removed norm functions from math in favor of intrinsic and simplified (mostly by using existing functions, merge intrinsic and array constructors)
This commit is contained in:
parent
519cd29c6f
commit
2eafefe652
|
@ -532,8 +532,6 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
|
||||||
mappingHomogenization, &
|
mappingHomogenization, &
|
||||||
mappingConstitutive, &
|
mappingConstitutive, &
|
||||||
homogenization_Ngrains
|
homogenization_Ngrains
|
||||||
|
|
||||||
|
|
||||||
use crystallite, only: &
|
use crystallite, only: &
|
||||||
crystallite_F0, &
|
crystallite_F0, &
|
||||||
crystallite_Fp0, &
|
crystallite_Fp0, &
|
||||||
|
@ -570,8 +568,6 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
|
||||||
debug_i, &
|
debug_i, &
|
||||||
debug_MaterialpointLoopDistribution, &
|
debug_MaterialpointLoopDistribution, &
|
||||||
debug_MaterialpointStateLoopDistribution
|
debug_MaterialpointStateLoopDistribution
|
||||||
use math, only: &
|
|
||||||
math_pDecomposition
|
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), intent(in) :: dt !< time increment
|
real(pReal), intent(in) :: dt !< time increment
|
||||||
|
|
|
@ -222,7 +222,7 @@ subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar3333, Tsta
|
||||||
math_identity4th, &
|
math_identity4th, &
|
||||||
math_symmetric33, &
|
math_symmetric33, &
|
||||||
math_Mandel33to6, &
|
math_Mandel33to6, &
|
||||||
math_tensorproduct, &
|
math_tensorproduct33, &
|
||||||
math_det33, &
|
math_det33, &
|
||||||
math_mul33x33
|
math_mul33x33
|
||||||
|
|
||||||
|
@ -262,11 +262,11 @@ subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar3333, Tsta
|
||||||
do f = 1_pInt,lattice_maxNslipFamily
|
do f = 1_pInt,lattice_maxNslipFamily
|
||||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,phase)) ! at which index starts my family
|
||||||
do i = 1_pInt,kinematics_slipplane_opening_Nslip(f,instance) ! process each (active) slip system in family
|
do i = 1_pInt,kinematics_slipplane_opening_Nslip(f,instance) ! process each (active) slip system in family
|
||||||
projection_d = math_tensorproduct(lattice_sd(1:3,index_myFamily+i,phase),&
|
projection_d = math_tensorproduct33(lattice_sd(1:3,index_myFamily+i,phase),&
|
||||||
lattice_sn(1:3,index_myFamily+i,phase))
|
lattice_sn(1:3,index_myFamily+i,phase))
|
||||||
projection_t = math_tensorproduct(lattice_st(1:3,index_myFamily+i,phase),&
|
projection_t = math_tensorproduct33(lattice_st(1:3,index_myFamily+i,phase),&
|
||||||
lattice_sn(1:3,index_myFamily+i,phase))
|
lattice_sn(1:3,index_myFamily+i,phase))
|
||||||
projection_n = math_tensorproduct(lattice_sn(1:3,index_myFamily+i,phase),&
|
projection_n = math_tensorproduct33(lattice_sn(1:3,index_myFamily+i,phase),&
|
||||||
lattice_sn(1:3,index_myFamily+i,phase))
|
lattice_sn(1:3,index_myFamily+i,phase))
|
||||||
|
|
||||||
projection_d_v(1:6) = math_Mandel33to6(math_symmetric33(projection_d(1:3,1:3)))
|
projection_d_v(1:6) = math_Mandel33to6(math_symmetric33(projection_d(1:3,1:3)))
|
||||||
|
|
101
code/lattice.f90
101
code/lattice.f90
|
@ -1602,9 +1602,8 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
use prec, only: &
|
use prec, only: &
|
||||||
tol_math_check
|
tol_math_check
|
||||||
use math, only: &
|
use math, only: &
|
||||||
math_vectorproduct, &
|
math_crossproduct, &
|
||||||
math_tensorproduct, &
|
math_tensorproduct33, &
|
||||||
math_norm3, &
|
|
||||||
math_mul33x33, &
|
math_mul33x33, &
|
||||||
math_mul33x3, &
|
math_mul33x3, &
|
||||||
math_transpose33, &
|
math_transpose33, &
|
||||||
|
@ -1707,9 +1706,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
ts(i) = lattice_fcc_shearTwin(i)
|
ts(i) = lattice_fcc_shearTwin(i)
|
||||||
enddo
|
enddo
|
||||||
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
||||||
cd(1:3,i) = lattice_fcc_systemCleavage(1:3,i)/math_norm3(lattice_fcc_systemCleavage(1:3,i))
|
cd(1:3,i) = lattice_fcc_systemCleavage(1:3,i)/norm2(lattice_fcc_systemCleavage(1:3,i))
|
||||||
cn(1:3,i) = lattice_fcc_systemCleavage(4:6,i)/math_norm3(lattice_fcc_systemCleavage(4:6,i))
|
cn(1:3,i) = lattice_fcc_systemCleavage(4:6,i)/norm2(lattice_fcc_systemCleavage(4:6,i))
|
||||||
ct(1:3,i) = math_vectorproduct(cd(1:3,i),cn(1:3,i))
|
ct(1:3,i) = math_crossproduct(cd(1:3,i),cn(1:3,i))
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
! Phase transformation
|
! Phase transformation
|
||||||
|
@ -1725,9 +1724,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
ztr(1:3,i) = real(LATTICE_fccTobcc_bainVariant(7:9,i),pReal)
|
ztr(1:3,i) = real(LATTICE_fccTobcc_bainVariant(7:9,i),pReal)
|
||||||
Utr(1:3,1:3,i) = 0.0_pReal ! Bain deformation
|
Utr(1:3,1:3,i) = 0.0_pReal ! Bain deformation
|
||||||
if ((a_fcc > 0.0_pReal) .and. (a_bcc > 0.0_pReal)) then
|
if ((a_fcc > 0.0_pReal) .and. (a_bcc > 0.0_pReal)) then
|
||||||
Utr(1:3,1:3,i) = (a_bcc/a_fcc)*math_tensorproduct(xtr(1:3,i), xtr(1:3,i)) + &
|
Utr(1:3,1:3,i) = (a_bcc/a_fcc)*math_tensorproduct33(xtr(1:3,i), xtr(1:3,i)) + &
|
||||||
sqrt(2.0_pReal)*(a_bcc/a_fcc)*math_tensorproduct(ytr(1:3,i), ytr(1:3,i)) + &
|
sqrt(2.0_pReal)*(a_bcc/a_fcc)*math_tensorproduct33(ytr(1:3,i), ytr(1:3,i)) + &
|
||||||
sqrt(2.0_pReal)*(a_bcc/a_fcc)*math_tensorproduct(ztr(1:3,i), ztr(1:3,i))
|
sqrt(2.0_pReal)*(a_bcc/a_fcc)*math_tensorproduct33(ztr(1:3,i), ztr(1:3,i))
|
||||||
endif
|
endif
|
||||||
Qtr(1:3,1:3,i) = math_mul33x33(Rtr(1:3,1:3,i), Btr(1:3,1:3,i))
|
Qtr(1:3,1:3,i) = math_mul33x33(Rtr(1:3,1:3,i), Btr(1:3,1:3,i))
|
||||||
Str(1:3,1:3,i) = math_mul33x33(Rtr(1:3,1:3,i), Utr(1:3,1:3,i)) - MATH_I3
|
Str(1:3,1:3,i) = math_mul33x33(Rtr(1:3,1:3,i), Utr(1:3,1:3,i)) - MATH_I3
|
||||||
|
@ -1741,9 +1740,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
endif
|
endif
|
||||||
sttr = math_mul33x33(sdtr, sstr)
|
sttr = math_mul33x33(sdtr, sstr)
|
||||||
do i = 1_pInt,myNtrans
|
do i = 1_pInt,myNtrans
|
||||||
xtr(1:3,i) = lattice_fccTohex_systemTrans(1:3,i)/math_norm3(lattice_fccTohex_systemTrans(1:3,i))
|
xtr(1:3,i) = lattice_fccTohex_systemTrans(1:3,i)/norm2(lattice_fccTohex_systemTrans(1:3,i))
|
||||||
ztr(1:3,i) = lattice_fccTohex_systemTrans(4:6,i)/math_norm3(lattice_fccTohex_systemTrans(4:6,i))
|
ztr(1:3,i) = lattice_fccTohex_systemTrans(4:6,i)/norm2(lattice_fccTohex_systemTrans(4:6,i))
|
||||||
ytr(1:3,i) = -math_vectorproduct(xtr(1:3,i), ztr(1:3,i))
|
ytr(1:3,i) = -math_crossproduct(xtr(1:3,i), ztr(1:3,i))
|
||||||
Rtr(1:3,1,i) = xtr(1:3,i)
|
Rtr(1:3,1,i) = xtr(1:3,i)
|
||||||
Rtr(1:3,2,i) = ytr(1:3,i)
|
Rtr(1:3,2,i) = ytr(1:3,i)
|
||||||
Rtr(1:3,3,i) = ztr(1:3,i)
|
Rtr(1:3,3,i) = ztr(1:3,i)
|
||||||
|
@ -1782,24 +1781,24 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
do i = 1_pInt,myNslip ! assign slip system vectors
|
do i = 1_pInt,myNslip ! assign slip system vectors
|
||||||
sd(1:3,i) = lattice_bcc_systemSlip(1:3,i)
|
sd(1:3,i) = lattice_bcc_systemSlip(1:3,i)
|
||||||
sn(1:3,i) = lattice_bcc_systemSlip(4:6,i)
|
sn(1:3,i) = lattice_bcc_systemSlip(4:6,i)
|
||||||
sdU = sd(1:3,i) / math_norm3(sd(1:3,i))
|
sdU = sd(1:3,i) / norm2(sd(1:3,i))
|
||||||
snU = sn(1:3,i) / math_norm3(sn(1:3,i))
|
snU = sn(1:3,i) / norm2(sn(1:3,i))
|
||||||
! "np" and "nn" according to Gröger_etal2008, Acta Materialia 56 (2008) 5412–5425, table 1 (corresponds to their "n1" for positive and negative slip direction respectively)
|
! "np" and "nn" according to Gröger_etal2008, Acta Materialia 56 (2008) 5412–5425, table 1 (corresponds to their "n1" for positive and negative slip direction respectively)
|
||||||
np = math_mul33x3(math_axisAngleToR(sdU,60.0_pReal*INRAD), snU)
|
np = math_mul33x3(math_axisAngleToR(sdU,60.0_pReal*INRAD), snU)
|
||||||
nn = math_mul33x3(math_axisAngleToR(-sdU,60.0_pReal*INRAD), snU)
|
nn = math_mul33x3(math_axisAngleToR(-sdU,60.0_pReal*INRAD), snU)
|
||||||
! Schmid matrices with non-Schmid contributions according to Koester_etal2012, Acta Materialia 60 (2012) 3894–3901, eq. (17) ("n1" is replaced by either "np" or "nn" according to either positive or negative slip direction)
|
! Schmid matrices with non-Schmid contributions according to Koester_etal2012, Acta Materialia 60 (2012) 3894–3901, eq. (17) ("n1" is replaced by either "np" or "nn" according to either positive or negative slip direction)
|
||||||
sns(1:3,1:3,1,1,i) = math_tensorproduct(sdU, np)
|
sns(1:3,1:3,1,1,i) = math_tensorproduct33(sdU, np)
|
||||||
sns(1:3,1:3,2,1,i) = math_tensorproduct(-sdU, nn)
|
sns(1:3,1:3,2,1,i) = math_tensorproduct33(-sdU, nn)
|
||||||
sns(1:3,1:3,1,2,i) = math_tensorproduct(math_vectorproduct(snU, sdU), snU)
|
sns(1:3,1:3,1,2,i) = math_tensorproduct33(math_crossproduct(snU, sdU), snU)
|
||||||
sns(1:3,1:3,2,2,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), snU)
|
sns(1:3,1:3,2,2,i) = math_tensorproduct33(math_crossproduct(snU, -sdU), snU)
|
||||||
sns(1:3,1:3,1,3,i) = math_tensorproduct(math_vectorproduct(np, sdU), np)
|
sns(1:3,1:3,1,3,i) = math_tensorproduct33(math_crossproduct(np, sdU), np)
|
||||||
sns(1:3,1:3,2,3,i) = math_tensorproduct(math_vectorproduct(nn, -sdU), nn)
|
sns(1:3,1:3,2,3,i) = math_tensorproduct33(math_crossproduct(nn, -sdU), nn)
|
||||||
sns(1:3,1:3,1,4,i) = math_tensorproduct(snU, snU)
|
sns(1:3,1:3,1,4,i) = math_tensorproduct33(snU, snU)
|
||||||
sns(1:3,1:3,2,4,i) = math_tensorproduct(snU, snU)
|
sns(1:3,1:3,2,4,i) = math_tensorproduct33(snU, snU)
|
||||||
sns(1:3,1:3,1,5,i) = math_tensorproduct(math_vectorproduct(snU, sdU), math_vectorproduct(snU, sdU))
|
sns(1:3,1:3,1,5,i) = math_tensorproduct33(math_crossproduct(snU, sdU), math_crossproduct(snU, sdU))
|
||||||
sns(1:3,1:3,2,5,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), math_vectorproduct(snU, -sdU))
|
sns(1:3,1:3,2,5,i) = math_tensorproduct33(math_crossproduct(snU, -sdU), math_crossproduct(snU, -sdU))
|
||||||
sns(1:3,1:3,1,6,i) = math_tensorproduct(sdU, sdU)
|
sns(1:3,1:3,1,6,i) = math_tensorproduct33(sdU, sdU)
|
||||||
sns(1:3,1:3,2,6,i) = math_tensorproduct(-sdU, -sdU)
|
sns(1:3,1:3,2,6,i) = math_tensorproduct33(-sdU, -sdU)
|
||||||
enddo
|
enddo
|
||||||
do i = 1_pInt,myNtwin ! assign twin system vectors and shears
|
do i = 1_pInt,myNtwin ! assign twin system vectors and shears
|
||||||
td(1:3,i) = lattice_bcc_systemTwin(1:3,i)
|
td(1:3,i) = lattice_bcc_systemTwin(1:3,i)
|
||||||
|
@ -1807,9 +1806,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
ts(i) = lattice_bcc_shearTwin(i)
|
ts(i) = lattice_bcc_shearTwin(i)
|
||||||
enddo
|
enddo
|
||||||
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
||||||
cd(1:3,i) = lattice_bcc_systemCleavage(1:3,i)/math_norm3(lattice_bcc_systemCleavage(1:3,i))
|
cd(1:3,i) = lattice_bcc_systemCleavage(1:3,i)/norm2(lattice_bcc_systemCleavage(1:3,i))
|
||||||
cn(1:3,i) = lattice_bcc_systemCleavage(4:6,i)/math_norm3(lattice_bcc_systemCleavage(4:6,i))
|
cn(1:3,i) = lattice_bcc_systemCleavage(4:6,i)/norm2(lattice_bcc_systemCleavage(4:6,i))
|
||||||
ct(1:3,i) = math_vectorproduct(cd(1:3,i),cn(1:3,i))
|
ct(1:3,i) = math_crossproduct(cd(1:3,i),cn(1:3,i))
|
||||||
enddo
|
enddo
|
||||||
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bcc_NslipSystem
|
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bcc_NslipSystem
|
||||||
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bcc_NtwinSystem
|
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bcc_NtwinSystem
|
||||||
|
@ -1861,12 +1860,12 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
cd(2,i) = (lattice_hex_systemCleavage(1,i)+2.0_pReal*lattice_hex_systemCleavage(2,i))*&
|
cd(2,i) = (lattice_hex_systemCleavage(1,i)+2.0_pReal*lattice_hex_systemCleavage(2,i))*&
|
||||||
0.5_pReal*sqrt(3.0_pReal)
|
0.5_pReal*sqrt(3.0_pReal)
|
||||||
cd(3,i) = lattice_hex_systemCleavage(4,i)*CoverA
|
cd(3,i) = lattice_hex_systemCleavage(4,i)*CoverA
|
||||||
cd(1:3,1) = cd(1:3,i)/math_norm3(cd(1:3,i))
|
cd(1:3,1) = cd(1:3,i)/norm2(cd(1:3,i))
|
||||||
cn(1,i) = lattice_hex_systemCleavage(5,i) ! plane (hkil)->(h (h+2k)/sqrt(3) l/(c/a))
|
cn(1,i) = lattice_hex_systemCleavage(5,i) ! plane (hkil)->(h (h+2k)/sqrt(3) l/(c/a))
|
||||||
cn(2,i) = (lattice_hex_systemCleavage(5,i)+2.0_pReal*lattice_hex_systemCleavage(6,i))/sqrt(3.0_pReal)
|
cn(2,i) = (lattice_hex_systemCleavage(5,i)+2.0_pReal*lattice_hex_systemCleavage(6,i))/sqrt(3.0_pReal)
|
||||||
cn(3,i) = lattice_hex_systemCleavage(8,i)/CoverA
|
cn(3,i) = lattice_hex_systemCleavage(8,i)/CoverA
|
||||||
cn(1:3,1) = cn(1:3,i)/math_norm3(cn(1:3,i))
|
cn(1:3,1) = cn(1:3,i)/norm2(cn(1:3,i))
|
||||||
ct(1:3,i) = math_vectorproduct(cd(1:3,i),cn(1:3,i))
|
ct(1:3,i) = math_crossproduct(cd(1:3,i),cn(1:3,i))
|
||||||
enddo
|
enddo
|
||||||
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_hex_NslipSystem
|
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_hex_NslipSystem
|
||||||
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_hex_NtwinSystem
|
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_hex_NtwinSystem
|
||||||
|
@ -1889,8 +1888,8 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
sd(3,i) = lattice_bct_systemSlip(3,i)*CoverA
|
sd(3,i) = lattice_bct_systemSlip(3,i)*CoverA
|
||||||
sn(1:2,i) = lattice_bct_systemSlip(4:5,i)
|
sn(1:2,i) = lattice_bct_systemSlip(4:5,i)
|
||||||
sn(3,i) = lattice_bct_systemSlip(6,i)/CoverA
|
sn(3,i) = lattice_bct_systemSlip(6,i)/CoverA
|
||||||
sdU = sd(1:3,i) / math_norm3(sd(1:3,i))
|
sdU = sd(1:3,i) / norm2(sd(1:3,i))
|
||||||
snU = sn(1:3,i) / math_norm3(sn(1:3,i))
|
snU = sn(1:3,i) / norm2(sn(1:3,i))
|
||||||
enddo
|
enddo
|
||||||
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bct_NslipSystem
|
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bct_NslipSystem
|
||||||
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bct_NtwinSystem
|
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bct_NtwinSystem
|
||||||
|
@ -1907,9 +1906,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
myNtrans = 0_pInt
|
myNtrans = 0_pInt
|
||||||
myNcleavage = lattice_ortho_Ncleavage
|
myNcleavage = lattice_ortho_Ncleavage
|
||||||
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
||||||
cd(1:3,i) = lattice_iso_systemCleavage(1:3,i)/math_norm3(LATTICE_ortho_systemCleavage(1:3,i))
|
cd(1:3,i) = lattice_iso_systemCleavage(1:3,i)/norm2(LATTICE_ortho_systemCleavage(1:3,i))
|
||||||
cn(1:3,i) = lattice_iso_systemCleavage(4:6,i)/math_norm3(LATTICE_ortho_systemCleavage(4:6,i))
|
cn(1:3,i) = lattice_iso_systemCleavage(4:6,i)/norm2(LATTICE_ortho_systemCleavage(4:6,i))
|
||||||
ct(1:3,i) = math_vectorproduct(cd(1:3,i),cn(1:3,i))
|
ct(1:3,i) = math_crossproduct(cd(1:3,i),cn(1:3,i))
|
||||||
enddo
|
enddo
|
||||||
lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,myPhase) = lattice_iso_NcleavageSystem
|
lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,myPhase) = lattice_iso_NcleavageSystem
|
||||||
|
|
||||||
|
@ -1921,9 +1920,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
myNtrans = 0_pInt
|
myNtrans = 0_pInt
|
||||||
myNcleavage = lattice_iso_Ncleavage
|
myNcleavage = lattice_iso_Ncleavage
|
||||||
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
do i = 1_pInt, myNcleavage ! assign cleavage system vectors
|
||||||
cd(1:3,i) = lattice_iso_systemCleavage(1:3,i)/math_norm3(lattice_iso_systemCleavage(1:3,i))
|
cd(1:3,i) = lattice_iso_systemCleavage(1:3,i)/norm2(lattice_iso_systemCleavage(1:3,i))
|
||||||
cn(1:3,i) = lattice_iso_systemCleavage(4:6,i)/math_norm3(lattice_iso_systemCleavage(4:6,i))
|
cn(1:3,i) = lattice_iso_systemCleavage(4:6,i)/norm2(lattice_iso_systemCleavage(4:6,i))
|
||||||
ct(1:3,i) = math_vectorproduct(cd(1:3,i),cn(1:3,i))
|
ct(1:3,i) = math_crossproduct(cd(1:3,i),cn(1:3,i))
|
||||||
enddo
|
enddo
|
||||||
lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,myPhase) = lattice_iso_NcleavageSystem
|
lattice_NcleavageSystem(1:lattice_maxNcleavageFamily,myPhase) = lattice_iso_NcleavageSystem
|
||||||
|
|
||||||
|
@ -1935,11 +1934,11 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
|
|
||||||
|
|
||||||
do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure
|
do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure
|
||||||
lattice_sd(1:3,i,myPhase) = sd(1:3,i)/math_norm3(sd(1:3,i)) ! make unit vector
|
lattice_sd(1:3,i,myPhase) = sd(1:3,i)/norm2(sd(1:3,i)) ! make unit vector
|
||||||
lattice_sn(1:3,i,myPhase) = sn(1:3,i)/math_norm3(sn(1:3,i)) ! make unit vector
|
lattice_sn(1:3,i,myPhase) = sn(1:3,i)/norm2(sn(1:3,i)) ! make unit vector
|
||||||
lattice_st(1:3,i,myPhase) = math_vectorproduct(lattice_sd(1:3,i,myPhase), &
|
lattice_st(1:3,i,myPhase) = math_crossproduct(lattice_sd(1:3,i,myPhase), &
|
||||||
lattice_sn(1:3,i,myPhase))
|
lattice_sn(1:3,i,myPhase))
|
||||||
lattice_Sslip(1:3,1:3,1,i,myPhase) = math_tensorproduct(lattice_sd(1:3,i,myPhase), &
|
lattice_Sslip(1:3,1:3,1,i,myPhase) = math_tensorproduct33(lattice_sd(1:3,i,myPhase), &
|
||||||
lattice_sn(1:3,i,myPhase)) ! calculate Schmid matrix d \otimes n
|
lattice_sn(1:3,i,myPhase)) ! calculate Schmid matrix d \otimes n
|
||||||
do j = 1_pInt,lattice_NnonSchmid(myPhase)
|
do j = 1_pInt,lattice_NnonSchmid(myPhase)
|
||||||
lattice_Sslip(1:3,1:3,2*j ,i,myPhase) = sns(1:3,1:3,1,j,i)
|
lattice_Sslip(1:3,1:3,2*j ,i,myPhase) = sns(1:3,1:3,1,j,i)
|
||||||
|
@ -1953,11 +1952,11 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
call IO_error(0_pInt,myPhase,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
|
call IO_error(0_pInt,myPhase,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
|
||||||
enddo
|
enddo
|
||||||
do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
|
do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
|
||||||
lattice_td(1:3,i,myPhase) = td(1:3,i)/math_norm3(td(1:3,i)) ! make unit vector
|
lattice_td(1:3,i,myPhase) = td(1:3,i)/norm2(td(1:3,i)) ! make unit vector
|
||||||
lattice_tn(1:3,i,myPhase) = tn(1:3,i)/math_norm3(tn(1:3,i)) ! make unit vector
|
lattice_tn(1:3,i,myPhase) = tn(1:3,i)/norm2(tn(1:3,i)) ! make unit vector
|
||||||
lattice_tt(1:3,i,myPhase) = math_vectorproduct(lattice_td(1:3,i,myPhase), &
|
lattice_tt(1:3,i,myPhase) = math_crossproduct(lattice_td(1:3,i,myPhase), &
|
||||||
lattice_tn(1:3,i,myPhase))
|
lattice_tn(1:3,i,myPhase))
|
||||||
lattice_Stwin(1:3,1:3,i,myPhase) = math_tensorproduct(lattice_td(1:3,i,myPhase), &
|
lattice_Stwin(1:3,1:3,i,myPhase) = math_tensorproduct33(lattice_td(1:3,i,myPhase), &
|
||||||
lattice_tn(1:3,i,myPhase))
|
lattice_tn(1:3,i,myPhase))
|
||||||
lattice_Stwin_v(1:6,i,myPhase) = math_Mandel33to6(math_symmetric33(lattice_Stwin(1:3,1:3,i,myPhase)))
|
lattice_Stwin_v(1:6,i,myPhase) = math_Mandel33to6(math_symmetric33(lattice_Stwin(1:3,1:3,i,myPhase)))
|
||||||
lattice_Qtwin(1:3,1:3,i,myPhase) = math_axisAngleToR(tn(1:3,i),180.0_pReal*INRAD)
|
lattice_Qtwin(1:3,1:3,i,myPhase) = math_axisAngleToR(tn(1:3,i),180.0_pReal*INRAD)
|
||||||
|
@ -1972,9 +1971,9 @@ subroutine lattice_initializeStructure(myPhase,CoverA,CoverA_trans,a_fcc,a_bcc)
|
||||||
lattice_shearTrans(i,myPhase) = trs(i)
|
lattice_shearTrans(i,myPhase) = trs(i)
|
||||||
enddo
|
enddo
|
||||||
do i = 1_pInt,myNcleavage ! store slip system vectors and Schmid matrix for my structure
|
do i = 1_pInt,myNcleavage ! store slip system vectors and Schmid matrix for my structure
|
||||||
lattice_Scleavage(1:3,1:3,1,i,myPhase) = math_tensorproduct(cd(1:3,i),cn(1:3,i))
|
lattice_Scleavage(1:3,1:3,1,i,myPhase) = math_tensorproduct33(cd(1:3,i),cn(1:3,i))
|
||||||
lattice_Scleavage(1:3,1:3,2,i,myPhase) = math_tensorproduct(ct(1:3,i),cn(1:3,i))
|
lattice_Scleavage(1:3,1:3,2,i,myPhase) = math_tensorproduct33(ct(1:3,i),cn(1:3,i))
|
||||||
lattice_Scleavage(1:3,1:3,3,i,myPhase) = math_tensorproduct(cn(1:3,i),cn(1:3,i))
|
lattice_Scleavage(1:3,1:3,3,i,myPhase) = math_tensorproduct33(cn(1:3,i),cn(1:3,i))
|
||||||
do j = 1_pInt,3_pInt
|
do j = 1_pInt,3_pInt
|
||||||
lattice_Scleavage_v(1:6,j,i,myPhase) = &
|
lattice_Scleavage_v(1:6,j,i,myPhase) = &
|
||||||
math_Mandel33to6(math_symmetric33(lattice_Scleavage(1:3,1:3,j,i,myPhase)))
|
math_Mandel33to6(math_symmetric33(lattice_Scleavage(1:3,1:3,j,i,myPhase)))
|
||||||
|
|
480
code/math.f90
480
code/math.f90
|
@ -85,8 +85,8 @@ module math
|
||||||
math_identity4th, &
|
math_identity4th, &
|
||||||
math_civita, &
|
math_civita, &
|
||||||
math_delta, &
|
math_delta, &
|
||||||
math_vectorproduct, &
|
math_crossproduct, &
|
||||||
math_tensorproduct, &
|
math_tensorproduct33, &
|
||||||
math_mul3x3, &
|
math_mul3x3, &
|
||||||
math_mul6x6, &
|
math_mul6x6, &
|
||||||
math_mul33xx33, &
|
math_mul33xx33, &
|
||||||
|
@ -114,8 +114,6 @@ module math
|
||||||
math_trace33, &
|
math_trace33, &
|
||||||
math_j3_33, &
|
math_j3_33, &
|
||||||
math_det33, &
|
math_det33, &
|
||||||
math_norm33, &
|
|
||||||
math_norm3, &
|
|
||||||
math_Plain33to9, &
|
math_Plain33to9, &
|
||||||
math_Plain9to33, &
|
math_Plain9to33, &
|
||||||
math_Mandel33to6, &
|
math_Mandel33to6, &
|
||||||
|
@ -131,7 +129,6 @@ module math
|
||||||
math_qMul, &
|
math_qMul, &
|
||||||
math_qDot, &
|
math_qDot, &
|
||||||
math_qConj, &
|
math_qConj, &
|
||||||
math_qNorm, &
|
|
||||||
math_qInv, &
|
math_qInv, &
|
||||||
math_qRot, &
|
math_qRot, &
|
||||||
math_RtoEuler, &
|
math_RtoEuler, &
|
||||||
|
@ -154,9 +151,8 @@ module math
|
||||||
math_sampleGaussVar, &
|
math_sampleGaussVar, &
|
||||||
math_symmetricEulers, &
|
math_symmetricEulers, &
|
||||||
math_spectralDecompositionSym33, &
|
math_spectralDecompositionSym33, &
|
||||||
math_spectralDecomposition, &
|
|
||||||
math_pDecomposition, &
|
math_pDecomposition, &
|
||||||
math_hi, &
|
math_invariants33, &
|
||||||
math_eigenvalues33, &
|
math_eigenvalues33, &
|
||||||
math_factorial, &
|
math_factorial, &
|
||||||
math_binomial, &
|
math_binomial, &
|
||||||
|
@ -427,7 +423,7 @@ end function math_identity4th
|
||||||
! e_ijk = -1 if odd permutation of ijk
|
! e_ijk = -1 if odd permutation of ijk
|
||||||
! e_ijk = 0 otherwise
|
! e_ijk = 0 otherwise
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
real(pReal) pure function math_civita(i,j,k)
|
real(pReal) pure function math_civita(i,j,k)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
integer(pInt), intent(in) :: i,j,k
|
integer(pInt), intent(in) :: i,j,k
|
||||||
|
@ -460,34 +456,34 @@ end function math_delta
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief vector product a x b
|
!> @brief cross product a x b
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure function math_vectorproduct(A,B)
|
pure function math_crossproduct(A,B)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3), intent(in) :: A,B
|
real(pReal), dimension(3), intent(in) :: A,B
|
||||||
real(pReal), dimension(3) :: math_vectorproduct
|
real(pReal), dimension(3) :: math_crossproduct
|
||||||
|
|
||||||
math_vectorproduct(1) = A(2)*B(3)-A(3)*B(2)
|
math_crossproduct = [ A(2)*B(3) -A(3)*B(2), &
|
||||||
math_vectorproduct(2) = A(3)*B(1)-A(1)*B(3)
|
A(3)*B(1) -A(1)*B(3), &
|
||||||
math_vectorproduct(3) = A(1)*B(2)-A(2)*B(1)
|
A(1)*B(2) -A(2)*B(1) ]
|
||||||
|
|
||||||
end function math_vectorproduct
|
end function math_crossproduct
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief tensor product a \otimes b
|
!> @brief tensor product a \otimes b
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure function math_tensorproduct(A,B)
|
pure function math_tensorproduct33(A,B)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3,3) :: math_tensorproduct
|
real(pReal), dimension(3,3) :: math_tensorproduct33
|
||||||
real(pReal), dimension(3), intent(in) :: A,B
|
real(pReal), dimension(3), intent(in) :: A,B
|
||||||
integer(pInt) :: i,j
|
integer(pInt) :: i,j
|
||||||
|
|
||||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct(i,j) = A(i)*B(j)
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct33(i,j) = A(i)*B(j)
|
||||||
|
|
||||||
end function math_tensorproduct
|
end function math_tensorproduct33
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -560,12 +556,8 @@ pure function math_mul3333xx3333(A,B)
|
||||||
real(pReal), dimension(3,3,3,3), intent(in) :: B
|
real(pReal), dimension(3,3,3,3), intent(in) :: B
|
||||||
real(pReal), dimension(3,3,3,3) :: math_mul3333xx3333
|
real(pReal), dimension(3,3,3,3) :: math_mul3333xx3333
|
||||||
|
|
||||||
do i = 1_pInt,3_pInt
|
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt, k = 1_pInt:3_pInt, l= 1_pInt:3_pInt) &
|
||||||
do j = 1_pInt,3_pInt
|
|
||||||
do k = 1_pInt,3_pInt
|
|
||||||
do l = 1_pInt,3_pInt
|
|
||||||
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
||||||
enddo; enddo; enddo; enddo
|
|
||||||
|
|
||||||
end function math_mul3333xx3333
|
end function math_mul3333xx3333
|
||||||
|
|
||||||
|
@ -580,8 +572,8 @@ pure function math_mul33x33(A,B)
|
||||||
real(pReal), dimension(3,3), intent(in) :: A,B
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
||||||
integer(pInt) :: i,j
|
integer(pInt) :: i,j
|
||||||
|
|
||||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_mul33x33(i,j) = &
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) &
|
||||||
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
||||||
|
|
||||||
end function math_mul33x33
|
end function math_mul33x33
|
||||||
|
|
||||||
|
@ -683,10 +675,9 @@ pure function math_exp33(A,n)
|
||||||
real(pReal), dimension(3,3) :: B,math_exp33
|
real(pReal), dimension(3,3) :: B,math_exp33
|
||||||
real(pReal) :: invfac
|
real(pReal) :: invfac
|
||||||
|
|
||||||
order = 5
|
order = merge(n,5_pInt,present(n))
|
||||||
if (present(n)) order = n
|
|
||||||
|
|
||||||
B = math_identity2nd(3) ! init
|
B = math_I3 ! init
|
||||||
invfac = 1.0_pReal ! 0!
|
invfac = 1.0_pReal ! 0!
|
||||||
math_exp33 = B ! A^0 = eye2
|
math_exp33 = B ! A^0 = eye2
|
||||||
|
|
||||||
|
@ -854,14 +845,13 @@ end subroutine math_invert
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief symmetrize a 33 matrix
|
!> @brief symmetrize a 33 matrix
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
function math_symmetric33(m)
|
pure function math_symmetric33(m)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3,3) :: math_symmetric33
|
real(pReal), dimension(3,3) :: math_symmetric33
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
integer(pInt) :: i,j
|
|
||||||
|
|
||||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetric33(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
math_symmetric33 = 0.5_pReal * (m + transpose(m))
|
||||||
|
|
||||||
end function math_symmetric33
|
end function math_symmetric33
|
||||||
|
|
||||||
|
@ -872,11 +862,10 @@ end function math_symmetric33
|
||||||
pure function math_symmetric66(m)
|
pure function math_symmetric66(m)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
integer(pInt) :: i,j
|
|
||||||
real(pReal), dimension(6,6), intent(in) :: m
|
|
||||||
real(pReal), dimension(6,6) :: math_symmetric66
|
real(pReal), dimension(6,6) :: math_symmetric66
|
||||||
|
real(pReal), dimension(6,6), intent(in) :: m
|
||||||
|
|
||||||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_symmetric66(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
math_symmetric66 = 0.5_pReal * (m + transpose(m))
|
||||||
|
|
||||||
end function math_symmetric66
|
end function math_symmetric66
|
||||||
|
|
||||||
|
@ -889,9 +878,8 @@ pure function math_skew33(m)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3,3) :: math_skew33
|
real(pReal), dimension(3,3) :: math_skew33
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
integer(pInt) :: i,j
|
|
||||||
|
|
||||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_skew33(i,j) = m(i,j) - 0.5_pReal * (m(i,j) + m(j,i))
|
math_skew33 = m - math_symmetric33(m)
|
||||||
|
|
||||||
end function math_skew33
|
end function math_skew33
|
||||||
|
|
||||||
|
@ -903,10 +891,8 @@ pure function math_spherical33(m)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3,3) :: math_spherical33
|
real(pReal), dimension(3,3) :: math_spherical33
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
real(pReal) :: hydrostatic
|
|
||||||
|
|
||||||
hydrostatic = (m(1,1) + m(2,2) + m(3,3)) / 3.0_pReal
|
math_spherical33 = math_I3 * math_trace33(m)/3.0_pReal
|
||||||
math_spherical33 = math_I3 * hydrostatic
|
|
||||||
|
|
||||||
end function math_spherical33
|
end function math_spherical33
|
||||||
|
|
||||||
|
@ -919,12 +905,8 @@ pure function math_deviatoric33(m)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3,3) :: math_deviatoric33
|
real(pReal), dimension(3,3) :: math_deviatoric33
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
integer(pInt) :: i
|
|
||||||
real(pReal) :: hydrostatic
|
|
||||||
|
|
||||||
math_deviatoric33 = m
|
math_deviatoric33 = m - math_spherical33(m)
|
||||||
hydrostatic = (m(1,1) + m(2,2) + m(3,3)) / 3.0_pReal
|
|
||||||
forall (i=1_pInt:3_pInt) math_deviatoric33(i,i) = m(i,i) - hydrostatic
|
|
||||||
|
|
||||||
end function math_deviatoric33
|
end function math_deviatoric33
|
||||||
|
|
||||||
|
@ -1007,39 +989,13 @@ real(pReal) pure function math_det33(m)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
|
|
||||||
math_det33 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
math_det33 = m(1,1)* (m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
||||||
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
- m(1,2)* (m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
||||||
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
+ m(1,3)* (m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
||||||
|
|
||||||
end function math_det33
|
end function math_det33
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
!> @brief norm of a 33 matrix
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
real(pReal) pure function math_norm33(m)
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
real(pReal), dimension(3,3), intent(in) :: m
|
|
||||||
|
|
||||||
math_norm33 = sqrt(sum(m**2.0_pReal))
|
|
||||||
|
|
||||||
end function
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
!> @brief euclidian norm of a 3 vector
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
real(pReal) pure function math_norm3(v)
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
real(pReal), dimension(3), intent(in) :: v
|
|
||||||
|
|
||||||
math_norm3 = sqrt(sum(v**2.0_pReal))
|
|
||||||
|
|
||||||
end function math_norm3
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief convert 33 matrix into vector 9
|
!> @brief convert 33 matrix into vector 9
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -1259,10 +1215,10 @@ pure function math_qMul(A,B)
|
||||||
real(pReal), dimension(4) :: math_qMul
|
real(pReal), dimension(4) :: math_qMul
|
||||||
real(pReal), dimension(4), intent(in) :: A, B
|
real(pReal), dimension(4), intent(in) :: A, B
|
||||||
|
|
||||||
math_qMul(1) = A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4)
|
math_qMul = [ A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4), &
|
||||||
math_qMul(2) = A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3)
|
A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3), &
|
||||||
math_qMul(3) = A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2)
|
A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2), &
|
||||||
math_qMul(4) = A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1)
|
A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1) ]
|
||||||
|
|
||||||
end function math_qMul
|
end function math_qMul
|
||||||
|
|
||||||
|
@ -1289,8 +1245,7 @@ pure function math_qConj(Q)
|
||||||
real(pReal), dimension(4) :: math_qConj
|
real(pReal), dimension(4) :: math_qConj
|
||||||
real(pReal), dimension(4), intent(in) :: Q
|
real(pReal), dimension(4), intent(in) :: Q
|
||||||
|
|
||||||
math_qConj(1) = Q(1)
|
math_qConj = [Q(1), -Q(2:4)]
|
||||||
math_qConj(2:4) = -Q(2:4)
|
|
||||||
|
|
||||||
end function math_qConj
|
end function math_qConj
|
||||||
|
|
||||||
|
@ -1303,7 +1258,7 @@ real(pReal) pure function math_qNorm(Q)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension(4), intent(in) :: Q
|
real(pReal), dimension(4), intent(in) :: Q
|
||||||
|
|
||||||
math_qNorm = sqrt(max(0.0_pReal, sum(Q*Q)))
|
math_qNorm = norm2(Q)
|
||||||
|
|
||||||
end function math_qNorm
|
end function math_qNorm
|
||||||
|
|
||||||
|
@ -1366,43 +1321,23 @@ pure function math_RtoEuler(R)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension (3,3), intent(in) :: R
|
real(pReal), dimension (3,3), intent(in) :: R
|
||||||
real(pReal), dimension(3) :: math_RtoEuler
|
real(pReal), dimension(3) :: math_RtoEuler
|
||||||
real(pReal) :: sqhkl, squvw, sqhk, myVal
|
real(pReal) :: sqhkl, squvw, sqhk
|
||||||
|
|
||||||
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
||||||
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
||||||
sqhk=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
||||||
|
|
||||||
! calculate PHI
|
! calculate PHI
|
||||||
myVal=R(3,3)/sqhkl
|
math_RtoEuler(2) = acos(math_limit(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
|
||||||
|
|
||||||
myVal = min(myVal, 1.0_pReal)
|
|
||||||
myVal = max(myVal,-1.0_pReal)
|
|
||||||
|
|
||||||
math_RtoEuler(2) = acos(myVal)
|
|
||||||
|
|
||||||
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
|
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
|
||||||
! calculate phi2
|
|
||||||
math_RtoEuler(3) = 0.0_pReal
|
math_RtoEuler(3) = 0.0_pReal
|
||||||
! calculate phi1
|
math_RtoEuler(1) = acos(math_limit(R(1,1)/squvw, -1.0_pReal, 1.0_pReal))
|
||||||
myVal=R(1,1)/squvw
|
|
||||||
myVal = min(myVal, 1.0_pReal)
|
|
||||||
myVal = max(myVal,-1.0_pReal)
|
|
||||||
|
|
||||||
math_RtoEuler(1) = acos(myVal)
|
|
||||||
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
||||||
else
|
else
|
||||||
! calculate phi2
|
math_RtoEuler(3) = acos(math_limit(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal))
|
||||||
myVal=R(2,3)/sqhk
|
|
||||||
myVal = min(myVal, 1.0_pReal)
|
|
||||||
myVal = max(myVal,-1.0_pReal)
|
|
||||||
|
|
||||||
math_RtoEuler(3) = acos(myVal)
|
|
||||||
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
||||||
! calculate phi1
|
math_RtoEuler(1) = acos(math_limit(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal))
|
||||||
myVal=-R(3,2)/sin(math_RtoEuler(2))
|
|
||||||
myVal = min(myVal, 1.0_pReal)
|
|
||||||
myVal = max(myVal,-1.0_pReal)
|
|
||||||
|
|
||||||
math_RtoEuler(1) = acos(myVal)
|
|
||||||
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
||||||
end if
|
end if
|
||||||
|
|
||||||
|
@ -1423,38 +1358,38 @@ pure function math_RtoQ(R)
|
||||||
|
|
||||||
math_RtoQ = 0.0_pReal
|
math_RtoQ = 0.0_pReal
|
||||||
|
|
||||||
absQ(1) = 1.0_pReal + R(1,1) + R(2,2) + R(3,3)
|
absQ = [+ R(1,1) + R(2,2) + R(3,3), &
|
||||||
absQ(2) = 1.0_pReal + R(1,1) - R(2,2) - R(3,3)
|
+ R(1,1) - R(2,2) - R(3,3), &
|
||||||
absQ(3) = 1.0_pReal - R(1,1) + R(2,2) - R(3,3)
|
- R(1,1) + R(2,2) - R(3,3), &
|
||||||
absQ(4) = 1.0_pReal - R(1,1) - R(2,2) + R(3,3)
|
- R(1,1) - R(2,2) + R(3,3)] + 1.0_pReal
|
||||||
|
|
||||||
largest = maxloc(absQ)
|
largest = maxloc(absQ)
|
||||||
|
|
||||||
select case(largest(1))
|
largestComponent: select case(largest(1))
|
||||||
case (1)
|
case (1) largestComponent
|
||||||
!1----------------------------------
|
!1----------------------------------
|
||||||
math_RtoQ(2) = R(3,2) - R(2,3)
|
math_RtoQ(2) = R(3,2) - R(2,3)
|
||||||
math_RtoQ(3) = R(1,3) - R(3,1)
|
math_RtoQ(3) = R(1,3) - R(3,1)
|
||||||
math_RtoQ(4) = R(2,1) - R(1,2)
|
math_RtoQ(4) = R(2,1) - R(1,2)
|
||||||
|
|
||||||
case (2)
|
case (2) largestComponent
|
||||||
math_RtoQ(1) = R(3,2) - R(2,3)
|
math_RtoQ(1) = R(3,2) - R(2,3)
|
||||||
!2----------------------------------
|
!2----------------------------------
|
||||||
math_RtoQ(3) = R(2,1) + R(1,2)
|
math_RtoQ(3) = R(2,1) + R(1,2)
|
||||||
math_RtoQ(4) = R(1,3) + R(3,1)
|
math_RtoQ(4) = R(1,3) + R(3,1)
|
||||||
|
|
||||||
case (3)
|
case (3) largestComponent
|
||||||
math_RtoQ(1) = R(1,3) - R(3,1)
|
math_RtoQ(1) = R(1,3) - R(3,1)
|
||||||
math_RtoQ(2) = R(2,1) + R(1,2)
|
math_RtoQ(2) = R(2,1) + R(1,2)
|
||||||
!3----------------------------------
|
!3----------------------------------
|
||||||
math_RtoQ(4) = R(3,2) + R(2,3)
|
math_RtoQ(4) = R(3,2) + R(2,3)
|
||||||
|
|
||||||
case (4)
|
case (4) largestComponent
|
||||||
math_RtoQ(1) = R(2,1) - R(1,2)
|
math_RtoQ(1) = R(2,1) - R(1,2)
|
||||||
math_RtoQ(2) = R(1,3) + R(3,1)
|
math_RtoQ(2) = R(1,3) + R(3,1)
|
||||||
math_RtoQ(3) = R(2,3) + R(3,2)
|
math_RtoQ(3) = R(2,3) + R(3,2)
|
||||||
!4----------------------------------
|
!4----------------------------------
|
||||||
end select
|
end select largestComponent
|
||||||
|
|
||||||
max_absQ = 0.5_pReal * sqrt(absQ(largest(1)))
|
max_absQ = 0.5_pReal * sqrt(absQ(largest(1)))
|
||||||
math_RtoQ = math_RtoQ * 0.25_pReal / max_absQ
|
math_RtoQ = math_RtoQ * 0.25_pReal / max_absQ
|
||||||
|
@ -1519,10 +1454,10 @@ pure function math_EulerToQ(eulerangles)
|
||||||
c = cos(halfangles(2))
|
c = cos(halfangles(2))
|
||||||
s = sin(halfangles(2))
|
s = sin(halfangles(2))
|
||||||
|
|
||||||
math_EulerToQ(1) = cos(halfangles(1)+halfangles(3)) * c
|
math_EulerToQ= [cos(halfangles(1)+halfangles(3)) * c, &
|
||||||
math_EulerToQ(2) = cos(halfangles(1)-halfangles(3)) * s
|
cos(halfangles(1)-halfangles(3)) * s, &
|
||||||
math_EulerToQ(3) = sin(halfangles(1)-halfangles(3)) * s
|
sin(halfangles(1)-halfangles(3)) * s, &
|
||||||
math_EulerToQ(4) = sin(halfangles(1)+halfangles(3)) * c
|
sin(halfangles(1)+halfangles(3)) * c ]
|
||||||
math_EulerToQ = math_qConj(math_EulerToQ) ! convert to passive rotation
|
math_EulerToQ = math_qConj(math_EulerToQ) ! convert to passive rotation
|
||||||
|
|
||||||
end function math_EulerToQ
|
end function math_EulerToQ
|
||||||
|
@ -1619,18 +1554,15 @@ pure function math_axisAngleToQ(axis,omega)
|
||||||
real(pReal), dimension(3), intent(in) :: axis
|
real(pReal), dimension(3), intent(in) :: axis
|
||||||
real(pReal), intent(in) :: omega
|
real(pReal), intent(in) :: omega
|
||||||
real(pReal), dimension(3) :: axisNrm
|
real(pReal), dimension(3) :: axisNrm
|
||||||
real(pReal) :: s,c,norm
|
real(pReal) :: norm
|
||||||
|
|
||||||
norm = sqrt(math_mul3x3(axis,axis))
|
norm = sqrt(math_mul3x3(axis,axis))
|
||||||
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
rotation: if (norm > 1.0e-8_pReal) then
|
||||||
axisNrm = axis/norm ! normalize axis to be sure
|
axisNrm = axis/norm ! normalize axis to be sure
|
||||||
s = sin(0.5_pReal*omega)
|
math_axisAngleToQ = [cos(0.5_pReal*omega), sin(0.5_pReal*omega) * axisNrm(1:3)]
|
||||||
c = cos(0.5_pReal*omega)
|
else rotation
|
||||||
math_axisAngleToQ(1) = c
|
math_axisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal]
|
||||||
math_axisAngleToQ(2:4) = s * axisNrm(1:3)
|
endif rotation
|
||||||
else
|
|
||||||
math_axisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal] ! no rotation
|
|
||||||
endif
|
|
||||||
|
|
||||||
end function math_axisAngleToQ
|
end function math_axisAngleToQ
|
||||||
|
|
||||||
|
@ -1649,6 +1581,7 @@ pure function math_qToR(q)
|
||||||
|
|
||||||
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
||||||
T(i,j) = q(i+1_pInt) * q(j+1_pInt)
|
T(i,j) = q(i+1_pInt) * q(j+1_pInt)
|
||||||
|
|
||||||
S = reshape( [0.0_pReal, -q(4), q(3), &
|
S = reshape( [0.0_pReal, -q(4), q(3), &
|
||||||
q(4), 0.0_pReal, -q(2), &
|
q(4), 0.0_pReal, -q(2), &
|
||||||
-q(3), q(2), 0.0_pReal],[3,3]) ! notation is transposed
|
-q(3), q(2), 0.0_pReal],[3,3]) ! notation is transposed
|
||||||
|
@ -1672,29 +1605,21 @@ pure function math_qToEuler(qPassive)
|
||||||
real(pReal), dimension(4), intent(in) :: qPassive
|
real(pReal), dimension(4), intent(in) :: qPassive
|
||||||
real(pReal), dimension(4) :: q
|
real(pReal), dimension(4) :: q
|
||||||
real(pReal), dimension(3) :: math_qToEuler
|
real(pReal), dimension(3) :: math_qToEuler
|
||||||
real(pReal) :: acos_arg
|
|
||||||
|
|
||||||
q = math_qConj(qPassive) ! convert to active rotation, since formulas are defined for active rotations
|
q = math_qConj(qPassive) ! convert to active rotation, since formulas are defined for active rotations
|
||||||
|
|
||||||
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)*q(2)+q(3)*q(3)))
|
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)*q(2)+q(3)*q(3)))
|
||||||
|
|
||||||
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
|
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
|
||||||
acos_arg = q(1)
|
math_qToEuler(1) = sign(2.0_pReal*acos(math_limit(q(1),-1.0_pReal, 1.0_pReal)),q(4))
|
||||||
if(acos_arg > 1.0_pReal) acos_arg = 1.0_pReal
|
|
||||||
if(acos_arg < -1.0_pReal) acos_arg = -1.0_pReal
|
|
||||||
math_qToEuler(1) = sign(2.0_pReal * acos(acos_arg),q(4))
|
|
||||||
math_qToEuler(3) = 0.0_pReal
|
math_qToEuler(3) = 0.0_pReal
|
||||||
else
|
else
|
||||||
math_qToEuler(1) = atan2(q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
|
math_qToEuler(1) = atan2(q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
|
||||||
math_qToEuler(3) = atan2(-q(1)*q(3)+q(2)*q(4), q(1)*q(2)+q(3)*q(4))
|
math_qToEuler(3) = atan2(-q(1)*q(3)+q(2)*q(4), q(1)*q(2)+q(3)*q(4))
|
||||||
endif
|
endif
|
||||||
|
|
||||||
if (math_qToEuler(1) < 0.0_pReal) &
|
math_qToEuler = merge(math_qToEuler + [2.0_pReal*PI, PI, 2.0_pReal*PI], & ! ensure correct range
|
||||||
math_qToEuler(1) = math_qToEuler(1) + 2.0_pReal * pi
|
math_qToEuler, math_qToEuler<0.0_pReal)
|
||||||
if (math_qToEuler(2) < 0.0_pReal) &
|
|
||||||
math_qToEuler(2) = math_qToEuler(2) + pi
|
|
||||||
if (math_qToEuler(3) < 0.0_pReal) &
|
|
||||||
math_qToEuler(3) = math_qToEuler(3) + 2.0_pReal * pi
|
|
||||||
|
|
||||||
end function math_qToEuler
|
end function math_qToEuler
|
||||||
|
|
||||||
|
@ -1719,8 +1644,7 @@ pure function math_qToAxisAngle(Q)
|
||||||
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
||||||
math_qToAxisAngle = 0.0_pReal
|
math_qToAxisAngle = 0.0_pReal
|
||||||
else
|
else
|
||||||
math_qToAxisAngle(1:3) = Q(2:4)/sinHalfAngle
|
math_qToAxisAngle= [ Q(2:4)/sinHalfAngle, halfAngle*2.0_pReal]
|
||||||
math_qToAxisAngle(4) = halfAngle*2.0_pReal
|
|
||||||
endif
|
endif
|
||||||
|
|
||||||
end function math_qToAxisAngle
|
end function math_qToAxisAngle
|
||||||
|
@ -1773,8 +1697,8 @@ real(pReal) pure function math_EulerMisorientation(EulerA,EulerB)
|
||||||
|
|
||||||
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
|
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
|
||||||
|
|
||||||
tr = (r(1,1)+r(2,2)+r(3,3)-1.0_pReal)*0.4999999_pReal
|
tr = (math_trace33(r)-1.0_pReal)*0.4999999_pReal
|
||||||
math_EulerMisorientation = abs(0.5_pReal*pi-asin(tr))
|
math_EulerMisorientation = abs(0.5_pReal*PI-asin(tr))
|
||||||
|
|
||||||
end function math_EulerMisorientation
|
end function math_EulerMisorientation
|
||||||
|
|
||||||
|
@ -1788,9 +1712,9 @@ function math_sampleRandomOri()
|
||||||
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
||||||
|
|
||||||
call halton(3_pInt,rnd)
|
call halton(3_pInt,rnd)
|
||||||
math_sampleRandomOri(1) = rnd(1)*2.0_pReal*pi
|
math_sampleRandomOri = [rnd(1)*2.0_pReal*PI, &
|
||||||
math_sampleRandomOri(2) = acos(2.0_pReal*rnd(2)-1.0_pReal)
|
acos(2.0_pReal*rnd(2)-1.0_pReal), &
|
||||||
math_sampleRandomOri(3) = rnd(3)*2.0_pReal*pi
|
rnd(3)*2.0_pReal*PI]
|
||||||
|
|
||||||
end function math_sampleRandomOri
|
end function math_sampleRandomOri
|
||||||
|
|
||||||
|
@ -1824,9 +1748,9 @@ function math_sampleGaussOri(center,noise)
|
||||||
do
|
do
|
||||||
call halton(5_pInt,rnd)
|
call halton(5_pInt,rnd)
|
||||||
forall (i=1_pInt:3_pInt) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
|
forall (i=1_pInt:3_pInt) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
|
||||||
disturb(1) = scatter * rnd(1) ! phi1
|
disturb = [ scatter * rnd(1), & ! phi1
|
||||||
disturb(2) = sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)) ! Phi
|
sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)), & ! Phi
|
||||||
disturb(3) = scatter * rnd(2) ! phi2
|
scatter * rnd(2)] ! phi2
|
||||||
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(ORIGIN,disturb)/scatter)**2_pReal)) exit
|
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(ORIGIN,disturb)/scatter)**2_pReal)) exit
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -1859,20 +1783,20 @@ function math_sampleFiberOri(alpha,beta,noise)
|
||||||
cos2Scatter = cos(2.0_pReal*scatter)
|
cos2Scatter = cos(2.0_pReal*scatter)
|
||||||
|
|
||||||
! fiber axis in crystal coordinate system
|
! fiber axis in crystal coordinate system
|
||||||
fiberInC(1)=sin(alpha(1))*cos(alpha(2))
|
fiberInC = [ sin(alpha(1))*cos(alpha(2)) , &
|
||||||
fiberInC(2)=sin(alpha(1))*sin(alpha(2))
|
sin(alpha(1))*sin(alpha(2)), &
|
||||||
fiberInC(3)=cos(alpha(1))
|
cos(alpha(1))]
|
||||||
! fiber axis in sample coordinate system
|
! fiber axis in sample coordinate system
|
||||||
fiberInS(1)=sin(beta(1))*cos(beta(2))
|
fiberInS = [ sin(beta(1))*cos(beta(2)), &
|
||||||
fiberInS(2)=sin(beta(1))*sin(beta(2))
|
sin(beta(1))*sin(beta(2)), &
|
||||||
fiberInS(3)=cos(beta(1))
|
cos(beta(1))]
|
||||||
|
|
||||||
! ---# rotation matrix from sample to crystal system #---
|
! ---# rotation matrix from sample to crystal system #---
|
||||||
angle = -acos(dot_product(fiberInC,fiberInS))
|
angle = -acos(dot_product(fiberInC,fiberInS))
|
||||||
if(abs(angle) > tol_math_check) then
|
if(abs(angle) > tol_math_check) then
|
||||||
! rotation axis between sample and crystal system (cross product)
|
! rotation axis between sample and crystal system (cross product)
|
||||||
forall(i=1_pInt:3_pInt) axis(i) = fiberInC(ROTMAP(1,i))*fiberInS(ROTMAP(2,i))-fiberInC(ROTMAP(2,i))*fiberInS(ROTMAP(1,i))
|
forall(i=1_pInt:3_pInt) axis(i) = fiberInC(ROTMAP(1,i))*fiberInS(ROTMAP(2,i))-fiberInC(ROTMAP(2,i))*fiberInS(ROTMAP(1,i))
|
||||||
oRot = math_EulerAxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
oRot = math_EulerAxisAngleToR(math_crossproduct(fiberInC,fiberInS),angle)
|
||||||
else
|
else
|
||||||
oRot = math_I3
|
oRot = math_I3
|
||||||
end if
|
end if
|
||||||
|
@ -1939,8 +1863,7 @@ real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
|
||||||
do
|
do
|
||||||
call halton(2_pInt, rnd)
|
call halton(2_pInt, rnd)
|
||||||
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
||||||
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) & ! test if scattered value is drawn
|
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) exit ! test if scattered value is drawn
|
||||||
exit
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
math_sampleGaussVar = scatter * stddev
|
math_sampleGaussVar = scatter * stddev
|
||||||
|
@ -1959,17 +1882,17 @@ pure function math_symmetricEulers(sym,Euler)
|
||||||
real(pReal), dimension(3,3) :: math_symmetricEulers
|
real(pReal), dimension(3,3) :: math_symmetricEulers
|
||||||
integer(pInt) :: i,j
|
integer(pInt) :: i,j
|
||||||
|
|
||||||
math_symmetricEulers(1,1) = pi+Euler(1)
|
math_symmetricEulers(1,1) = PI+Euler(1)
|
||||||
math_symmetricEulers(2,1) = Euler(2)
|
math_symmetricEulers(2,1) = Euler(2)
|
||||||
math_symmetricEulers(3,1) = Euler(3)
|
math_symmetricEulers(3,1) = Euler(3)
|
||||||
|
|
||||||
math_symmetricEulers(1,2) = pi-Euler(1)
|
math_symmetricEulers(1,2) = PI-Euler(1)
|
||||||
math_symmetricEulers(2,2) = pi-Euler(2)
|
math_symmetricEulers(2,2) = PI-Euler(2)
|
||||||
math_symmetricEulers(3,2) = pi+Euler(3)
|
math_symmetricEulers(3,2) = PI+Euler(3)
|
||||||
|
|
||||||
math_symmetricEulers(1,3) = 2.0_pReal*pi-Euler(1)
|
math_symmetricEulers(1,3) = 2.0_pReal*PI-Euler(1)
|
||||||
math_symmetricEulers(2,3) = pi-Euler(2)
|
math_symmetricEulers(2,3) = PI-Euler(2)
|
||||||
math_symmetricEulers(3,3) = pi+Euler(3)
|
math_symmetricEulers(3,3) = PI+Euler(3)
|
||||||
|
|
||||||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi)
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi)
|
||||||
|
|
||||||
|
@ -1987,7 +1910,7 @@ end function math_symmetricEulers
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief not yet done
|
!> @brief eigenvalues and eigenvectors of symmetric 3x3 matrix
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine math_spectralDecompositionSym33(M,values,vectors,error)
|
subroutine math_spectralDecompositionSym33(M,values,vectors,error)
|
||||||
|
|
||||||
|
@ -2008,194 +1931,85 @@ subroutine math_spectralDecompositionSym33(M,values,vectors,error)
|
||||||
#endif
|
#endif
|
||||||
error = (info == 0_pInt)
|
error = (info == 0_pInt)
|
||||||
|
|
||||||
end subroutine
|
end subroutine math_spectralDecompositionSym33
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
!> @brief EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
|
||||||
pure subroutine math_spectralDecomposition(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
real(pReal), dimension(3,3), intent(in) :: M
|
|
||||||
real(pReal), dimension(3,3), intent(out) :: EB1, EB2, EB3
|
|
||||||
real(pReal), intent(out) :: EW1,EW2,EW3
|
|
||||||
real(pReal) HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, D1, D2, D3
|
|
||||||
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
||||||
real(pReal), dimension(3,3) :: M1, M2, M3
|
|
||||||
real(pReal) C1,C2,C3,arg
|
|
||||||
|
|
||||||
call math_hi(M,HI1M,HI2M,HI3M)
|
|
||||||
R=-HI1M
|
|
||||||
S= HI2M
|
|
||||||
T=-HI3M
|
|
||||||
P=S-R**2.0_pReal/3.0_pReal
|
|
||||||
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
|
||||||
EB1=0.0_pReal
|
|
||||||
EB2=0.0_pReal
|
|
||||||
EB3=0.0_pReal
|
|
||||||
if((ABS(P) < TOL).AND.(ABS(Q) < TOL)) then
|
|
||||||
! DREI GLEICHE EIGENWERTE
|
|
||||||
EW1=HI1M/3.0_pReal
|
|
||||||
EW2=EW1
|
|
||||||
EW3=EW1
|
|
||||||
! this is not really correct, but this way U is calculated
|
|
||||||
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
||||||
EB1(1,1)=1.0_pReal
|
|
||||||
EB2(2,2)=1.0_pReal
|
|
||||||
EB3(3,3)=1.0_pReal
|
|
||||||
else
|
|
||||||
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
|
||||||
arg=-Q/RHO/2.0_pReal
|
|
||||||
if(arg > 1.0_pReal) arg=1.0_pReal
|
|
||||||
if(arg < -1.0_pReal) arg=-1.0_pReal
|
|
||||||
PHI=acos(arg)
|
|
||||||
Y1=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
||||||
Y2=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
||||||
Y3=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
|
||||||
EW1=Y1-R/3.0_pReal
|
|
||||||
EW2=Y2-R/3.0_pReal
|
|
||||||
EW3=Y3-R/3.0_pReal
|
|
||||||
C1=ABS(EW1-EW2)
|
|
||||||
C2=ABS(EW2-EW3)
|
|
||||||
C3=ABS(EW3-EW1)
|
|
||||||
|
|
||||||
if (C1 < TOL) then
|
|
||||||
! EW1 is equal to EW2
|
|
||||||
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
|
||||||
M1=M-EW1*math_I3
|
|
||||||
M2=M-EW2*math_I3
|
|
||||||
EB3=math_mul33x33(M1,M2)*D3
|
|
||||||
|
|
||||||
EB1=math_I3-EB3
|
|
||||||
! both EB2 and EW2 are set to zero so that they do not
|
|
||||||
! contribute to U in PDECOMPOSITION
|
|
||||||
EW2=0.0_pReal
|
|
||||||
elseif (C2 < TOL) then
|
|
||||||
! EW2 is equal to EW3
|
|
||||||
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
||||||
M2=M-math_I3*EW2
|
|
||||||
M3=M-math_I3*EW3
|
|
||||||
EB1=math_mul33x33(M2,M3)*D1
|
|
||||||
EB2=math_I3-EB1
|
|
||||||
! both EB3 and EW3 are set to zero so that they do not
|
|
||||||
! contribute to U in PDECOMPOSITION
|
|
||||||
EW3=0.0_pReal
|
|
||||||
elseif(C3 < TOL) then
|
|
||||||
! EW1 is equal to EW3
|
|
||||||
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
||||||
M1=M-math_I3*EW1
|
|
||||||
M3=M-math_I3*EW3
|
|
||||||
EB2=math_mul33x33(M1,M3)*D2
|
|
||||||
EB1=math_I3-EB2
|
|
||||||
! both EB3 and EW3 are set to zero so that they do not
|
|
||||||
! contribute to U in PDECOMPOSITION
|
|
||||||
EW3=0.0_pReal
|
|
||||||
else
|
|
||||||
! all three eigenvectors are different
|
|
||||||
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
||||||
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
||||||
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
|
||||||
M1=M-EW1*math_I3
|
|
||||||
M2=M-EW2*math_I3
|
|
||||||
M3=M-EW3*math_I3
|
|
||||||
EB1=math_mul33x33(M2,M3)*D1
|
|
||||||
EB2=math_mul33x33(M1,M3)*D2
|
|
||||||
EB3=math_mul33x33(M1,M2)*D3
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
|
|
||||||
end subroutine math_spectralDecomposition
|
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief FE = R.U
|
!> @brief FE = R.U
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure subroutine math_pDecomposition(FE,U,R,error)
|
subroutine math_pDecomposition(FE,U,R,error)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), intent(in), dimension(3,3) :: FE
|
real(pReal), intent(in), dimension(3,3) :: FE
|
||||||
real(pReal), intent(out), dimension(3,3) :: R, U
|
real(pReal), intent(out), dimension(3,3) :: R, U
|
||||||
logical, intent(out) :: error
|
logical, intent(out) :: error
|
||||||
real(pReal), dimension(3,3) :: CE, EB1, EB2, EB3, UI
|
real(pReal), dimension(3) :: EV
|
||||||
real(pReal) :: EW1, EW2, EW3
|
real(pReal), dimension(3,3) :: ce, Uinv, EB
|
||||||
|
|
||||||
ce = math_mul33x33(math_transpose33(FE),FE)
|
ce = math_mul33x33(math_transpose33(FE),FE)
|
||||||
|
|
||||||
call math_spectralDecomposition(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
call math_spectralDecompositionSym33(ce,EV,EB,error)
|
||||||
U=sqrt(EW1)*EB1+sqrt(EW2)*EB2+sqrt(EW3)*EB3
|
|
||||||
UI = math_inv33(U)
|
U = sqrt(EV(1)) * math_tensorproduct33(EB(1:3,1),EB(1:3,1)) &
|
||||||
if (all(abs(UI) <= tiny(UI))) then ! math_inv33 returns zero when faile, avoid floating point equality comparison
|
+ sqrt(EV(2)) * math_tensorproduct33(EB(1:3,2),EB(1:3,2)) &
|
||||||
|
+ sqrt(EV(3)) * math_tensorproduct33(EB(1:3,3),EB(1:3,3))
|
||||||
|
|
||||||
|
|
||||||
|
Uinv = math_inv33(U)
|
||||||
|
if (all(abs(Uinv) <= tiny(Uinv))) then ! math_inv33 returns zero when failed, avoid floating point equality comparison
|
||||||
R = 0.0_pReal
|
R = 0.0_pReal
|
||||||
error =.True.
|
error = .True.
|
||||||
else
|
else
|
||||||
R = math_mul33x33(FE,UI)
|
R = math_mul33x33(FE,Uinv)
|
||||||
error = .False.
|
error = .False. .and. error
|
||||||
endif
|
endif
|
||||||
|
|
||||||
end subroutine math_pDecomposition
|
end subroutine math_pDecomposition
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief Eigenvalues of symmetric 3X3 matrix M
|
!> @brief Eigenvalues of symmetric 3X3 matrix m
|
||||||
|
! will return NaN on error
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
function math_eigenvalues33(M)
|
function math_eigenvalues33(m)
|
||||||
|
use prec, only: &
|
||||||
|
DAMASK_NaN
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), intent(in), dimension(3,3) :: M
|
real(pReal), dimension(3,3), intent(in) :: m
|
||||||
real(pReal), dimension(3,3) :: EB1 = 0.0_pReal, EB2 = 0.0_pReal, EB3 = 0.0_pReal
|
|
||||||
real(pReal), dimension(3) :: math_eigenvalues33
|
real(pReal), dimension(3) :: math_eigenvalues33
|
||||||
real(pReal) :: HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, arg
|
real(pReal), dimension(3,3) :: vectors
|
||||||
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
||||||
|
|
||||||
CALL math_hi(M,HI1M,HI2M,HI3M)
|
integer(pInt) :: info
|
||||||
R=-HI1M
|
real(pReal), dimension((64+2)*3) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||||||
S= HI2M
|
|
||||||
T=-HI3M
|
vectors = m ! copy matrix to input (doubles as output) array
|
||||||
P=S-R**2.0_pReal/3.0_pReal
|
#if(FLOAT==8)
|
||||||
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
call dsyev('N','U',3,vectors,3,math_eigenvalues33,work,(64+2)*3,info)
|
||||||
|
#elif(FLOAT==4)
|
||||||
|
call ssyev('N','U',3,vectors,3,math_eigenvalues33,work,(64+2)*3,info)
|
||||||
|
#endif
|
||||||
|
if (info /= 0_pInt) math_eigenvalues33 = DAMASK_NaN
|
||||||
|
|
||||||
if((abs(P) < TOL) .and. (abs(Q) < TOL)) THEN
|
|
||||||
! three equivalent eigenvalues
|
|
||||||
math_eigenvalues33(1) = HI1M/3.0_pReal
|
|
||||||
math_eigenvalues33(2)=math_eigenvalues33(1)
|
|
||||||
math_eigenvalues33(3)=math_eigenvalues33(1)
|
|
||||||
! this is not really correct, but this way U is calculated
|
|
||||||
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
||||||
EB1(1,1)=1.0_pReal
|
|
||||||
EB2(2,2)=1.0_pReal
|
|
||||||
EB3(3,3)=1.0_pReal
|
|
||||||
else
|
|
||||||
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
|
||||||
arg=-Q/RHO/2.0_pReal
|
|
||||||
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
||||||
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
|
||||||
PHI=acos(arg)
|
|
||||||
Y1=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
||||||
Y2=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
||||||
Y3=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
|
||||||
math_eigenvalues33(1) = Y1-R/3.0_pReal
|
|
||||||
math_eigenvalues33(2) = Y2-R/3.0_pReal
|
|
||||||
math_eigenvalues33(3) = Y3-R/3.0_pReal
|
|
||||||
endif
|
|
||||||
end function math_eigenvalues33
|
end function math_eigenvalues33
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
!> @brief invariants of matrix m
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure subroutine math_hi(M,HI1M,HI2M,HI3M)
|
pure function math_invariants33(m)
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), intent(in) :: M(3,3)
|
real(pReal), dimension(3,3) , intent(in) :: m
|
||||||
real(pReal), intent(out) :: HI1M, HI2M, HI3M
|
real(pReal), dimension(3) :: math_invariants33
|
||||||
|
|
||||||
HI1M=M(1,1)+M(2,2)+M(3,3)
|
math_invariants33(1) = math_trace33(m)
|
||||||
HI2M=HI1M**2.0_pReal/2.0_pReal- (M(1,1)**2.0_pReal+M(2,2)**2.0_pReal+M(3,3)**2.0_pReal)&
|
math_invariants33(2) = math_invariants33(1)**2.0_pReal/2.0_pReal &
|
||||||
/2.0_pReal-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
-(m(1,1)**2.0_pReal+m(2,2)**2.0_pReal+m(3,3)**2.0_pReal)* 0.5_pReal &
|
||||||
HI3M=math_det33(M)
|
- m(1,2)*m(2,1) -m(1,3)*m(3,1) -m(2,3)*m(3,2)
|
||||||
|
math_invariants33(3) = math_det33(m)
|
||||||
|
|
||||||
end subroutine math_hi
|
end function math_invariants33
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -2675,7 +2489,7 @@ real(pReal) pure function math_areaTriangle(v1,v2,v3)
|
||||||
implicit none
|
implicit none
|
||||||
real(pReal), dimension (3), intent(in) :: v1,v2,v3
|
real(pReal), dimension (3), intent(in) :: v1,v2,v3
|
||||||
|
|
||||||
math_areaTriangle = 0.5_pReal * math_norm3(math_vectorproduct(v1-v2,v1-v3))
|
math_areaTriangle = 0.5_pReal * norm2(math_crossproduct(v1-v2,v1-v3))
|
||||||
|
|
||||||
end function math_areaTriangle
|
end function math_areaTriangle
|
||||||
|
|
||||||
|
@ -2750,4 +2564,26 @@ function math_tensorAvg(field)
|
||||||
end function math_tensorAvg
|
end function math_tensorAvg
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief limits a scalar value to a certain range (either one or two sided)
|
||||||
|
! Will return NaN if left > right
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
real(pReal) pure function math_limit(a, left, right)
|
||||||
|
use prec, only: &
|
||||||
|
DAMASK_NaN
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
real(pReal), intent(in) :: a
|
||||||
|
real(pReal), intent(in), optional :: left, right
|
||||||
|
|
||||||
|
|
||||||
|
math_limit = min ( &
|
||||||
|
max (merge(left, -huge(a), present(left)), a), &
|
||||||
|
merge(right, huge(a), present(right)) &
|
||||||
|
)
|
||||||
|
|
||||||
|
if (present(left) .and. present(right)) math_limit = merge (DAMASK_NaN,math_limit, left>right)
|
||||||
|
|
||||||
|
end function math_limit
|
||||||
|
|
||||||
end module math
|
end module math
|
||||||
|
|
|
@ -3122,8 +3122,7 @@ use IO, only: &
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
subroutine mesh_build_ipAreas
|
subroutine mesh_build_ipAreas
|
||||||
use math, only: &
|
use math, only: &
|
||||||
math_norm3, &
|
math_crossproduct
|
||||||
math_vectorproduct
|
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
integer(pInt) :: e,t,g,c,i,f,n,m
|
integer(pInt) :: e,t,g,c,i,f,n,m
|
||||||
|
@ -3148,8 +3147,8 @@ subroutine mesh_build_ipAreas
|
||||||
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
|
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
|
||||||
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
|
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
|
||||||
normal(3) = 0.0_pReal
|
normal(3) = 0.0_pReal
|
||||||
mesh_ipArea(f,i,e) = math_norm3(normal)
|
mesh_ipArea(f,i,e) = norm2(normal)
|
||||||
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -3158,10 +3157,10 @@ subroutine mesh_build_ipAreas
|
||||||
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
|
||||||
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
||||||
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
||||||
normal = math_vectorproduct(nodePos(1:3,2) - nodePos(1:3,1), &
|
normal = math_crossproduct(nodePos(1:3,2) - nodePos(1:3,1), &
|
||||||
nodePos(1:3,3) - nodePos(1:3,1))
|
nodePos(1:3,3) - nodePos(1:3,1))
|
||||||
mesh_ipArea(f,i,e) = math_norm3(normal)
|
mesh_ipArea(f,i,e) = norm2(normal)
|
||||||
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -3177,11 +3176,11 @@ subroutine mesh_build_ipAreas
|
||||||
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
||||||
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
|
||||||
normals(1:3,n) = 0.5_pReal &
|
normals(1:3,n) = 0.5_pReal &
|
||||||
* math_vectorproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
|
* math_crossproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
|
||||||
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
|
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
|
||||||
normal = 0.5_pReal * sum(normals,2)
|
normal = 0.5_pReal * sum(normals,2)
|
||||||
mesh_ipArea(f,i,e) = math_norm3(normal)
|
mesh_ipArea(f,i,e) = norm2(normal)
|
||||||
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal)
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
|
|
@ -1639,7 +1639,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
||||||
math_Mandel6to33, &
|
math_Mandel6to33, &
|
||||||
math_Mandel33to6, &
|
math_Mandel33to6, &
|
||||||
math_spectralDecompositionSym33, &
|
math_spectralDecompositionSym33, &
|
||||||
math_tensorproduct, &
|
math_tensorproduct33, &
|
||||||
math_symmetric33, &
|
math_symmetric33, &
|
||||||
math_mul33x3
|
math_mul33x3
|
||||||
use material, only: &
|
use material, only: &
|
||||||
|
@ -1788,7 +1788,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
||||||
do j = 1_pInt,6_pInt
|
do j = 1_pInt,6_pInt
|
||||||
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
|
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
|
||||||
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
|
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
|
||||||
sb_Smatrix = math_tensorproduct(sb_s,sb_m)
|
sb_Smatrix = math_tensorproduct33(sb_s,sb_m)
|
||||||
plastic_dislotwin_sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix))
|
plastic_dislotwin_sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix))
|
||||||
|
|
||||||
!* Calculation of Lp
|
!* Calculation of Lp
|
||||||
|
|
Loading…
Reference in New Issue