From 2d7293726c7bcde7e8fc562d69a1964d3a29d432 Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Mon, 7 Oct 2019 18:04:29 +0200 Subject: [PATCH] more useful order --- src/lattice.f90 | 112 ++++++++++++++++++++++++------------------------ 1 file changed, 56 insertions(+), 56 deletions(-) diff --git a/src/lattice.f90 b/src/lattice.f90 index c6d559790..a09355de3 100644 --- a/src/lattice.f90 +++ b/src/lattice.f90 @@ -228,92 +228,92 @@ module lattice real(pReal), dimension(4+4,LATTICE_HEX_NSLIP), parameter :: & LATTICE_HEX_SYSTEMSLIP = reshape(real([& ! Slip direction Plane normal - ! Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base)) + ! Basal systems <-1-1.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base)) 2, -1, -1, 0, 0, 0, 0, 1, & -1, 2, -1, 0, 0, 0, 0, 1, & -1, -1, 2, 0, 0, 0, 0, 1, & - ! 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio) + ! 1st type prismatic systems <-1-1.0>{1-1.0} (independent of c/a-ratio) 2, -1, -1, 0, 0, 1, -1, 0, & -1, 2, -1, 0, -1, 0, 1, 0, & -1, -1, 2, 0, 1, -1, 0, 0, & - ! 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio - 0, 1, -1, 0, 2, -1, -1, 0, & - -1, 0, 1, 0, -1, 2, -1, 0, & - 1, -1, 0, 0, -1, -1, 2, 0, & - ! 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio - 2, -1, -1, 0, 0, 1, -1, 1, & - -1, 2, -1, 0, -1, 0, 1, 1, & - -1, -1, 2, 0, 1, -1, 0, 1, & - 1, 1, -2, 0, -1, 1, 0, 1, & - -2, 1, 1, 0, 0, -1, 1, 1, & - 1, -2, 1, 0, 1, 0, -1, 1, & + ! 2nd type prismatic systems <-11.0>{11.0} -- a slip; plane normals independent of c/a-ratio + -1, 1, 0, 0, 1, 1, -2, 0, & + 0, -1, 1, 0, -2, 1, 1, 0, & + 1, 0, -1, 0, 1, -2, 1, 0, & + ! 1st type 1st order pyramidal systems <-1-1.0>{-11.1} -- plane normals depend on the c/a-ratio + -1, 2, -1, 0, 1, 0, -1, 1, & + -2, 1, 1, 0, 0, 1, -1, 1, & + -1, -1, 2, 0, -1, 1, 0, 1, & + 1, -2, 1, 0, -1, 0, 1, 1, & + 2, -1, -1, 0, 0, -1, 1, 1, & + 1, 1, -2, 0, 1, -1, 0, 1, & ! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio - 2, -1, -1, 3, -1, 1, 0, 1, & - 1, -2, 1, 3, -1, 1, 0, 1, & - -1, -1, 2, 3, 1, 0, -1, 1, & -2, 1, 1, 3, 1, 0, -1, 1, & - -1, 2, -1, 3, 0, -1, 1, 1, & - 1, 1, -2, 3, 0, -1, 1, 1, & - -2, 1, 1, 3, 1, -1, 0, 1, & - -1, 2, -1, 3, 1, -1, 0, 1, & - 1, 1, -2, 3, -1, 0, 1, 1, & - 2, -1, -1, 3, -1, 0, 1, 1, & - 1, -2, 1, 3, 0, 1, -1, 1, & + -1, -1, 2, 3, 1, 0, -1, 1, & -1, -1, 2, 3, 0, 1, -1, 1, & + 1, -2, 1, 3, 0, 1, -1, 1, & + 1, -2, 1, 3, -1, 1, 0, 1, & + 2, -1, -1, 3, -1, 1, 0, 1, & + 2, -1, -1, 3, -1, 0, 1, 1, & + 1, 1, -2, 3, -1, 0, 1, 1, & + 1, 1, -2, 3, 0, -1, 1, 1, & + -1, 2, -1, 3, 0, -1, 1, 1, & + -1, 2, -1, 3, 1, -1, 0, 1, & + -2, 1, 1, 3, 1, -1, 0, 1, & ! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al. 1996, similar to twin system found below) - 2, -1, -1, 3, -2, 1, 1, 2, & ! sorted according to similar twin system - -1, 2, -1, 3, 1, -2, 1, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a) - -1, -1, 2, 3, 1, 1, -2, 2, & - -2, 1, 1, 3, 2, -1, -1, 2, & + -1, -1, 2, 3, 1, 1, -2, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a) 1, -2, 1, 3, -1, 2, -1, 2, & - 1, 1, -2, 3, -1, -1, 2, 2 & - ],pReal),shape(LATTICE_HEX_SYSTEMSLIP)) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr + 2, -1, -1, 3, -2, 1, 1, 2, & + 1, 1, -2, 3, -1, -1, 2, 2, & + -1, 2, -1, 3, 1, -2, 1, 2, & + -2, 1, 1, 3, 2, -1, -1, 2 & + ],pReal),shape(LATTICE_HEX_SYSTEMSLIP)) !< slip systems for hex, sorted by P. Eisenlohr CCW around starting next to a_1 axis character(len=*), dimension(6), parameter :: LATTICE_HEX_SLIPFAMILY_NAME = & - ['<1 1 . 1>{0 0 . 1} ', & - '<1 1 . 1>{1 0 . 0} ', & - '<1 0 . 0>{1 1 . 0} ', & - '<1 1 . 0>{-1 1 . 1} ', & - '<1 1 . 3>{-1 0 . 1} ', & - '<1 1 . 3>{-1 -1 . 2}'] + ['< 1 1 . 0>{ 0 0 . 1}', & + '< 1 1 . 0>{ 1 0 . 0}', & + '<-1 1 . 0>{ 1 1 . 0}', & + '< 1 1 . 0>{ 1 -1 . 1}', & + '< 1 1 . 3>{-1 0 . 1}', & + '< 1 1 . 3>{-1 -1 . 2}'] real(pReal), dimension(4+4,LATTICE_HEX_NTWIN), parameter :: & LATTICE_HEX_SYSTEMTWIN = reshape(real([& - ! Compression or Tension =f(twinning shear=f(c/a)) for each metal ! (according to Yoo 1981) - 1, -1, 0, 1, -1, 1, 0, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a) - -1, 0, 1, 1, 1, 0, -1, 2, & + ! Compression or Tension = f(twinning shear=f(c/a)) for each metal ! (according to Yoo 1981) + -1, 0, 1, 1, 1, 0, -1, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a) + 0, -1, 1, 1, 0, 1, -1, 2, & + 1, -1, 0, 1, -1, 1, 0, 2, & + 1, 0, -1, 1, -1, 0, 1, 2, & 0, 1, -1, 1, 0, -1, 1, 2, & -1, 1, 0, 1, 1, -1, 0, 2, & - 1, 0, -1, 1, -1, 0, 1, 2, & - 0, -1, 1, 1, 0, 1, -1, 2, & ! - 2, -1, -1, 6, -2, 1, 1, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a) - -1, 2, -1, 6, 1, -2, 1, 1, & - -1, -1, 2, 6, 1, 1, -2, 1, & - -2, 1, 1, 6, 2, -1, -1, 1, & + -1, -1, 2, 6, 1, 1, -2, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a) 1, -2, 1, 6, -1, 2, -1, 1, & + 2, -1, -1, 6, -2, 1, 1, 1, & 1, 1, -2, 6, -1, -1, 2, 1, & + -1, 2, -1, 6, 1, -2, 1, 1, & + -2, 1, 1, 6, 2, -1, -1, 1, & ! - -1, 1, 0, -2, -1, 1, 0, 1, & !! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a) - 1, 0, -1, -2, 1, 0, -1, 1, & + 1, 0, -1, -2, 1, 0, -1, 1, & ! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a) + 0, 1, -1, -2, 0, 1, -1, 1, & + -1, 1, 0, -2, -1, 1, 0, 1, & + -1, 0, 1, -2, -1, 0, 1, 1, & 0, -1, 1, -2, 0, -1, 1, 1, & 1, -1, 0, -2, 1, -1, 0, 1, & - -1, 0, 1, -2, -1, 0, 1, 1, & - 0, 1, -1, -2, 0, 1, -1, 1, & ! - 2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a) + 1, 1, -2, -3, 1, 1, -2, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a) -1, 2, -1, -3, -1, 2, -1, 2, & - -1, -1, 2, -3, -1, -1, 2, 2, & -2, 1, 1, -3, -2, 1, 1, 2, & + -1, -1, 2, -3, -1, -1, 2, 2, & 1, -2, 1, -3, 1, -2, 1, 2, & - 1, 1, -2, -3, 1, 1, -2, 2 & - ],pReal),shape(LATTICE_HEX_SYSTEMTWIN)) !< twin systems for hex, order follows Prof. Tom Bieler's scheme + 2, -1, -1, -3, 2, -1, -1, 2 & + ],pReal),shape(LATTICE_HEX_SYSTEMTWIN)) !< twin systems for hex, sorted by P. Eisenlohr CCW around starting next to a_1 axis character(len=*), dimension(4), parameter :: LATTICE_HEX_TWINFAMILY_NAME = & - ['<-1 0 . 1>{1 0 . 2} ', & - '<1 1 . 6>{-1 -1 . 1}', & - '<1 0 . -2>{1 0 . 1} ', & - '<1 1 . -3>{1 1 . 2} '] + ['<-1 0 . 1>{ 1 0 . 2}', & + '< 1 1 . 6>{-1 -1 . 1}', & + '< 1 0 . -2>{ 1 0 . 1}', & + '< 1 1 . -3>{ 1 1 . 2}'] real(pReal), dimension(4+4,LATTICE_HEX_NCLEAVAGE), parameter :: & LATTICE_HEX_SYSTEMCLEAVAGE = reshape(real([&