of green
|
||||
[1.,1.,0.]/np.sqrt(2.)]).T), # direction of blue
|
||||
'orthorhombic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
||||
[1.,0.,0.], # direction of green
|
||||
[0.,1.,0.]]).T), # direction of blue
|
||||
}
|
||||
"""
|
||||
if self.lattice == 'cubic':
|
||||
basis = {'improper':np.array([ [-1. , 0. , 1. ],
|
||||
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
|
||||
[ 0. , np.sqrt(3.) , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , -1. , 1. ],
|
||||
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
|
||||
[ np.sqrt(3.) , 0. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'hexagonal':
|
||||
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
||||
[ 1. , -np.sqrt(3.) , 0. ],
|
||||
[ 0. , 2. , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , 0. , 1. ],
|
||||
[-1. , np.sqrt(3.) , 0. ],
|
||||
[ np.sqrt(3.) , -1. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'tetragonal':
|
||||
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
||||
[ 1. , -1. , 0. ],
|
||||
[ 0. , np.sqrt(2.) , 0. ] ]),
|
||||
'proper':np.array([ [ 0. , 0. , 1. ],
|
||||
[-1. , 1. , 0. ],
|
||||
[ np.sqrt(2.) , 0. , 0. ] ]),
|
||||
}
|
||||
elif self.lattice == 'orthorhombic':
|
||||
basis = {'improper':np.array([ [ 0., 0., 1.],
|
||||
[ 1., 0., 0.],
|
||||
[ 0., 1., 0.] ]),
|
||||
'proper':np.array([ [ 0., 0., 1.],
|
||||
[-1., 0., 0.],
|
||||
[ 0., 1., 0.] ]),
|
||||
}
|
||||
else: # direct exit for unspecified symmetry
|
||||
if color:
|
||||
return (True,np.zeros(3,'d'))
|
||||
else:
|
||||
return True
|
||||
|
||||
v = np.array(vector,dtype=float)
|
||||
if proper: # check both improper ...
|
||||
theComponents = np.around(np.dot(basis['improper'],v),12)
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
if not inSST: # ... and proper SST
|
||||
theComponents = np.around(np.dot(basis['proper'],v),12)
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
else:
|
||||
v[2] = abs(v[2]) # z component projects identical
|
||||
theComponents = np.around(np.dot(basis['improper'],v),12) # for positive and negative values
|
||||
inSST = np.all(theComponents >= 0.0)
|
||||
|
||||
if color: # have to return color array
|
||||
if inSST:
|
||||
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
||||
rgb = np.minimum(np.ones(3,dtype=float),rgb) # limit to maximum intensity
|
||||
rgb /= max(rgb) # normalize to (HS)V = 1
|
||||
else:
|
||||
rgb = np.zeros(3,dtype=float)
|
||||
return (inSST,rgb)
|
||||
else:
|
||||
return inSST
|
||||
|
||||
# code derived from https://github.com/ezag/pyeuclid
|
||||
# suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf
|
||||
|
||||
|
||||
# ******************************************************************************************
|
||||
class Lattice:
|
||||
"""
|
||||
Lattice system.
|
||||
|
||||
Currently, this contains only a mapping from Bravais lattice to symmetry
|
||||
and orientation relationships. It could include twin and slip systems.
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Bravais_lattice
|
||||
|
||||
"""
|
||||
|
||||
lattices = {
|
||||
'triclinic':{'symmetry':None},
|
||||
'bct':{'symmetry':'tetragonal'},
|
||||
'hex':{'symmetry':'hexagonal'},
|
||||
'fcc':{'symmetry':'cubic','c/a':1.0},
|
||||
'bcc':{'symmetry':'cubic','c/a':1.0},
|
||||
}
|
||||
|
||||
|
||||
def __init__(self, lattice):
|
||||
"""
|
||||
New lattice of given type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
lattice : str
|
||||
Bravais lattice.
|
||||
|
||||
"""
|
||||
self.lattice = lattice
|
||||
self.symmetry = Symmetry(self.lattices[lattice]['symmetry'])
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Report basic lattice information."""
|
||||
return 'Bravais lattice {} ({} symmetry)'.format(self.lattice,self.symmetry)
|
||||
|
||||
|
||||
# Kurdjomov--Sachs orientation relationship for fcc <-> bcc transformation
|
||||
# from S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
||||
# also see K. Kitahara et al., Acta Materialia 54:1279-1288, 2006
|
||||
KS = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]],
|
||||
[[ 1, 1, -1],[ 0, 1, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ -1, 0, 1],[ -1, -1, 1]],
|
||||
[[ -1, 0, 1],[ -1, 1, -1]],
|
||||
[[ 0, 1, -1],[ -1, -1, 1]],
|
||||
[[ 0, 1, -1],[ -1, 1, -1]],
|
||||
[[ 1, -1, 0],[ -1, -1, 1]],
|
||||
[[ 1, -1, 0],[ -1, 1, -1]],
|
||||
[[ 1, 0, -1],[ -1, -1, 1]],
|
||||
[[ 1, 0, -1],[ -1, 1, -1]],
|
||||
[[ -1, -1, 0],[ -1, -1, 1]],
|
||||
[[ -1, -1, 0],[ -1, 1, -1]],
|
||||
[[ 0, 1, 1],[ -1, -1, 1]],
|
||||
[[ 0, 1, 1],[ -1, 1, -1]],
|
||||
[[ 0, -1, 1],[ -1, -1, 1]],
|
||||
[[ 0, -1, 1],[ -1, 1, -1]],
|
||||
[[ -1, 0, -1],[ -1, -1, 1]],
|
||||
[[ -1, 0, -1],[ -1, 1, -1]],
|
||||
[[ 1, 1, 0],[ -1, -1, 1]],
|
||||
[[ 1, 1, 0],[ -1, 1, -1]],
|
||||
[[ -1, 1, 0],[ -1, -1, 1]],
|
||||
[[ -1, 1, 0],[ -1, 1, -1]],
|
||||
[[ 0, -1, -1],[ -1, -1, 1]],
|
||||
[[ 0, -1, -1],[ -1, 1, -1]],
|
||||
[[ 1, 0, 1],[ -1, -1, 1]],
|
||||
[[ 1, 0, 1],[ -1, 1, -1]]],dtype='float')}
|
||||
|
||||
# Greninger--Troiano orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
GT = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 1, 1],[ 1, 0, 1]],
|
||||
[[ 1, 1, 1],[ 1, 1, 0]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ -1, 0, 1]],
|
||||
[[ -1, -1, 1],[ -1, -1, 0]],
|
||||
[[ -1, -1, 1],[ 0, -1, 1]],
|
||||
[[ -1, 1, 1],[ -1, 0, 1]],
|
||||
[[ -1, 1, 1],[ -1, 1, 0]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 1, 0, 1]],
|
||||
[[ 1, -1, 1],[ 1, -1, 0]],
|
||||
[[ 1, -1, 1],[ 0, -1, 1]],
|
||||
[[ 1, 1, 1],[ 1, 1, 0]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 1, 0, 1]],
|
||||
[[ -1, -1, 1],[ -1, -1, 0]],
|
||||
[[ -1, -1, 1],[ 0, -1, 1]],
|
||||
[[ -1, -1, 1],[ -1, 0, 1]],
|
||||
[[ -1, 1, 1],[ -1, 1, 0]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ -1, 0, 1]],
|
||||
[[ 1, -1, 1],[ 1, -1, 0]],
|
||||
[[ 1, -1, 1],[ 0, -1, 1]],
|
||||
[[ 1, -1, 1],[ 1, 0, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ -5,-12, 17],[-17, -7, 17]],
|
||||
[[ 17, -5,-12],[ 17,-17, -7]],
|
||||
[[-12, 17, -5],[ -7, 17,-17]],
|
||||
[[ 5, 12, 17],[ 17, 7, 17]],
|
||||
[[-17, 5,-12],[-17, 17, -7]],
|
||||
[[ 12,-17, -5],[ 7,-17,-17]],
|
||||
[[ -5, 12,-17],[-17, 7,-17]],
|
||||
[[ 17, 5, 12],[ 17, 17, 7]],
|
||||
[[-12,-17, 5],[ -7,-17, 17]],
|
||||
[[ 5,-12,-17],[ 17, -7,-17]],
|
||||
[[-17, -5, 12],[-17,-17, 7]],
|
||||
[[ 12, 17, 5],[ 7, 17, 17]],
|
||||
[[ -5, 17,-12],[-17, 17, -7]],
|
||||
[[-12, -5, 17],[ -7,-17, 17]],
|
||||
[[ 17,-12, -5],[ 17, -7,-17]],
|
||||
[[ 5,-17,-12],[ 17,-17, -7]],
|
||||
[[ 12, 5, 17],[ 7, 17, 17]],
|
||||
[[-17, 12, -5],[-17, 7,-17]],
|
||||
[[ -5,-17, 12],[-17,-17, 7]],
|
||||
[[-12, 5,-17],[ -7, 17,-17]],
|
||||
[[ 17, 12, 5],[ 17, 7, 17]],
|
||||
[[ 5, 17, 12],[ 17, 17, 7]],
|
||||
[[ 12, -5,-17],[ 7,-17,-17]],
|
||||
[[-17,-12, 5],[-17,-7, 17]]],dtype='float')}
|
||||
|
||||
# Greninger--Troiano' orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
GTprime = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 7, 17, 17],[ 12, 5, 17]],
|
||||
[[ 17, 7, 17],[ 17, 12, 5]],
|
||||
[[ 17, 17, 7],[ 5, 17, 12]],
|
||||
[[ -7,-17, 17],[-12, -5, 17]],
|
||||
[[-17, -7, 17],[-17,-12, 5]],
|
||||
[[-17,-17, 7],[ -5,-17, 12]],
|
||||
[[ 7,-17,-17],[ 12, -5,-17]],
|
||||
[[ 17, -7,-17],[ 17,-12, -5]],
|
||||
[[ 17,-17, -7],[ 5,-17,-12]],
|
||||
[[ -7, 17,-17],[-12, 5,-17]],
|
||||
[[-17, 7,-17],[-17, 12, -5]],
|
||||
[[-17, 17, -7],[ -5, 17,-12]],
|
||||
[[ 7, 17, 17],[ 12, 17, 5]],
|
||||
[[ 17, 7, 17],[ 5, 12, 17]],
|
||||
[[ 17, 17, 7],[ 17, 5, 12]],
|
||||
[[ -7,-17, 17],[-12,-17, 5]],
|
||||
[[-17, -7, 17],[ -5,-12, 17]],
|
||||
[[-17,-17, 7],[-17, -5, 12]],
|
||||
[[ 7,-17,-17],[ 12,-17, -5]],
|
||||
[[ 17, -7,-17],[ 5, -12,-17]],
|
||||
[[ 17,-17, -7],[ 17, -5,-12]],
|
||||
[[ -7, 17,-17],[-12, 17, -5]],
|
||||
[[-17, 7,-17],[ -5, 12,-17]],
|
||||
[[-17, 17, -7],[-17, 5,-12]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 0, 1, -1],[ 1, 1, -1]],
|
||||
[[ -1, 0, 1],[ -1, 1, 1]],
|
||||
[[ 1, -1, 0],[ 1, -1, 1]],
|
||||
[[ 0, -1, -1],[ -1, -1, -1]],
|
||||
[[ 1, 0, 1],[ 1, -1, 1]],
|
||||
[[ 1, -1, 0],[ 1, -1, -1]],
|
||||
[[ 0, 1, -1],[ -1, 1, -1]],
|
||||
[[ 1, 0, 1],[ 1, 1, 1]],
|
||||
[[ -1, -1, 0],[ -1, -1, 1]],
|
||||
[[ 0, -1, -1],[ 1, -1, -1]],
|
||||
[[ -1, 0, 1],[ -1, -1, 1]],
|
||||
[[ -1, -1, 0],[ -1, -1, -1]],
|
||||
[[ 0, -1, 1],[ 1, -1, 1]],
|
||||
[[ 1, 0, -1],[ 1, 1, -1]],
|
||||
[[ -1, 1, 0],[ -1, 1, 1]],
|
||||
[[ 0, 1, 1],[ -1, 1, 1]],
|
||||
[[ -1, 0, -1],[ -1, -1, -1]],
|
||||
[[ -1, 1, 0],[ -1, 1, -1]],
|
||||
[[ 0, -1, 1],[ -1, -1, 1]],
|
||||
[[ -1, 0, -1],[ -1, 1, -1]],
|
||||
[[ 1, 1, 0],[ 1, 1, 1]],
|
||||
[[ 0, 1, 1],[ 1, 1, 1]],
|
||||
[[ 1, 0, -1],[ 1, -1, -1]],
|
||||
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
||||
|
||||
# Nishiyama--Wassermann orientation relationship for fcc <-> bcc transformation
|
||||
# from H. Kitahara et al., Materials Characterization 54:378-386, 2005
|
||||
NW = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ -1, 1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ 1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ 0, 1, 1]],
|
||||
[[ -1, -1, 1],[ 0, 1, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 2, -1, -1],[ 0, -1, 1]],
|
||||
[[ -1, 2, -1],[ 0, -1, 1]],
|
||||
[[ -1, -1, 2],[ 0, -1, 1]],
|
||||
[[ -2, -1, -1],[ 0, -1, 1]],
|
||||
[[ 1, 2, -1],[ 0, -1, 1]],
|
||||
[[ 1, -1, 2],[ 0, -1, 1]],
|
||||
[[ 2, 1, -1],[ 0, -1, 1]],
|
||||
[[ -1, -2, -1],[ 0, -1, 1]],
|
||||
[[ -1, 1, 2],[ 0, -1, 1]],
|
||||
[[ 2, -1, 1],[ 0, -1, 1]], #It is wrong in the paper, but matrix is correct
|
||||
[[ -1, 2, 1],[ 0, -1, 1]],
|
||||
[[ -1, -1, -2],[ 0, -1, 1]]],dtype='float')}
|
||||
|
||||
# Pitsch orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Acta Materialia 53:1179-1190, 2005
|
||||
Pitsch = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 0, 1, 0],[ -1, 0, 1]],
|
||||
[[ 0, 0, 1],[ 1, -1, 0]],
|
||||
[[ 1, 0, 0],[ 0, 1, -1]],
|
||||
[[ 1, 0, 0],[ 0, -1, -1]],
|
||||
[[ 0, 1, 0],[ -1, 0, -1]],
|
||||
[[ 0, 0, 1],[ -1, -1, 0]],
|
||||
[[ 0, 1, 0],[ -1, 0, -1]],
|
||||
[[ 0, 0, 1],[ -1, -1, 0]],
|
||||
[[ 1, 0, 0],[ 0, -1, -1]],
|
||||
[[ 1, 0, 0],[ 0, -1, 1]],
|
||||
[[ 0, 1, 0],[ 1, 0, -1]],
|
||||
[[ 0, 0, 1],[ -1, 1, 0]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 1, 0, 1],[ 1, -1, 1]],
|
||||
[[ 1, 1, 0],[ 1, 1, -1]],
|
||||
[[ 0, 1, 1],[ -1, 1, 1]],
|
||||
[[ 0, 1, -1],[ -1, 1, -1]],
|
||||
[[ -1, 0, 1],[ -1, -1, 1]],
|
||||
[[ 1, -1, 0],[ 1, -1, -1]],
|
||||
[[ 1, 0, -1],[ 1, -1, -1]],
|
||||
[[ -1, 1, 0],[ -1, 1, -1]],
|
||||
[[ 0, -1, 1],[ -1, -1, 1]],
|
||||
[[ 0, 1, 1],[ -1, 1, 1]],
|
||||
[[ 1, 0, 1],[ 1, -1, 1]],
|
||||
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
||||
|
||||
# Bain orientation relationship for fcc <-> bcc transformation
|
||||
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
Bain = {'mapping':{'fcc':0,'bcc':1},
|
||||
'planes': np.array([
|
||||
[[ 1, 0, 0],[ 1, 0, 0]],
|
||||
[[ 0, 1, 0],[ 0, 1, 0]],
|
||||
[[ 0, 0, 1],[ 0, 0, 1]]],dtype='float'),
|
||||
'directions': np.array([
|
||||
[[ 0, 1, 0],[ 0, 1, 1]],
|
||||
[[ 0, 0, 1],[ 1, 0, 1]],
|
||||
[[ 1, 0, 0],[ 1, 1, 0]]],dtype='float')}
|
||||
|
||||
def relationOperations(self,model):
|
||||
"""
|
||||
Crystallographic orientation relationships for phase transformations.
|
||||
|
||||
References
|
||||
----------
|
||||
S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
||||
https://doi.org/10.1016/j.jallcom.2012.02.004
|
||||
|
||||
K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006
|
||||
https://doi.org/10.1016/j.actamat.2005.11.001
|
||||
|
||||
Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||
https://doi.org/10.1107/S0021889805038276
|
||||
|
||||
H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005
|
||||
https://doi.org/10.1016/j.matchar.2004.12.015
|
||||
|
||||
Y. He et al., Acta Materialia 53(4):1179-1190, 2005
|
||||
https://doi.org/10.1016/j.actamat.2004.11.021
|
||||
|
||||
"""
|
||||
models={'KS':self.KS, 'GT':self.GT, 'GT_prime':self.GTprime,
|
||||
'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain}
|
||||
try:
|
||||
relationship = models[model]
|
||||
except KeyError :
|
||||
raise KeyError('Orientation relationship "{}" is unknown'.format(model))
|
||||
|
||||
if self.lattice not in relationship['mapping']:
|
||||
raise ValueError('Relationship "{}" not supported for lattice "{}"'.format(model,self.lattice))
|
||||
|
||||
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()), # target lattice
|
||||
'rotations':[] }
|
||||
|
||||
myPlane_id = relationship['mapping'][self.lattice]
|
||||
otherPlane_id = (myPlane_id+1)%2
|
||||
myDir_id = myPlane_id +2
|
||||
otherDir_id = otherPlane_id +2
|
||||
|
||||
for miller in np.hstack((relationship['planes'],relationship['directions'])):
|
||||
myPlane = miller[myPlane_id]/ np.linalg.norm(miller[myPlane_id])
|
||||
myDir = miller[myDir_id]/ np.linalg.norm(miller[myDir_id])
|
||||
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane])
|
||||
|
||||
otherPlane = miller[otherPlane_id]/ np.linalg.norm(miller[otherPlane_id])
|
||||
otherDir = miller[otherDir_id]/ np.linalg.norm(miller[otherDir_id])
|
||||
otherMatrix = np.array([otherDir,np.cross(otherPlane,otherDir),otherPlane])
|
||||
|
||||
r['rotations'].append(Rotation.fromMatrix(np.dot(otherMatrix.T,myMatrix)))
|
||||
|
||||
return r
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,837 @@
|
|||
import numpy as np
|
||||
|
||||
from . import Lambert
|
||||
|
||||
P = -1
|
||||
|
||||
def iszero(a):
|
||||
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
||||
|
||||
|
||||
class Rotation:
|
||||
u"""
|
||||
Orientation stored with functionality for conversion to different representations.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015
|
||||
https://doi.org/10.1088/0965-0393/23/8/083501
|
||||
|
||||
Conventions
|
||||
-----------
|
||||
Convention 1: Coordinate frames are right-handed.
|
||||
Convention 2: A rotation angle ω is taken to be positive for a counterclockwise rotation
|
||||
when viewing from the end point of the rotation axis towards the origin.
|
||||
Convention 3: Rotations will be interpreted in the passive sense.
|
||||
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
||||
with the angular ranges as [0, 2π],[0, π],[0, 2π].
|
||||
Convention 5: The rotation angle ω is limited to the interval [0, π].
|
||||
Convention 6: the real part of a quaternion is positive, Re(q) > 0
|
||||
Convention 7: P = -1 (as default).
|
||||
|
||||
Usage
|
||||
-----
|
||||
Vector "a" (defined in coordinate system "A") is passively rotated
|
||||
resulting in new coordinates "b" when expressed in system "B".
|
||||
b = Q * a
|
||||
b = np.dot(Q.asMatrix(),a)
|
||||
|
||||
"""
|
||||
|
||||
__slots__ = ['quaternion']
|
||||
|
||||
def __init__(self,quaternion = np.array([1.0,0.0,0.0,0.0])):
|
||||
"""
|
||||
Initializes to identity unless specified.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
quaternion : numpy.ndarray, optional
|
||||
Unit quaternion that follows the conventions. Use .fromQuaternion to perform a sanity check.
|
||||
|
||||
"""
|
||||
self.quaternion = quaternion.copy()
|
||||
|
||||
def __copy__(self):
|
||||
"""Copy."""
|
||||
return self.__class__(self.quaternion)
|
||||
|
||||
copy = __copy__
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
"""Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles."""
|
||||
return '\n'.join([
|
||||
'Quaternion: (real={:.3f}, imag=<{:+.3f}, {:+.3f}, {:+.3f}>)'.format(*(self.quaternion)),
|
||||
'Matrix:\n{}'.format(self.asMatrix()),
|
||||
'Bunge Eulers / deg: ({:3.2f}, {:3.2f}, {:3.2f})'.format(*self.asEulers(degrees=True)),
|
||||
])
|
||||
|
||||
|
||||
def __mul__(self, other):
|
||||
"""
|
||||
Multiplication.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : numpy.ndarray or Rotation
|
||||
Vector, second or fourth order tensor, or rotation object that is rotated.
|
||||
|
||||
Todo
|
||||
----
|
||||
Document details active/passive)
|
||||
considere rotation of (3,3,3,3)-matrix
|
||||
|
||||
"""
|
||||
if isinstance(other, Rotation): # rotate a rotation
|
||||
self_q = self.quaternion[0]
|
||||
self_p = self.quaternion[1:]
|
||||
other_q = other.quaternion[0]
|
||||
other_p = other.quaternion[1:]
|
||||
R = self.__class__(np.append(self_q*other_q - np.dot(self_p,other_p),
|
||||
self_q*other_p + other_q*self_p + P * np.cross(self_p,other_p)))
|
||||
return R.standardize()
|
||||
elif isinstance(other, (tuple,np.ndarray)):
|
||||
if isinstance(other,tuple) or other.shape == (3,): # rotate a single (3)-vector or meshgrid
|
||||
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
|
||||
B = 2.0 * ( self.quaternion[1]*other[0]
|
||||
+ self.quaternion[2]*other[1]
|
||||
+ self.quaternion[3]*other[2])
|
||||
C = 2.0 * P*self.quaternion[0]
|
||||
|
||||
return np.array([
|
||||
A*other[0] + B*self.quaternion[1] + C*(self.quaternion[2]*other[2] - self.quaternion[3]*other[1]),
|
||||
A*other[1] + B*self.quaternion[2] + C*(self.quaternion[3]*other[0] - self.quaternion[1]*other[2]),
|
||||
A*other[2] + B*self.quaternion[3] + C*(self.quaternion[1]*other[1] - self.quaternion[2]*other[0]),
|
||||
])
|
||||
elif other.shape == (3,3,): # rotate a single (3x3)-matrix
|
||||
return np.dot(self.asMatrix(),np.dot(other,self.asMatrix().T))
|
||||
elif other.shape == (3,3,3,3,):
|
||||
raise NotImplementedError
|
||||
else:
|
||||
return NotImplemented
|
||||
else:
|
||||
return NotImplemented
|
||||
|
||||
|
||||
def inverse(self):
|
||||
"""In-place inverse rotation/backward rotation."""
|
||||
self.quaternion[1:] *= -1
|
||||
return self
|
||||
|
||||
def inversed(self):
|
||||
"""Inverse rotation/backward rotation."""
|
||||
return self.copy().inverse()
|
||||
|
||||
|
||||
def standardize(self):
|
||||
"""In-place quaternion representation with positive q."""
|
||||
if self.quaternion[0] < 0.0: self.quaternion*=-1
|
||||
return self
|
||||
|
||||
def standardized(self):
|
||||
"""Quaternion representation with positive q."""
|
||||
return self.copy().standardize()
|
||||
|
||||
|
||||
def misorientation(self,other):
|
||||
"""
|
||||
Get Misorientation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Rotation
|
||||
Rotation to which the misorientation is computed.
|
||||
|
||||
"""
|
||||
return other*self.inversed()
|
||||
|
||||
|
||||
def average(self,other):
|
||||
"""
|
||||
Calculate the average rotation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
other : Rotation
|
||||
Rotation from which the average is rotated.
|
||||
|
||||
"""
|
||||
return Rotation.fromAverage([self,other])
|
||||
|
||||
|
||||
################################################################################################
|
||||
# convert to different orientation representations (numpy arrays)
|
||||
|
||||
def asQuaternion(self):
|
||||
"""
|
||||
Unit quaternion [q, p_1, p_2, p_3] unless quaternion == True: damask.quaternion object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
quaternion : bool, optional
|
||||
return quaternion as DAMASK object.
|
||||
|
||||
"""
|
||||
return self.quaternion
|
||||
|
||||
def asEulers(self,
|
||||
degrees = False):
|
||||
"""
|
||||
Bunge-Euler angles: (φ_1, ϕ, φ_2).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
degrees : bool, optional
|
||||
return angles in degrees.
|
||||
|
||||
"""
|
||||
eu = Rotation.qu2eu(self.quaternion)
|
||||
if degrees: eu = np.degrees(eu)
|
||||
return eu
|
||||
|
||||
def asAxisAngle(self,
|
||||
degrees = False,
|
||||
pair = False):
|
||||
"""
|
||||
Axis angle representation [n_1, n_2, n_3, ω] unless pair == True: ([n_1, n_2, n_3], ω).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
degrees : bool, optional
|
||||
return rotation angle in degrees.
|
||||
pair : bool, optional
|
||||
return tuple of axis and angle.
|
||||
|
||||
"""
|
||||
ax = Rotation.qu2ax(self.quaternion)
|
||||
if degrees: ax[3] = np.degrees(ax[3])
|
||||
return (ax[:3],np.degrees(ax[3])) if pair else ax
|
||||
|
||||
def asMatrix(self):
|
||||
"""Rotation matrix."""
|
||||
return Rotation.qu2om(self.quaternion)
|
||||
|
||||
def asRodrigues(self,
|
||||
vector = False):
|
||||
"""
|
||||
Rodrigues-Frank vector representation [n_1, n_2, n_3, tan(ω/2)] unless vector == True: [n_1, n_2, n_3] * tan(ω/2).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vector : bool, optional
|
||||
return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2).
|
||||
|
||||
"""
|
||||
ro = Rotation.qu2ro(self.quaternion)
|
||||
return ro[:3]*ro[3] if vector else ro
|
||||
|
||||
def asHomochoric(self):
|
||||
"""Homochoric vector: (h_1, h_2, h_3)."""
|
||||
return Rotation.qu2ho(self.quaternion)
|
||||
|
||||
def asCubochoric(self):
|
||||
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
||||
return Rotation.qu2cu(self.quaternion)
|
||||
|
||||
def asM(self):
|
||||
"""
|
||||
Intermediate representation supporting quaternion averaging.
|
||||
|
||||
References
|
||||
----------
|
||||
F. Landis Markley et al., Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007
|
||||
https://doi.org/10.2514/1.28949
|
||||
|
||||
"""
|
||||
return np.outer(self.quaternion,self.quaternion)
|
||||
|
||||
|
||||
################################################################################################
|
||||
# static constructors. The input data needs to follow the convention, options allow to
|
||||
# relax these convections
|
||||
@staticmethod
|
||||
def fromQuaternion(quaternion,
|
||||
acceptHomomorph = False,
|
||||
P = -1):
|
||||
|
||||
qu = quaternion if isinstance(quaternion,np.ndarray) and quaternion.dtype == np.dtype(float) \
|
||||
else np.array(quaternion,dtype=float)
|
||||
if P > 0: qu[1:4] *= -1 # convert from P=1 to P=-1
|
||||
if qu[0] < 0.0:
|
||||
if acceptHomomorph:
|
||||
qu *= -1.
|
||||
else:
|
||||
raise ValueError('Quaternion has negative first component.\n{}'.format(qu[0]))
|
||||
if not np.isclose(np.linalg.norm(qu), 1.0):
|
||||
raise ValueError('Quaternion is not of unit length.\n{} {} {} {}'.format(*qu))
|
||||
|
||||
return Rotation(qu)
|
||||
|
||||
@staticmethod
|
||||
def fromEulers(eulers,
|
||||
degrees = False):
|
||||
|
||||
eu = eulers if isinstance(eulers, np.ndarray) and eulers.dtype == np.dtype(float) \
|
||||
else np.array(eulers,dtype=float)
|
||||
eu = np.radians(eu) if degrees else eu
|
||||
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or eu[1] > np.pi:
|
||||
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].\n{} {} {}.'.format(*eu))
|
||||
|
||||
return Rotation(Rotation.eu2qu(eu))
|
||||
|
||||
@staticmethod
|
||||
def fromAxisAngle(angleAxis,
|
||||
degrees = False,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
|
||||
ax = angleAxis if isinstance(angleAxis, np.ndarray) and angleAxis.dtype == np.dtype(float) \
|
||||
else np.array(angleAxis,dtype=float)
|
||||
if P > 0: ax[0:3] *= -1 # convert from P=1 to P=-1
|
||||
if degrees: ax[ 3] = np.radians(ax[3])
|
||||
if normalise: ax[0:3] /= np.linalg.norm(ax[0:3])
|
||||
if ax[3] < 0.0 or ax[3] > np.pi:
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π].\n'.format(ax[3]))
|
||||
if not np.isclose(np.linalg.norm(ax[0:3]), 1.0):
|
||||
raise ValueError('Axis angle rotation axis is not of unit length.\n{} {} {}'.format(*ax[0:3]))
|
||||
|
||||
return Rotation(Rotation.ax2qu(ax))
|
||||
|
||||
@staticmethod
|
||||
def fromBasis(basis,
|
||||
orthonormal = True,
|
||||
reciprocal = False,
|
||||
):
|
||||
|
||||
om = basis if isinstance(basis, np.ndarray) else np.array(basis).reshape((3,3))
|
||||
if reciprocal:
|
||||
om = np.linalg.inv(om.T/np.pi) # transform reciprocal basis set
|
||||
orthonormal = False # contains stretch
|
||||
if not orthonormal:
|
||||
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition
|
||||
om = np.dot(U,Vh)
|
||||
if not np.isclose(np.linalg.det(om),1.0):
|
||||
raise ValueError('matrix is not a proper rotation.\n{}'.format(om))
|
||||
if not np.isclose(np.dot(om[0],om[1]), 0.0) \
|
||||
or not np.isclose(np.dot(om[1],om[2]), 0.0) \
|
||||
or not np.isclose(np.dot(om[2],om[0]), 0.0):
|
||||
raise ValueError('matrix is not orthogonal.\n{}'.format(om))
|
||||
|
||||
return Rotation(Rotation.om2qu(om))
|
||||
|
||||
@staticmethod
|
||||
def fromMatrix(om,
|
||||
):
|
||||
|
||||
return Rotation.fromBasis(om)
|
||||
|
||||
@staticmethod
|
||||
def fromRodrigues(rodrigues,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
|
||||
ro = rodrigues if isinstance(rodrigues, np.ndarray) and rodrigues.dtype == np.dtype(float) \
|
||||
else np.array(rodrigues,dtype=float)
|
||||
if P > 0: ro[0:3] *= -1 # convert from P=1 to P=-1
|
||||
if normalise: ro[0:3] /= np.linalg.norm(ro[0:3])
|
||||
if not np.isclose(np.linalg.norm(ro[0:3]), 1.0):
|
||||
raise ValueError('Rodrigues rotation axis is not of unit length.\n{} {} {}'.format(*ro[0:3]))
|
||||
if ro[3] < 0.0:
|
||||
raise ValueError('Rodriques rotation angle not positive.\n'.format(ro[3]))
|
||||
|
||||
return Rotation(Rotation.ro2qu(ro))
|
||||
|
||||
@staticmethod
|
||||
def fromHomochoric(homochoric,
|
||||
P = -1):
|
||||
|
||||
ho = homochoric if isinstance(homochoric, np.ndarray) and homochoric.dtype == np.dtype(float) \
|
||||
else np.array(homochoric,dtype=float)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
||||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
@staticmethod
|
||||
def fromCubochoric(cubochoric,
|
||||
P = -1):
|
||||
|
||||
cu = cubochoric if isinstance(cubochoric, np.ndarray) and cubochoric.dtype == np.dtype(float) \
|
||||
else np.array(cubochoric,dtype=float)
|
||||
ho = Rotation.cu2ho(cu)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
||||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fromAverage(rotations,
|
||||
weights = []):
|
||||
"""
|
||||
Average rotation.
|
||||
|
||||
References
|
||||
----------
|
||||
F. Landis Markley et al., Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007
|
||||
https://doi.org/10.2514/1.28949
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rotations : list of Rotations
|
||||
Rotations to average from
|
||||
weights : list of floats, optional
|
||||
Weights for each rotation used for averaging
|
||||
|
||||
"""
|
||||
if not all(isinstance(item, Rotation) for item in rotations):
|
||||
raise TypeError("Only instances of Rotation can be averaged.")
|
||||
|
||||
N = len(rotations)
|
||||
if weights == [] or not weights:
|
||||
weights = np.ones(N,dtype='i')
|
||||
|
||||
for i,(r,n) in enumerate(zip(rotations,weights)):
|
||||
M = r.asM() * n if i == 0 \
|
||||
else M + r.asM() * n # noqa add (multiples) of this rotation to average noqa
|
||||
eig, vec = np.linalg.eig(M/N)
|
||||
|
||||
return Rotation.fromQuaternion(np.real(vec.T[eig.argmax()]),acceptHomomorph = True)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fromRandom():
|
||||
r = np.random.random(3)
|
||||
A = np.sqrt(r[2])
|
||||
B = np.sqrt(1.0-r[2])
|
||||
return Rotation(np.array([np.cos(2.0*np.pi*r[0])*A,
|
||||
np.sin(2.0*np.pi*r[1])*B,
|
||||
np.cos(2.0*np.pi*r[1])*B,
|
||||
np.sin(2.0*np.pi*r[0])*A])).standardize()
|
||||
|
||||
|
||||
####################################################################################################
|
||||
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
|
||||
####################################################################################################
|
||||
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are
|
||||
# permitted provided that the following conditions are met:
|
||||
#
|
||||
# - Redistributions of source code must retain the above copyright notice, this list
|
||||
# of conditions and the following disclaimer.
|
||||
# - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
# list of conditions and the following disclaimer in the documentation and/or
|
||||
# other materials provided with the distribution.
|
||||
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
# of its contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
####################################################################################################
|
||||
#---------- Quaternion ----------
|
||||
@staticmethod
|
||||
def qu2om(qu):
|
||||
"""Quaternion to rotation matrix."""
|
||||
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2)
|
||||
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2)
|
||||
|
||||
om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3])
|
||||
om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3])
|
||||
om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1])
|
||||
om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1])
|
||||
om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2])
|
||||
om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2])
|
||||
return om if P > 0.0 else om.T
|
||||
|
||||
@staticmethod
|
||||
def qu2eu(qu):
|
||||
"""Quaternion to Bunge-Euler angles."""
|
||||
q03 = qu[0]**2+qu[3]**2
|
||||
q12 = qu[1]**2+qu[2]**2
|
||||
chi = np.sqrt(q03*q12)
|
||||
|
||||
if iszero(chi):
|
||||
eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if iszero(q12) else \
|
||||
np.array([np.arctan2(2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
|
||||
else:
|
||||
eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
|
||||
np.arctan2( 2.0*chi, q03-q12 ),
|
||||
np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
|
||||
|
||||
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
||||
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
||||
return eu
|
||||
|
||||
@staticmethod
|
||||
def qu2ax(qu):
|
||||
"""
|
||||
Quaternion to axis angle pair.
|
||||
|
||||
Modified version of the original formulation, should be numerically more stable
|
||||
"""
|
||||
if iszero(qu[1]**2+qu[2]**2+qu[3]**2): # set axis to [001] if the angle is 0/360
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||
elif not iszero(qu[0]):
|
||||
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
|
||||
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
|
||||
ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ]
|
||||
else:
|
||||
ax = [ qu[1], qu[2], qu[3], np.pi]
|
||||
return np.array(ax)
|
||||
|
||||
@staticmethod
|
||||
def qu2ro(qu):
|
||||
"""Quaternion to Rodriques-Frank vector."""
|
||||
if iszero(qu[0]):
|
||||
ro = [qu[1], qu[2], qu[3], np.inf]
|
||||
else:
|
||||
s = np.linalg.norm([qu[1],qu[2],qu[3]])
|
||||
ro = [0.0,0.0,P,0.0] if iszero(s) else \
|
||||
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))]
|
||||
return np.array(ro)
|
||||
|
||||
@staticmethod
|
||||
def qu2ho(qu):
|
||||
"""Quaternion to homochoric vector."""
|
||||
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0))
|
||||
|
||||
if iszero(omega):
|
||||
ho = np.array([ 0.0, 0.0, 0.0 ])
|
||||
else:
|
||||
ho = np.array([qu[1], qu[2], qu[3]])
|
||||
f = 0.75 * ( omega - np.sin(omega) )
|
||||
ho = ho/np.linalg.norm(ho) * f**(1./3.)
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
def qu2cu(qu):
|
||||
"""Quaternion to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.qu2ho(qu))
|
||||
|
||||
|
||||
#---------- Rotation matrix ----------
|
||||
@staticmethod
|
||||
def om2qu(om):
|
||||
"""
|
||||
Rotation matrix to quaternion.
|
||||
|
||||
The original formulation (direct conversion) had (numerical?) issues
|
||||
"""
|
||||
return Rotation.eu2qu(Rotation.om2eu(om))
|
||||
|
||||
@staticmethod
|
||||
def om2eu(om):
|
||||
"""Rotation matrix to Bunge-Euler angles."""
|
||||
if abs(om[2,2]) < 1.0:
|
||||
zeta = 1.0/np.sqrt(1.0-om[2,2]**2)
|
||||
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta),
|
||||
np.arccos(om[2,2]),
|
||||
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)])
|
||||
else:
|
||||
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation
|
||||
|
||||
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
||||
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
||||
return eu
|
||||
|
||||
@staticmethod
|
||||
def om2ax(om):
|
||||
"""Rotation matrix to axis angle pair."""
|
||||
ax=np.empty(4)
|
||||
|
||||
# first get the rotation angle
|
||||
t = 0.5*(om.trace() -1.0)
|
||||
ax[3] = np.arccos(np.clip(t,-1.0,1.0))
|
||||
|
||||
if iszero(ax[3]):
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0]
|
||||
else:
|
||||
w,vr = np.linalg.eig(om)
|
||||
# next, find the eigenvalue (1,0j)
|
||||
i = np.where(np.isclose(w,1.0+0.0j))[0][0]
|
||||
ax[0:3] = np.real(vr[0:3,i])
|
||||
diagDelta = np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]])
|
||||
ax[0:3] = np.where(iszero(diagDelta), ax[0:3],np.abs(ax[0:3])*np.sign(-P*diagDelta))
|
||||
return np.array(ax)
|
||||
|
||||
@staticmethod
|
||||
def om2ro(om):
|
||||
"""Rotation matrix to Rodriques-Frank vector."""
|
||||
return Rotation.eu2ro(Rotation.om2eu(om))
|
||||
|
||||
@staticmethod
|
||||
def om2ho(om):
|
||||
"""Rotation matrix to homochoric vector."""
|
||||
return Rotation.ax2ho(Rotation.om2ax(om))
|
||||
|
||||
@staticmethod
|
||||
def om2cu(om):
|
||||
"""Rotation matrix to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.om2ho(om))
|
||||
|
||||
|
||||
#---------- Bunge-Euler angles ----------
|
||||
@staticmethod
|
||||
def eu2qu(eu):
|
||||
"""Bunge-Euler angles to quaternion."""
|
||||
ee = 0.5*eu
|
||||
cPhi = np.cos(ee[1])
|
||||
sPhi = np.sin(ee[1])
|
||||
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]),
|
||||
-P*sPhi*np.cos(ee[0]-ee[2]),
|
||||
-P*sPhi*np.sin(ee[0]-ee[2]),
|
||||
-P*cPhi*np.sin(ee[0]+ee[2]) ])
|
||||
if qu[0] < 0.0: qu*=-1
|
||||
return qu
|
||||
|
||||
@staticmethod
|
||||
def eu2om(eu):
|
||||
"""Bunge-Euler angles to rotation matrix."""
|
||||
c = np.cos(eu)
|
||||
s = np.sin(eu)
|
||||
|
||||
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]],
|
||||
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]],
|
||||
[+s[0]*s[1], -c[0]*s[1], +c[1] ]])
|
||||
|
||||
om[np.where(iszero(om))] = 0.0
|
||||
return om
|
||||
|
||||
@staticmethod
|
||||
def eu2ax(eu):
|
||||
"""Bunge-Euler angles to axis angle pair."""
|
||||
t = np.tan(eu[1]*0.5)
|
||||
sigma = 0.5*(eu[0]+eu[2])
|
||||
delta = 0.5*(eu[0]-eu[2])
|
||||
tau = np.linalg.norm([t,np.sin(sigma)])
|
||||
alpha = np.pi if iszero(np.cos(sigma)) else \
|
||||
2.0*np.arctan(tau/np.cos(sigma))
|
||||
|
||||
if iszero(alpha):
|
||||
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
||||
else:
|
||||
ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis angle pair so a minus sign in front
|
||||
ax = np.append(ax,alpha)
|
||||
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive
|
||||
return ax
|
||||
|
||||
@staticmethod
|
||||
def eu2ro(eu):
|
||||
"""Bunge-Euler angles to Rodriques-Frank vector."""
|
||||
ro = Rotation.eu2ax(eu) # convert to axis angle pair representation
|
||||
if ro[3] >= np.pi: # Differs from original implementation. check convention 5
|
||||
ro[3] = np.inf
|
||||
elif iszero(ro[3]):
|
||||
ro = np.array([ 0.0, 0.0, P, 0.0 ])
|
||||
else:
|
||||
ro[3] = np.tan(ro[3]*0.5)
|
||||
return ro
|
||||
|
||||
@staticmethod
|
||||
def eu2ho(eu):
|
||||
"""Bunge-Euler angles to homochoric vector."""
|
||||
return Rotation.ax2ho(Rotation.eu2ax(eu))
|
||||
|
||||
@staticmethod
|
||||
def eu2cu(eu):
|
||||
"""Bunge-Euler angles to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.eu2ho(eu))
|
||||
|
||||
|
||||
#---------- Axis angle pair ----------
|
||||
@staticmethod
|
||||
def ax2qu(ax):
|
||||
"""Axis angle pair to quaternion."""
|
||||
if iszero(ax[3]):
|
||||
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ])
|
||||
else:
|
||||
c = np.cos(ax[3]*0.5)
|
||||
s = np.sin(ax[3]*0.5)
|
||||
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
||||
return qu
|
||||
|
||||
@staticmethod
|
||||
def ax2om(ax):
|
||||
"""Axis angle pair to rotation matrix."""
|
||||
c = np.cos(ax[3])
|
||||
s = np.sin(ax[3])
|
||||
omc = 1.0-c
|
||||
om=np.diag(ax[0:3]**2*omc + c)
|
||||
|
||||
for idx in [[0,1,2],[1,2,0],[2,0,1]]:
|
||||
q = omc*ax[idx[0]] * ax[idx[1]]
|
||||
om[idx[0],idx[1]] = q + s*ax[idx[2]]
|
||||
om[idx[1],idx[0]] = q - s*ax[idx[2]]
|
||||
return om if P < 0.0 else om.T
|
||||
|
||||
@staticmethod
|
||||
def ax2eu(ax):
|
||||
"""Rotation matrix to Bunge Euler angles."""
|
||||
return Rotation.om2eu(Rotation.ax2om(ax))
|
||||
|
||||
@staticmethod
|
||||
def ax2ro(ax):
|
||||
"""Axis angle pair to Rodriques-Frank vector."""
|
||||
if iszero(ax[3]):
|
||||
ro = [ 0.0, 0.0, P, 0.0 ]
|
||||
else:
|
||||
ro = [ax[0], ax[1], ax[2]]
|
||||
# 180 degree case
|
||||
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
||||
[np.tan(ax[3]*0.5)]
|
||||
return np.array(ro)
|
||||
|
||||
@staticmethod
|
||||
def ax2ho(ax):
|
||||
"""Axis angle pair to homochoric vector."""
|
||||
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
||||
ho = ax[0:3] * f
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
def ax2cu(ax):
|
||||
"""Axis angle pair to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.ax2ho(ax))
|
||||
|
||||
|
||||
#---------- Rodrigues-Frank vector ----------
|
||||
@staticmethod
|
||||
def ro2qu(ro):
|
||||
"""Rodriques-Frank vector to quaternion."""
|
||||
return Rotation.ax2qu(Rotation.ro2ax(ro))
|
||||
|
||||
@staticmethod
|
||||
def ro2om(ro):
|
||||
"""Rodgrigues-Frank vector to rotation matrix."""
|
||||
return Rotation.ax2om(Rotation.ro2ax(ro))
|
||||
|
||||
@staticmethod
|
||||
def ro2eu(ro):
|
||||
"""Rodriques-Frank vector to Bunge-Euler angles."""
|
||||
return Rotation.om2eu(Rotation.ro2om(ro))
|
||||
|
||||
@staticmethod
|
||||
def ro2ax(ro):
|
||||
"""Rodriques-Frank vector to axis angle pair."""
|
||||
ta = ro[3]
|
||||
|
||||
if iszero(ta):
|
||||
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
||||
elif not np.isfinite(ta):
|
||||
ax = [ ro[0], ro[1], ro[2], np.pi ]
|
||||
else:
|
||||
angle = 2.0*np.arctan(ta)
|
||||
ta = 1.0/np.linalg.norm(ro[0:3])
|
||||
ax = [ ro[0]/ta, ro[1]/ta, ro[2]/ta, angle ]
|
||||
return np.array(ax)
|
||||
|
||||
@staticmethod
|
||||
def ro2ho(ro):
|
||||
"""Rodriques-Frank vector to homochoric vector."""
|
||||
if iszero(np.sum(ro[0:3]**2.0)):
|
||||
ho = [ 0.0, 0.0, 0.0 ]
|
||||
else:
|
||||
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
|
||||
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
|
||||
return np.array(ho)
|
||||
|
||||
@staticmethod
|
||||
def ro2cu(ro):
|
||||
"""Rodriques-Frank vector to cubochoric vector."""
|
||||
return Rotation.ho2cu(Rotation.ro2ho(ro))
|
||||
|
||||
|
||||
#---------- Homochoric vector----------
|
||||
@staticmethod
|
||||
def ho2qu(ho):
|
||||
"""Homochoric vector to quaternion."""
|
||||
return Rotation.ax2qu(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2om(ho):
|
||||
"""Homochoric vector to rotation matrix."""
|
||||
return Rotation.ax2om(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2eu(ho):
|
||||
"""Homochoric vector to Bunge-Euler angles."""
|
||||
return Rotation.ax2eu(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2ax(ho):
|
||||
"""Homochoric vector to axis angle pair."""
|
||||
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
||||
-0.024999992127593126, -0.003928701544781374,
|
||||
-0.0008152701535450438, -0.0002009500426119712,
|
||||
-0.00002397986776071756, -0.00008202868926605841,
|
||||
+0.00012448715042090092, -0.0001749114214822577,
|
||||
+0.0001703481934140054, -0.00012062065004116828,
|
||||
+0.000059719705868660826, -0.00001980756723965647,
|
||||
+0.000003953714684212874, -0.00000036555001439719544])
|
||||
# normalize h and store the magnitude
|
||||
hmag_squared = np.sum(ho**2.)
|
||||
if iszero(hmag_squared):
|
||||
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
||||
else:
|
||||
hm = hmag_squared
|
||||
|
||||
# convert the magnitude to the rotation angle
|
||||
s = tfit[0] + tfit[1] * hmag_squared
|
||||
for i in range(2,16):
|
||||
hm *= hmag_squared
|
||||
s += tfit[i] * hm
|
||||
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
|
||||
return ax
|
||||
|
||||
@staticmethod
|
||||
def ho2ro(ho):
|
||||
"""Axis angle pair to Rodriques-Frank vector."""
|
||||
return Rotation.ax2ro(Rotation.ho2ax(ho))
|
||||
|
||||
@staticmethod
|
||||
def ho2cu(ho):
|
||||
"""Homochoric vector to cubochoric vector."""
|
||||
return Lambert.BallToCube(ho)
|
||||
|
||||
|
||||
#---------- Cubochoric ----------
|
||||
@staticmethod
|
||||
def cu2qu(cu):
|
||||
"""Cubochoric vector to quaternion."""
|
||||
return Rotation.ho2qu(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2om(cu):
|
||||
"""Cubochoric vector to rotation matrix."""
|
||||
return Rotation.ho2om(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2eu(cu):
|
||||
"""Cubochoric vector to Bunge-Euler angles."""
|
||||
return Rotation.ho2eu(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2ax(cu):
|
||||
"""Cubochoric vector to axis angle pair."""
|
||||
return Rotation.ho2ax(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2ro(cu):
|
||||
"""Cubochoric vector to Rodriques-Frank vector."""
|
||||
return Rotation.ho2ro(Rotation.cu2ho(cu))
|
||||
|
||||
@staticmethod
|
||||
def cu2ho(cu):
|
||||
"""Cubochoric vector to homochoric vector."""
|
||||
return Lambert.CubeToBall(cu)
|
|
@ -38,164 +38,212 @@ class bcolors:
|
|||
self.BOLD = ''
|
||||
self.UNDERLINE = ''
|
||||
self.CROSSOUT = ''
|
||||
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def srepr(arg,glue = '\n'):
|
||||
"""Joins arguments as individual lines."""
|
||||
if (not hasattr(arg, "strip") and
|
||||
(hasattr(arg, "__getitem__") or
|
||||
hasattr(arg, "__iter__"))):
|
||||
return glue.join(str(x) for x in arg)
|
||||
return arg if isinstance(arg,str) else repr(arg)
|
||||
r"""
|
||||
Join arguments as individual lines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arg : iterable
|
||||
Items to join.
|
||||
glue : str, optional
|
||||
Defaults to \n.
|
||||
|
||||
"""
|
||||
if (not hasattr(arg, "strip") and
|
||||
(hasattr(arg, "__getitem__") or
|
||||
hasattr(arg, "__iter__"))):
|
||||
return glue.join(str(x) for x in arg)
|
||||
return arg if isinstance(arg,str) else repr(arg)
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def croak(what, newline = True):
|
||||
"""Writes formated to stderr."""
|
||||
if what is not None:
|
||||
sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else ''))
|
||||
sys.stderr.flush()
|
||||
"""
|
||||
Write formated to stderr.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
what : str or iterable
|
||||
Content to be displayed
|
||||
newline : bool, optional
|
||||
Separate items of what by newline. Defaults to True.
|
||||
|
||||
"""
|
||||
if not what:
|
||||
sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else ''))
|
||||
sys.stderr.flush()
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def report(who = None,
|
||||
what = None):
|
||||
"""Reports script and file name."""
|
||||
croak( (emph(who)+': ' if who is not None else '') + (what if what is not None else '') + '\n' )
|
||||
"""
|
||||
Reports script and file name.
|
||||
|
||||
DEPRECATED
|
||||
|
||||
"""
|
||||
croak( (emph(who)+': ' if who is not None else '') + (what if what is not None else '') + '\n' )
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def emph(what):
|
||||
"""Formats string with emphasis."""
|
||||
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
||||
"""Formats string with emphasis."""
|
||||
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def deemph(what):
|
||||
"""Formats string with deemphasis."""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
"""Formats string with deemphasis."""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def delete(what):
|
||||
"""Formats string as deleted."""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
"""Formats string as deleted."""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def strikeout(what):
|
||||
"""Formats string as strikeout."""
|
||||
return bcolors.CROSSOUT+srepr(what)+bcolors.ENDC
|
||||
"""Formats string as strikeout."""
|
||||
return bcolors.CROSSOUT+srepr(what)+bcolors.ENDC
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def execute(cmd,
|
||||
streamIn = None,
|
||||
wd = './',
|
||||
env = None):
|
||||
"""Executes a command in given directory and returns stdout and stderr for optional stdin."""
|
||||
initialPath = os.getcwd()
|
||||
os.chdir(wd)
|
||||
myEnv = os.environ if env is None else env
|
||||
process = subprocess.Popen(shlex.split(cmd),
|
||||
stdout = subprocess.PIPE,
|
||||
stderr = subprocess.PIPE,
|
||||
stdin = subprocess.PIPE,
|
||||
env = myEnv)
|
||||
out,error = [i for i in (process.communicate() if streamIn is None
|
||||
else process.communicate(streamIn.read().encode('utf-8')))]
|
||||
out = out.decode('utf-8').replace('\x08','')
|
||||
error = error.decode('utf-8').replace('\x08','')
|
||||
os.chdir(initialPath)
|
||||
if process.returncode != 0: raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
return out,error
|
||||
|
||||
# -----------------------------
|
||||
class extendableOption(Option):
|
||||
"""
|
||||
Used for definition of new option parser action 'extend', which enables to take multiple option arguments.
|
||||
|
||||
Adopted from online tutorial http://docs.python.org/library/optparse.html
|
||||
"""
|
||||
|
||||
ACTIONS = Option.ACTIONS + ("extend",)
|
||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||
|
||||
def take_action(self, action, dest, opt, value, values, parser):
|
||||
if action == "extend":
|
||||
lvalue = value.split(",")
|
||||
values.ensure_value(dest, []).extend(lvalue)
|
||||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
|
||||
# Print iterations progress
|
||||
# from https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a
|
||||
def progressBar(iteration, total, prefix='', bar_length=50):
|
||||
"""
|
||||
Call in a loop to create terminal progress bar.
|
||||
|
||||
@params:
|
||||
iteration - Required : current iteration (Int)
|
||||
total - Required : total iterations (Int)
|
||||
prefix - Optional : prefix string (Str)
|
||||
bar_length - Optional : character length of bar (Int)
|
||||
"""
|
||||
fraction = iteration / float(total)
|
||||
if not hasattr(progressBar, "last_fraction"): # first call to function
|
||||
progressBar.start_time = time.time()
|
||||
progressBar.last_fraction = -1.0
|
||||
remaining_time = ' n/a'
|
||||
else:
|
||||
if fraction <= progressBar.last_fraction or iteration == 0: # reset: called within a new loop
|
||||
progressBar.start_time = time.time()
|
||||
progressBar.last_fraction = -1.0
|
||||
remaining_time = ' n/a'
|
||||
else:
|
||||
progressBar.last_fraction = fraction
|
||||
remainder = (total - iteration) * (time.time()-progressBar.start_time)/iteration
|
||||
remaining_time = '{: 3d}:'.format(int( remainder//3600)) + \
|
||||
'{:02d}:'.format(int((remainder//60)%60)) + \
|
||||
'{:02d}' .format(int( remainder %60))
|
||||
|
||||
filled_length = int(round(bar_length * fraction))
|
||||
bar = '█' * filled_length + '░' * (bar_length - filled_length)
|
||||
|
||||
sys.stderr.write('\r{} {} {}'.format(prefix, bar, remaining_time)),
|
||||
|
||||
if iteration == total: sys.stderr.write('\n')
|
||||
sys.stderr.flush()
|
||||
|
||||
|
||||
def scale_to_coprime(v):
|
||||
"""Scale vector to co-prime (relatively prime) integers."""
|
||||
MAX_DENOMINATOR = 1000
|
||||
|
||||
def get_square_denominator(x):
|
||||
"""Denominator of the square of a number."""
|
||||
return Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator
|
||||
|
||||
def lcm(a, b):
|
||||
"""Least common multiple."""
|
||||
return a * b // np.gcd(a, b)
|
||||
|
||||
denominators = [int(get_square_denominator(i)) for i in v]
|
||||
s = reduce(lcm, denominators) ** 0.5
|
||||
m = (np.array(v)*s).astype(np.int)
|
||||
return m//reduce(np.gcd,m)
|
||||
|
||||
|
||||
class return_message():
|
||||
"""Object with formatted return message."""
|
||||
|
||||
def __init__(self,message):
|
||||
"""
|
||||
Sets return message.
|
||||
Execute command.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
message : str or list of str
|
||||
message for output to screen
|
||||
cmd : str
|
||||
Command to be executed.
|
||||
streanIn :, optional
|
||||
Input (via pipe) for executed process.
|
||||
wd : str, optional
|
||||
Working directory of process. Defaults to ./ .
|
||||
env :
|
||||
Environment
|
||||
|
||||
"""
|
||||
self.message = message
|
||||
initialPath = os.getcwd()
|
||||
os.chdir(wd)
|
||||
myEnv = os.environ if env is None else env
|
||||
process = subprocess.Popen(shlex.split(cmd),
|
||||
stdout = subprocess.PIPE,
|
||||
stderr = subprocess.PIPE,
|
||||
stdin = subprocess.PIPE,
|
||||
env = myEnv)
|
||||
out,error = [i for i in (process.communicate() if streamIn is None
|
||||
else process.communicate(streamIn.read().encode('utf-8')))]
|
||||
out = out.decode('utf-8').replace('\x08','')
|
||||
error = error.decode('utf-8').replace('\x08','')
|
||||
os.chdir(initialPath)
|
||||
if process.returncode != 0:
|
||||
raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
|
||||
return out,error
|
||||
|
||||
|
||||
class extendableOption(Option):
|
||||
"""
|
||||
Used for definition of new option parser action 'extend', which enables to take multiple option arguments.
|
||||
|
||||
Adopted from online tutorial http://docs.python.org/library/optparse.html
|
||||
DEPRECATED
|
||||
"""
|
||||
|
||||
ACTIONS = Option.ACTIONS + ("extend",)
|
||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||
|
||||
def take_action(self, action, dest, opt, value, values, parser):
|
||||
if action == "extend":
|
||||
lvalue = value.split(",")
|
||||
values.ensure_value(dest, []).extend(lvalue)
|
||||
else:
|
||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||
|
||||
|
||||
def progressBar(iteration, total, prefix='', bar_length=50):
|
||||
"""
|
||||
Call in a loop to create terminal progress bar.
|
||||
|
||||
From https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a
|
||||
|
||||
Parameters
|
||||
----------
|
||||
iteration : int
|
||||
Current iteration.
|
||||
total : int
|
||||
Total iterations.
|
||||
prefix : str, optional
|
||||
Prefix string.
|
||||
bar_length : int, optional
|
||||
Character length of bar. Defaults to 50.
|
||||
|
||||
"""
|
||||
fraction = iteration / float(total)
|
||||
if not hasattr(progressBar, "last_fraction"): # first call to function
|
||||
progressBar.start_time = time.time()
|
||||
progressBar.last_fraction = -1.0
|
||||
remaining_time = ' n/a'
|
||||
else:
|
||||
if fraction <= progressBar.last_fraction or iteration == 0: # reset: called within a new loop
|
||||
progressBar.start_time = time.time()
|
||||
progressBar.last_fraction = -1.0
|
||||
remaining_time = ' n/a'
|
||||
else:
|
||||
progressBar.last_fraction = fraction
|
||||
remainder = (total - iteration) * (time.time()-progressBar.start_time)/iteration
|
||||
remaining_time = '{: 3d}:'.format(int( remainder//3600)) + \
|
||||
'{:02d}:'.format(int((remainder//60)%60)) + \
|
||||
'{:02d}' .format(int( remainder %60))
|
||||
|
||||
filled_length = int(round(bar_length * fraction))
|
||||
bar = '█' * filled_length + '░' * (bar_length - filled_length)
|
||||
|
||||
sys.stderr.write('\r{} {} {}'.format(prefix, bar, remaining_time)),
|
||||
|
||||
if iteration == total:
|
||||
sys.stderr.write('\n')
|
||||
sys.stderr.flush()
|
||||
|
||||
|
||||
def scale_to_coprime(v):
|
||||
"""Scale vector to co-prime (relatively prime) integers."""
|
||||
MAX_DENOMINATOR = 1000
|
||||
|
||||
def get_square_denominator(x):
|
||||
"""Denominator of the square of a number."""
|
||||
return Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator
|
||||
|
||||
def lcm(a, b):
|
||||
"""Least common multiple."""
|
||||
return a * b // np.gcd(a, b)
|
||||
|
||||
denominators = [int(get_square_denominator(i)) for i in v]
|
||||
s = reduce(lcm, denominators) ** 0.5
|
||||
m = (np.array(v)*s).astype(np.int)
|
||||
return m//reduce(np.gcd,m)
|
||||
|
||||
|
||||
class return_message():
|
||||
"""Object with formatted return message."""
|
||||
|
||||
def __init__(self,message):
|
||||
"""
|
||||
Sets return message.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
message : str or list of str
|
||||
message for output to screen
|
||||
|
||||
"""
|
||||
self.message = message
|
||||
|
||||
def __repr__(self):
|
||||
"""Return message suitable for interactive shells."""
|
||||
return srepr(self.message)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return message suitable for interactive shells."""
|
||||
return srepr(self.message)
|
||||
|
|
|
@ -0,0 +1,65 @@
|
|||
import os
|
||||
from itertools import permutations
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
from damask import Rotation
|
||||
from damask import Orientation
|
||||
from damask import Lattice
|
||||
|
||||
n = 1000
|
||||
|
||||
@pytest.fixture
|
||||
def default():
|
||||
"""A set of n random rotations."""
|
||||
return [Rotation.fromRandom() for r in range(n)]
|
||||
|
||||
@pytest.fixture
|
||||
def reference_dir(reference_dir_base):
|
||||
"""Directory containing reference results."""
|
||||
return os.path.join(reference_dir_base,'Rotation')
|
||||
|
||||
|
||||
class TestOrientation:
|
||||
|
||||
@pytest.mark.parametrize('color',[{'label':'red', 'RGB':[1,0,0],'direction':[0,0,1]},
|
||||
{'label':'green','RGB':[0,1,0],'direction':[0,1,1]},
|
||||
{'label':'blue', 'RGB':[0,0,1],'direction':[1,1,1]}])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_IPF_cubic(self,default,color,lattice):
|
||||
cube = damask.Orientation(damask.Rotation(),lattice)
|
||||
for direction in set(permutations(np.array(color['direction']))):
|
||||
assert np.allclose(cube.IPFcolor(direction),np.array(color['RGB']))
|
||||
|
||||
@pytest.mark.parametrize('lattice',Lattice.lattices)
|
||||
def test_IPF(self,lattice):
|
||||
direction = np.random.random(3)*2.0-1
|
||||
for rot in [Rotation.fromRandom() for r in range(n//100)]:
|
||||
R = damask.Orientation(rot,lattice)
|
||||
color = R.IPFcolor(direction)
|
||||
for equivalent in R.equivalentOrientations():
|
||||
assert np.allclose(color,R.IPFcolor(direction))
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_forward_backward(self,model,lattice):
|
||||
ori = Orientation(Rotation.fromRandom(),lattice)
|
||||
for i,r in enumerate(ori.relatedOrientations(model)):
|
||||
ori2 = r.relatedOrientations(model)[i]
|
||||
misorientation = ori.rotation.misorientation(ori2.rotation)
|
||||
assert misorientation.asAxisAngle(degrees=True)[3]<1.0e-5
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_reference(self,update,reference_dir,model,lattice):
|
||||
reference = os.path.join(reference_dir,'{}_{}.txt'.format(lattice,model))
|
||||
ori = Orientation(Rotation(),lattice)
|
||||
eu = np.array([o.rotation.asEulers(degrees=True) for o in ori.relatedOrientations(model)])
|
||||
if update:
|
||||
coords = np.array([(1,i+1) for i,x in enumerate(eu)])
|
||||
table = damask.Table(eu,{'Eulers':(3,)})
|
||||
table.add('pos',coords)
|
||||
table.to_ASCII(reference)
|
||||
assert np.allclose(eu,damask.Table.from_ASCII(reference).get('Eulers'))
|
|
@ -1,13 +1,9 @@
|
|||
import os
|
||||
from itertools import permutations
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
from damask import Rotation
|
||||
from damask import Orientation
|
||||
from damask import Lattice
|
||||
|
||||
n = 1000
|
||||
|
||||
|
@ -58,44 +54,3 @@ class TestRotation:
|
|||
for rot in default:
|
||||
assert np.allclose(rot.asCubochoric(),
|
||||
Rotation.fromQuaternion(rot.asQuaternion()).asCubochoric())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('color',[{'label':'red', 'RGB':[1,0,0],'direction':[0,0,1]},
|
||||
{'label':'green','RGB':[0,1,0],'direction':[0,1,1]},
|
||||
{'label':'blue', 'RGB':[0,0,1],'direction':[1,1,1]}])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_IPF_cubic(self,default,color,lattice):
|
||||
cube = damask.Orientation(damask.Rotation(),lattice)
|
||||
for direction in set(permutations(np.array(color['direction']))):
|
||||
assert np.allclose(cube.IPFcolor(direction),np.array(color['RGB']))
|
||||
|
||||
@pytest.mark.parametrize('lattice',Lattice.lattices)
|
||||
def test_IPF(self,lattice):
|
||||
direction = np.random.random(3)*2.0-1
|
||||
for rot in [Rotation.fromRandom() for r in range(n//100)]:
|
||||
R = damask.Orientation(rot,lattice)
|
||||
color = R.IPFcolor(direction)
|
||||
for equivalent in R.equivalentOrientations():
|
||||
assert np.allclose(color,R.IPFcolor(direction))
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_forward_backward(self,model,lattice):
|
||||
ori = Orientation(Rotation.fromRandom(),lattice)
|
||||
for i,r in enumerate(ori.relatedOrientations(model)):
|
||||
ori2 = r.relatedOrientations(model)[i]
|
||||
misorientation = ori.rotation.misorientation(ori2.rotation)
|
||||
assert misorientation.asAxisAngle(degrees=True)[3]<1.0e-5
|
||||
|
||||
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
||||
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
||||
def test_relationship_reference(self,update,reference_dir,model,lattice):
|
||||
reference = os.path.join(reference_dir,'{}_{}.txt'.format(lattice,model))
|
||||
ori = Orientation(Rotation(),lattice)
|
||||
eu = np.array([o.rotation.asEulers(degrees=True) for o in ori.relatedOrientations(model)])
|
||||
if update:
|
||||
coords = np.array([(1,i+1) for i,x in enumerate(eu)])
|
||||
table = damask.Table(eu,{'Eulers':(3,)})
|
||||
table.add('pos',coords)
|
||||
table.to_ASCII(reference)
|
||||
assert np.allclose(eu,damask.Table.from_ASCII(reference).get('Eulers'))
|
||||
|
|
Loading…
Reference in New Issue