instance less; use cell mapping

This commit is contained in:
Sharan Roongta 2021-02-22 16:17:32 +01:00
parent db25bc947d
commit 2f9d891fdd
3 changed files with 67 additions and 68 deletions

View File

@ -126,14 +126,15 @@ module homogenization
integer, intent(in) :: h
end subroutine mechanical_results
module function mechanical_updateState(subdt,subF,ip,el) result(doneAndHappy)
module function mechanical_updateState(subdt,subF,ce,ip,el) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce, & !< cell
ip, &
el
logical, dimension(2) :: doneAndHappy
end function mechanical_updateState
@ -326,7 +327,7 @@ subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execE
if (.not. converged) then
doneAndHappy = [.true.,.false.]
else
doneAndHappy = mechanical_updateState(dt,homogenization_F(1:3,1:3,ce),ip,el)
doneAndHappy = mechanical_updateState(dt,homogenization_F(1:3,1:3,ce),ce,ip,el)
converged = all(doneAndHappy)
endif
endif

View File

@ -51,7 +51,7 @@ submodule(homogenization) mechanical
end subroutine mechanical_RGC_averageStressAndItsTangent
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAndHappy)
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
@ -60,8 +60,7 @@ submodule(homogenization) mechanical
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
ce !< cell
end function mechanical_RGC_updateState
@ -188,30 +187,31 @@ end subroutine mechanical_homogenize
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
module function mechanical_updateState(subdt,subF,ip,el) result(doneAndHappy)
module function mechanical_updateState(subdt,subF,ce,ip,el) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
ce, &
ip, &
el
logical, dimension(2) :: doneAndHappy
integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
real(pReal) :: Ps(3,3,homogenization_Nconstituents(material_homogenizationAt2(ce)))
if (homogenization_type(material_homogenizationAt(el)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
if (homogenization_type(material_homogenizationAt2(ce)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
dPdFs(:,:,:,:,co) = phase_mechanical_dPdF(subdt,co,ip,el)
Fs(:,:,co) = phase_mechanical_getF(co,ip,el)
Ps(:,:,co) = phase_mechanical_getP(co,ip,el)
enddo
doneAndHappy = mechanical_RGC_updateState(Ps,Fs,subF,subdt,dPdFs,ip,el)
doneAndHappy = mechanical_RGC_updateState(Ps,Fs,subF,subdt,dPdFs,ce)
else
doneAndHappy = .true.
endif

View File

@ -236,7 +236,7 @@ end subroutine mechanical_RGC_partitionDeformation
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
! "happy" with result
!--------------------------------------------------------------------------------------------------
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAndHappy)
module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
logical, dimension(2) :: doneAndHappy
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
@ -245,12 +245,11 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
ce !< cell
integer, dimension(4) :: intFaceN,intFaceP,faceID
integer, dimension(3) :: nGDim,iGr3N,iGr3P
integer :: instance,iNum,i,j,nIntFaceTot,iGrN,iGrP,iMun,iFace,k,l,ipert,iGrain,nGrain, of
integer :: instance,iNum,i,j,nIntFaceTot,iGrN,iGrP,iMun,iFace,k,l,ipert,iGrain,nGrain, me
real(pReal), dimension(3,3,size(P,3)) :: R,pF,pR,D,pD
real(pReal), dimension(3,size(P,3)) :: NN,devNull
real(pReal), dimension(3) :: normP,normN,mornP,mornN
@ -264,9 +263,9 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
return
endif zeroTimeStep
instance = homogenization_typeInstance(material_homogenizationAt(el))
of = material_homogenizationMemberAt(ip,el)
instance = homogenization_typeInstance(material_homogenizationAt2(ce))
me = material_homogenizationMemberAt2(ce)
associate(stt => state(instance), st0 => state0(instance), dst => dependentState(instance), prm => param(instance))
!--------------------------------------------------------------------------------------------------
@ -281,16 +280,16 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
! allocate the size of the global relaxation arrays/jacobian matrices depending on the size of the cluster
allocate(resid(3*nIntFaceTot), source=0.0_pReal)
allocate(tract(nIntFaceTot,3), source=0.0_pReal)
relax = stt%relaxationVector(:,of)
drelax = stt%relaxationVector(:,of) - st0%relaxationVector(:,of)
relax = stt%relaxationVector(:,me)
drelax = stt%relaxationVector(:,me) - st0%relaxationVector(:,me)
!--------------------------------------------------------------------------------------------------
! computing interface mismatch and stress penalty tensor for all interfaces of all grains
call stressPenalty(R,NN,avgF,F,ip,el,instance,of)
call stressPenalty(R,NN,avgF,F,ce,me)
!--------------------------------------------------------------------------------------------------
! calculating volume discrepancy and stress penalty related to overall volume discrepancy
call volumePenalty(D,dst%volumeDiscrepancy(of),avgF,F,nGrain,instance,of)
call volumePenalty(D,dst%volumeDiscrepancy(me),avgF,F,nGrain,ce,me)
!------------------------------------------------------------------------------------------------
! computing the residual stress from the balance of traction at all (interior) interfaces
@ -302,7 +301,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N)
normN = interfaceNormal(intFaceN,instance,of)
normN = interfaceNormal(intFaceN,ce,me)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
@ -310,7 +309,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P)
normP = interfaceNormal(intFaceP,instance,of)
normP = interfaceNormal(intFaceP,ce,me)
!--------------------------------------------------------------------------------------------------
! compute the residual of traction at the interface (in local system, 4-dimensional index)
@ -338,9 +337,9 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
if (residMax < num%rtol*stresMax .or. residMax < num%atol) then
doneAndHappy = .true.
dst%mismatch(1:3,of) = sum(NN,2)/real(nGrain,pReal)
dst%relaxationRate_avg(of) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal)
dst%relaxationRate_max(of) = maxval(abs(drelax))/dt
dst%mismatch(1:3,me) = sum(NN,2)/real(nGrain,pReal)
dst%relaxationRate_avg(me) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal)
dst%relaxationRate_max(me) = maxval(abs(drelax))/dt
return
@ -366,10 +365,10 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate sytem
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate into global grain ID
intFaceN = getInterface(2*faceID(1),iGr3N) ! identifying the connecting interface in local coordinate system
normN = interfaceNormal(intFaceN,instance,of)
normN = interfaceNormal(intFaceN,ce,me)
do iFace = 1,6
intFaceN = getInterface(iFace,iGr3N) ! identifying all interfaces that influence relaxation of the above interface
mornN = interfaceNormal(intFaceN,instance,of)
mornN = interfaceNormal(intFaceN,ce,me)
iMun = interface4to1(intFaceN,param(instance)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
@ -387,10 +386,10 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate sytem
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate into global grain ID
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identifying the connecting interface in local coordinate system
normP = interfaceNormal(intFaceP,instance,of)
normP = interfaceNormal(intFaceP,ce,me)
do iFace = 1,6
intFaceP = getInterface(iFace,iGr3P) ! identifying all interfaces that influence relaxation of the above interface
mornP = interfaceNormal(intFaceP,instance,of)
mornP = interfaceNormal(intFaceP,ce,me)
iMun = interface4to1(intFaceP,param(instance)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
@ -411,10 +410,10 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
do ipert = 1,3*nIntFaceTot
p_relax = relax
p_relax(ipert) = relax(ipert) + num%pPert ! perturb the relaxation vector
stt%relaxationVector(:,of) = p_relax
call grainDeformation(pF,avgF,instance,of) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ip,el,instance,of) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain,instance,of) ! stress penalty due to volume discrepancy from perturbed state
stt%relaxationVector(:,me) = p_relax
call grainDeformation(pF,avgF,ce,me) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ce,me) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain,ce,me) ! stress penalty due to volume discrepancy from perturbed state
!--------------------------------------------------------------------------------------------------
! computing the global stress residual array from the perturbed state
@ -427,7 +426,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
iGr3N = faceID(2:4) ! identify the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N) ! identify the interface ID of the grain
normN = interfaceNormal(intFaceN,instance,of)
normN = interfaceNormal(intFaceN,ce,me)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
@ -435,7 +434,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identify the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identify the interface ID of the grain
normP = interfaceNormal(intFaceP,instance,of)
normP = interfaceNormal(intFaceP,ce,me)
!--------------------------------------------------------------------------------------------------
! compute the residual stress (contribution of mismatch and volume penalties) from perturbed state
@ -475,11 +474,11 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
do i = 1,3*nIntFaceTot;do j = 1,3*nIntFaceTot
drelax(i) = drelax(i) - jnverse(i,j)*resid(j) ! Calculate the correction for the state variable
enddo; enddo
stt%relaxationVector(:,of) = relax + drelax ! Updateing the state variable for the next iteration
stt%relaxationVector(:,me) = relax + drelax ! Updateing the state variable for the next iteration
if (any(abs(drelax) > num%maxdRelax)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large
doneAndHappy = [.true.,.false.]
!$OMP CRITICAL (write2out)
print'(a,i3,a,i3,a)',' RGC_updateState: ip ',ip,' | el ',el,' enforces cutback'
! print'(a,i3,a,i3,a)',' RGC_updateState: ip ',ip,' | el ',el,' enforces cutback'
print'(a,e15.8)',' due to large relaxation change = ',maxval(abs(drelax))
flush(IO_STDOUT)
!$OMP END CRITICAL (write2out)
@ -491,14 +490,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to deformation mismatch
!------------------------------------------------------------------------------------------------
subroutine stressPenalty(rPen,nMis,avgF,fDef,ip,el,instance,of)
subroutine stressPenalty(rPen,nMis,avgF,fDef,ce,me)
real(pReal), dimension (:,:,:), intent(out) :: rPen !< stress-like penalty
real(pReal), dimension (:,:), intent(out) :: nMis !< total amount of mismatch
real(pReal), dimension (:,:,:), intent(in) :: fDef !< deformation gradients
real(pReal), dimension (3,3), intent(in) :: avgF !< initial effective stretch tensor
integer, intent(in) :: ip,el,instance,of
integer, intent(in) :: ce, me
integer, dimension (4) :: intFace
integer, dimension (3) :: iGrain3,iGNghb3,nGDim
@ -518,27 +517,27 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
! get the correction factor the modulus of penalty stress representing the evolution of area of
! the interfaces due to deformations
surfCorr = surfaceCorrection(avgF,instance,of)
surfCorr = surfaceCorrection(avgF,ce,me)
associate(prm => param(instance))
associate(prm => param(homogenization_typeInstance(material_homogenizationAt2(ce))))
!-----------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains
grainLoop: do iGrain = 1,product(prm%N_constituents)
muGrain = equivalentMu(iGrain,ip,el)
muGrain = equivalentMu(iGrain,ce)
iGrain3 = grain1to3(iGrain,prm%N_constituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position
interfaceLoop: do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! get the 4-dimensional index of the interface in local numbering system of the grain
nVect = interfaceNormal(intFace,instance,of)
nVect = interfaceNormal(intFace,ce,me)
iGNghb3 = iGrain3 ! identify the neighboring grain across the interface
iGNghb3(abs(intFace(1))) = iGNghb3(abs(intFace(1))) &
+ int(real(intFace(1),pReal)/real(abs(intFace(1)),pReal))
where(iGNghb3 < 1) iGNghb3 = nGDim
where(iGNghb3 >nGDim) iGNghb3 = 1
iGNghb = grain3to1(iGNghb3,prm%N_constituents) ! get the ID of the neighboring grain
muGNghb = equivalentMu(iGNghb,ip,el)
muGNghb = equivalentMu(iGNghb,ce)
gDef = 0.5_pReal*(fDef(1:3,1:3,iGNghb) - fDef(1:3,1:3,iGrain)) ! difference/jump in deformation gradeint across the neighbor
!-------------------------------------------------------------------------------------------
@ -577,7 +576,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to volume discrepancy
!------------------------------------------------------------------------------------------------
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain,instance,of)
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain,ce,me)
real(pReal), dimension (:,:,:), intent(out) :: vPen ! stress-like penalty due to volume
real(pReal), intent(out) :: vDiscrep ! total volume discrepancy
@ -586,8 +585,8 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
real(pReal), dimension (3,3), intent(in) :: fAvg ! overall deformation gradient
integer, intent(in) :: &
Ngrain, &
instance, &
of
ce, &
me
real(pReal), dimension(size(vPen,3)) :: gVol
integer :: i
@ -617,14 +616,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!> @brief compute the correction factor accouted for surface evolution (area change) due to
! deformation
!--------------------------------------------------------------------------------------------------
function surfaceCorrection(avgF,instance,of)
function surfaceCorrection(avgF,ce,me)
real(pReal), dimension(3) :: surfaceCorrection
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
integer, intent(in) :: &
instance, &
of
ce, &
me
real(pReal), dimension(3,3) :: invC
real(pReal), dimension(3) :: nVect
real(pReal) :: detF
@ -635,7 +634,7 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
surfaceCorrection = 0.0_pReal
do iBase = 1,3
nVect = interfaceNormal([iBase,1,1,1],instance,of)
nVect = interfaceNormal([iBase,1,1,1],ce,me)
do i = 1,3; do j = 1,3
surfaceCorrection(iBase) = surfaceCorrection(iBase) + invC(i,j)*nVect(i)*nVect(j) ! compute the component of (the inverse of) the stretch in the direction of the normal
enddo; enddo
@ -648,17 +647,16 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!-------------------------------------------------------------------------------------------------
!> @brief compute the equivalent shear and bulk moduli from the elasticity tensor
!-------------------------------------------------------------------------------------------------
real(pReal) function equivalentMu(grainID,ip,el)
real(pReal) function equivalentMu(grainID,ce)
integer, intent(in) :: &
grainID,&
ip, & !< integration point number
el !< element number
ce !< cell
real(pReal), dimension(6,6) :: C
C = phase_homogenizedC(material_phaseAt(grainID,el),material_phaseMemberAt(grainID,ip,el))
C = phase_homogenizedC(material_phaseAt2(grainID,ce),material_phaseMemberAt2(grainID,ce))
equivalentMu = lattice_equivalent_mu(C,'voigt')
end function equivalentMu
@ -668,14 +666,14 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!> @brief calculating the grain deformation gradient (the same with
! homogenization_RGC_partitionDeformation, but used only for perturbation scheme)
!-------------------------------------------------------------------------------------------------
subroutine grainDeformation(F, avgF, instance, of)
subroutine grainDeformation(F, avgF, ce, me)
real(pReal), dimension(:,:,:), intent(out) :: F !< partitioned F per grain
real(pReal), dimension(:,:), intent(in) :: avgF !< averaged F
integer, intent(in) :: &
instance, &
of
ce, &
me
real(pReal), dimension(3) :: aVect,nVect
integer, dimension(4) :: intFace
@ -685,15 +683,15 @@ module function mechanical_RGC_updateState(P,F,avgF,dt,dPdF,ip,el) result(doneAn
!-----------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
associate(prm => param(instance))
associate (prm => param(homogenization_typeInstance(material_homogenizationAt2(ce))))
F = 0.0_pReal
do iGrain = 1,product(prm%N_constituents)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3)
aVect = relaxationVector(intFace,instance,of)
nVect = interfaceNormal(intFace,instance,of)
aVect = relaxationVector(intFace,ce,me)
nVect = interfaceNormal(intFace,ce,me)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! effective relaxations
enddo