simplified

needs some manual checking and proper test
This commit is contained in:
Martin Diehl 2019-05-28 23:45:17 +02:00
parent 669ca82ce1
commit 2eb964b1ea
1 changed files with 26 additions and 78 deletions

View File

@ -19,7 +19,7 @@ scriptID = ' '.join([scriptName,damask.version])
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [geomfile(s)]', description = """
Inserts a primitive geometric object at a given position.
Depending on the sign of the dimension parameters, these objects can be boxes, cylinders, or ellipsoids.
These objects can be boxes, cylinders, or ellipsoids.
""", version = scriptID)
@ -88,11 +88,6 @@ elif options.quaternion is not None:
else:
rotation = damask.Rotation()
options.center = np.array(options.center)
options.dimension = np.array(options.dimension)
# undo logarithmic sense of exponent and generate ellipsoids for negative dimensions (backward compatibility)
options.exponent = np.where(np.array(options.dimension) > 0, np.power(2,options.exponent), 2)
if filenames == []: filenames = [None]
@ -102,85 +97,38 @@ for name in filenames:
geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid = geom.get_grid()
size = geom.get_size()
origin = geom.get_origin()
microstructure = geom.get_microstructure()
# coordinates given in real space, not (default) voxel space
# scale to box of size [1.0,1.0,1.0]
if options.realspace:
options.center -= origin
options.center *= grid / size
options.dimension *= grid / size
# change to coordinate space where the primitive is the unit sphere/cube/etc
if options.periodic: # use padding to achieve periodicity
(X, Y, Z) = np.meshgrid(np.arange(-grid[0]/2, (3*grid[0])/2, dtype=np.float32), # 50% padding on each side
np.arange(-grid[1]/2, (3*grid[1])/2, dtype=np.float32),
np.arange(-grid[2]/2, (3*grid[2])/2, dtype=np.float32),
indexing='ij')
# Padding handling
X = np.roll(np.roll(np.roll(X,
-grid[0]//2, axis=0),
-grid[1]//2, axis=1),
-grid[2]//2, axis=2)
Y = np.roll(np.roll(np.roll(Y,
-grid[0]//2, axis=0),
-grid[1]//2, axis=1),
-grid[2]//2, axis=2)
Z = np.roll(np.roll(np.roll(Z,
-grid[0]//2, axis=0),
-grid[1]//2, axis=1),
-grid[2]//2, axis=2)
else: # nonperiodic, much lighter on resources
# change to coordinate space where the primitive is the unit sphere/cube/etc
(X, Y, Z) = np.meshgrid(np.arange(0, grid[0], dtype=np.float32),
np.arange(0, grid[1], dtype=np.float32),
np.arange(0, grid[2], dtype=np.float32),
indexing='ij')
center = (np.array(options.center) - geom.get_origin())/size
r = np.array(options.dimension)/size/2.0
else:
center = (np.array(options.center) + 0.5)/grid
r = np.array(options.dimension)/grid/2.0
# first by translating the center onto 0, 0.5 shifts the voxel origin onto the center of the voxel
X -= options.center[0] - 0.5
Y -= options.center[1] - 0.5
Z -= options.center[2] - 0.5
# and then by applying the rotation
(X, Y, Z) = rotation * (X, Y, Z)
# and finally by scaling (we don't worry about options.dimension being negative, np.abs occurs on the microstructure = np.where... line)
X /= options.dimension[0] * 0.5
Y /= options.dimension[1] * 0.5
Z /= options.dimension[2] * 0.5
fill = np.nanmax(microstructure)+1 if options.fill is None else options.fill
if np.any(center<0.0) or np.any(center>=1.0): print('error')
# High exponents can cause underflow & overflow - loss of precision is okay here, we just compare it to 1, so +infinity and 0 are fine
old_settings = np.seterr()
offset = np.ones(3)*0.5 if options.periodic else center
mask = np.full(grid,False)
# High exponents can cause underflow & overflow - okay here, just compare to 1, so +infinity and 0 are fine
np.seterr(over='ignore', under='ignore')
if options.periodic: # use padding to achieve periodicity
inside = np.zeros(grid, dtype=bool)
for i in range(2):
for j in range(2):
for k in range(2):
inside = inside | ( # Most of this is handling the padding
np.abs(X[grid[0] * i : grid[0] * (i+1),
grid[1] * j : grid[1] * (j+1),
grid[2] * k : grid[2] * (k+1)])**options.exponent[0] +
np.abs(Y[grid[0] * i : grid[0] * (i+1),
grid[1] * j : grid[1] * (j+1),
grid[2] * k : grid[2] * (k+1)])**options.exponent[1] +
np.abs(Z[grid[0] * i : grid[0] * (i+1),
grid[1] * j : grid[1] * (j+1),
grid[2] * k : grid[2] * (k+1)])**options.exponent[2] <= 1.0)
microstructure = np.where(inside,
fill if options.inside else microstructure,
microstructure if options.inside else fill)
else: # nonperiodic, much lighter on resources
microstructure = np.where(np.abs(X)**options.exponent[0] +
np.abs(Y)**options.exponent[1] +
np.abs(Z)**options.exponent[2] <= 1.0,
fill if options.inside else microstructure,
microstructure if options.inside else fill)
e = np.array(options.exponent)
for x in range(grid[0]):
for y in range(grid[1]):
for z in range(grid[2]):
coords = np.array([x+0.5,y+0.5,z+0.5])/grid
mask[x,y,z] = np.sum(np.abs((rotation*(coords-offset))/r)**e) < 1
if options.periodic:
shift = ((offset-center)*grid).astype(int)
mask = np.roll(mask,shift,(0,1,2))
if options.inside: mask = np.logical_not(mask)
fill = np.nanmax(microstructure)+1 if options.fill is None else options.fill
microstructure = np.where(mask,microstructure,fill)
damask.util.croak(geom.update(microstructure))
geom.add_comments(scriptID + ' ' + ' '.join(sys.argv[1:]))