Merge branch 'development' into YAML-improvements

This commit is contained in:
Sharan Roongta 2020-10-05 22:37:47 +02:00
commit 2bd4e79a37
93 changed files with 389169 additions and 3265 deletions

View File

@ -239,6 +239,16 @@ Compile_Intel_Prepare:
- release
###################################################################################################
Pytest_grid:
stage: grid
script:
- module load $IntelCompiler $MPICH_Intel $PETSc_MPICH_Intel
- cd pytest
- pytest
except:
- master
- release
Thermal:
stage: grid
script: Thermal/test.py
@ -253,27 +263,6 @@ grid_parsingArguments:
- master
- release
StateIntegration_compareVariants:
stage: grid
script: StateIntegration_compareVariants/test.py
except:
- master
- release
nonlocal_densityConservation:
stage: grid
script: nonlocal_densityConservation/test.py
except:
- master
- release
RGC_DetectChanges:
stage: grid
script: RGC_DetectChanges/test.py
except:
- master
- release
Nonlocal_Damage_DetectChanges:
stage: grid
script: Nonlocal_Damage_DetectChanges/test.py
@ -302,15 +291,6 @@ grid_all_loadCaseRotation:
- master
- release
grid_mech_MPI:
stage: grid
script:
- module load $IntelCompiler $MPICH_Intel $PETSc_MPICH_Intel
- grid_mech_MPI/test.py
except:
- master
- release
grid_all_restartMPI:
stage: grid
script:
@ -327,13 +307,6 @@ Plasticity_DetectChanges:
- master
- release
Homogenization:
stage: grid
script: Homogenization/test.py
except:
- master
- release
Phenopowerlaw_singleSlip:
stage: grid
script: Phenopowerlaw_singleSlip/test.py
@ -341,15 +314,6 @@ Phenopowerlaw_singleSlip:
- master
- release
Pytest_grid:
stage: grid
script:
- cd pytest
- pytest
except:
- master
- release
###################################################################################################
Marc_compileIfort:
stage: compileMarc

View File

@ -9,18 +9,10 @@ all: grid mesh processing
.PHONY: grid
grid: build/grid
@(cd build/grid;make -j${DAMASK_NUM_THREADS} all install;)
@rm -f ${DAMASK_ROOT}/bin/DAMASK_spectral > /dev/null || true
@ln -s ${DAMASK_ROOT}/bin/DAMASK_grid ${DAMASK_ROOT}/bin/DAMASK_spectral || true
.PHONY: spectral
spectral: grid
.PHONY: mesh
mesh: build/mesh
@(cd build/mesh; make -j${DAMASK_NUM_THREADS} all install;)
@rm -f ${DAMASK_ROOT}/bin/DAMASK_FEM > /dev/null || true
@ln -s ${DAMASK_ROOT}/bin/DAMASK_mesh ${DAMASK_ROOT}/bin/DAMASK_FEM || true
.PHONY: FEM
FEM: mesh
.PHONY: build/grid
build/grid:

@ -1 +1 @@
Subproject commit 3444f5334c1c6c05b781e0e25bbcb658d9ce7c5d
Subproject commit 64e62f805b5ad784e3397ee5f735aaeb3cc134c2

View File

@ -1 +1 @@
v3.0.0-alpha-292-g14bfaa60c
v3.0.0-alpha-449-g37dfd32f5

View File

@ -3,27 +3,27 @@
homogenization:
mech:
RGC:
atol: 1.0e+4 # absolute tolerance of RGC residuum (in Pa)
rtol: 1.0e-3 # relative ...
amax: 1.0e+10 # absolute upper-limit of RGC residuum (in Pa)
rmax: 1.0e+2 # relative ...
perturbpenalty: 1.0e-7 # perturbation for computing penalty tangent
relevantmismatch: 1.0e-5 # minimum threshold of mismatch
viscositypower: 1.0e+0 # power (sensitivity rate) of numerical viscosity in RGC scheme
viscositymodulus: 0.0e+0 # stress modulus of RGC numerical viscosity (zero = without numerical viscosity)
# suggestion: larger than the aTol_RGC but still far below the expected flow stress of material
refrelaxationrate: 1.0e-3 # reference rate of relaxation (about the same magnitude as straining rate, possibly a bit higher)
maxrelaxationrate: 1.0e+0 # threshold of maximum relaxation vector increment (if exceed this then cutback)
maxvoldiscrepancy: 1.0e-5 # maximum allowable relative volume discrepancy
voldiscrepancymod: 1.0e+12
discrepancypower: 5.0
RGC:
atol: 1.0e+4 # absolute tolerance of RGC residuum (in Pa)
rtol: 1.0e-3 # relative ...
amax: 1.0e+10 # absolute upper-limit of RGC residuum (in Pa)
rmax: 1.0e+2 # relative ...
perturbpenalty: 1.0e-7 # perturbation for computing penalty tangent
relevantmismatch: 1.0e-5 # minimum threshold of mismatch
viscositypower: 1.0e+0 # power (sensitivity rate) of numerical viscosity in RGC scheme
viscositymodulus: 0.0e+0 # stress modulus of RGC numerical viscosity (zero = without numerical viscosity)
# suggestion: larger than the aTol_RGC but still far below the expected flow stress of material
refrelaxationrate: 1.0e-3 # reference rate of relaxation (about the same magnitude as straining rate, possibly a bit higher)
maxrelaxationrate: 1.0e+0 # threshold of maximum relaxation vector increment (if exceed this then cutback)
maxvoldiscrepancy: 1.0e-5 # maximum allowable relative volume discrepancy
voldiscrepancymod: 1.0e+12
discrepancypower: 5.0
generic:
subStepMin: 1.0e-3 # minimum (relative) size of sub-step allowed during cutback in homogenization
subStepSize: 0.25 # size of substep when cutback introduced in homogenization (value between 0 and 1)
stepIncrease: 1.5 # increase of next substep size when previous substep converged in homogenization (value higher than 1)
nMPstate: 10 # materialpoint state loop limit
subStepMin: 1.0e-3 # minimum (relative) size of sub-step allowed during cutback in homogenization
subStepSize: 0.25 # size of substep when cutback introduced in homogenization (value between 0 and 1)
stepIncrease: 1.5 # increase of next substep size when previous substep converged in homogenization (value higher than 1)
nMPstate: 10 # materialpoint state loop limit
grid:
eps_div_atol: 1.0e-3 # absolute tolerance for fulfillment of stress equilibrium
@ -39,30 +39,30 @@ grid:
itmax: 250 # Maximum iteration number
itmin: 2 # Minimum iteration number
fftw_timelimit: -1.0 # timelimit of plan creation for FFTW, see manual on www.fftw.org, Default -1.0: disable timelimit
fftw_plan_mode: FFTW_PATIENT # reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
maxCutBack: 3 # maximum cut back level (0: 1, 1: 0.5, 2: 0.25, etc)
maxStaggeredIter: 10 # max number of field level staggered iterations
fftw_plan_mode: FFTW_PATIENT # reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
maxCutBack: 3 # maximum cut back level (0: 1, 1: 0.5, 2: 0.25, etc)
maxStaggeredIter: 10 # max number of field level staggered iterations
memory_efficient: 1 # Precalculate Gamma-operator (81 double per point)
update_gamma: false # Update Gamma-operator with current dPdF (not possible if memory_efficient=1)
divergence_correction: 2 # Use size-independent divergence criterion
divergence_correction: 2 # Use size-independent divergence criterion
derivative: continuous # Approximation used for derivatives in Fourier space
solver: Basic # Type of spectral solver (BasicPETSc/Polarisation/FEM)
petsc_options: -snes_type ngmres -snes_ngmres_anderson # PetSc solver options
alpha: 1.0 # polarization scheme parameter 0.0 < alpha < 2.0. alpha = 1.0 ==> AL scheme, alpha = 2.0 ==> accelerated scheme
beta: 1.0 # polarization scheme parameter 0.0 < beta < 2.0. beta = 1.0 ==> AL scheme, beta = 2.0 ==> accelerated scheme
alpha: 1.0 # polarization scheme parameter 0.0 < alpha < 2.0. alpha = 1.0 ==> AL scheme, alpha = 2.0 ==> accelerated scheme
beta: 1.0 # polarization scheme parameter 0.0 < beta < 2.0. beta = 1.0 ==> AL scheme, beta = 2.0 ==> accelerated scheme
mesh:
maxCutBack: 3 # maximum cut back level (0: 1, 1: 0.5, 2: 0.25, etc)
maxStaggeredIter: 10 # max number of field level staggered iterations
maxCutBack: 3 # maximum cut back level (0: 1, 1: 0.5, 2: 0.25, etc)
maxStaggeredIter: 10 # max number of field level staggered iterations
structorder: 2 # order of displacement shape functions (when mesh is defined)
bbarstabilisation: false
bbarstabilisation: false
integrationorder: 2 # order of quadrature rule required (when mesh is defined)
itmax: 250 # Maximum iteration number
itmin: 2 # Minimum iteration number
eps_struct_atol: 1.0e-10 # absolute tolerance for mechanical equilibrium
eps_struct_rtol: 1.0e-4 # relative tolerance for mechanical equilibrium
crystallite:
subStepMin: 1.0e-3 # minimum (relative) size of sub-step allowed during cutback in crystallite
subStepSize: 0.25 # size of substep when cutback introduced in crystallite (value between 0 and 1)
@ -78,12 +78,9 @@ crystallite:
iJacoLpresiduum: 1 # frequency of Jacobian update of residuum in Lp
commercialFEM:
ijacostiffness: 1 # frequency of stiffness update
unitlength: 1 # physical length of one computational length unit
generic:
charLength: 1.0 # characteristic length scale for gradient problems.
random_seed: 0 # fixed seeding for pseudo-random number generator, Default 0: use random seed.
residualStiffness: 1.0e-6 # non-zero residual damage.

View File

@ -1,115 +1,110 @@
---
homogenization:
SX:
mech: {type:
none}
microstructure:
- constituents:
- fraction: 1.0
orientation: [1.0, 0.0, 0.0, 0.0]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.7936696712125002, -0.28765777461664166,
-0.3436487135089419, 0.4113964260949434]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.3986143167493579, -0.7014883552495493, 0.2154871765709027, 0.5500781677772945]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.28645844315788244,
mech: {type: none}
material:
- constituents:
- fraction: 1.0
O: [1.0, 0.0, 0.0, 0.0]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.7936696712125002, -0.28765777461664166, -0.3436487135089419, 0.4113964260949434]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.3986143167493579, -0.7014883552495493, 0.2154871765709027, 0.5500781677772945]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.28645844315788244, -0.022571491243423537, -0.467933059311115, -0.8357456192708106]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.33012772942625784, -0.6781865350268957, 0.6494525351030648, 0.09638521992649676]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.43596817439583935, -0.5982537129781701, 0.046599032277502436, 0.6707106499919265]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.169734823419553, -0.699615227367322, -0.6059581215838098, -0.33844257746495854]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.9698864809294915, 0.1729052643205874, -0.15948307917616958, 0.06315956884687175]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.46205660912967883, 0.3105054068891252, -0.617849551030653, 0.555294529545738]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.4512443497461787, -0.7636045534540555, -0.04739348426715133, -0.45939142396805815]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.2161856212656443, -0.6581450184826598, -0.5498086209601588, 0.4667112513346289]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.8753220715350803, -0.4561599367657419, -0.13298279533852678, -0.08969369719975541]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.11908260752431069, 0.18266024809834172, -0.7144822594012615, -0.664807992845101]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.751104669484278, 0.5585633382623958, -0.34579336397009175, 0.06538900566860861]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.08740438971703973, 0.8991264096610437, -0.4156704205935976, 0.10559485570696363]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.5584325870096193, 0.6016408353068798, -0.14280340445801173, 0.5529814994483859]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.4052725440888093, 0.25253073423599154, 0.5693263597910454, -0.669215876471182]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.7570164606888676, 0.15265448024694664, -0.5998021466848317, 0.20942796551297105]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.6987659297138081, -0.132172211261028, -0.19693254724422338, 0.6748883269678543]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
O: [0.7729330445886478, 0.21682179052722322, -0.5207379472917645, 0.2905078484066341]
phase: Aluminum
homogenization: SX
-0.022571491243423537,
-0.467933059311115, -0.8357456192708106]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.33012772942625784, -0.6781865350268957, 0.6494525351030648, 0.09638521992649676]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.43596817439583935, -0.5982537129781701, 0.046599032277502436, 0.6707106499919265]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.169734823419553, -0.699615227367322, -0.6059581215838098, -0.33844257746495854]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.9698864809294915, 0.1729052643205874, -0.15948307917616958, 0.06315956884687175]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.46205660912967883, 0.3105054068891252, -0.617849551030653, 0.555294529545738]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.4512443497461787, -0.7636045534540555, -0.04739348426715133, -0.45939142396805815]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.2161856212656443, -0.6581450184826598, -0.5498086209601588, 0.4667112513346289]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.8753220715350803, -0.4561599367657419, -0.13298279533852678, -0.08969369719975541]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.11908260752431069, 0.18266024809834172, -0.7144822594012615, -0.664807992845101]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.751104669484278, 0.5585633382623958, -0.34579336397009175, 0.06538900566860861]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.08740438971703973, 0.8991264096610437, -0.4156704205935976, 0.10559485570696363]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.5584325870096193, 0.6016408353068798, -0.14280340445801173, 0.5529814994483859]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.4052725440888093, 0.25253073423599154, 0.5693263597910454, -0.669215876471182]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.7570164606888676, 0.15265448024694664, -0.5998021466848317, 0.20942796551297105]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.6987659297138081, -0.132172211261028, -0.19693254724422338, 0.6748883269678543]
phase: Aluminum
homogenization: SX
- constituents:
- fraction: 1.0
orientation: [0.7729330445886478, 0.21682179052722322, -0.5207379472917645, 0.2905078484066341]
phase: Aluminum
homogenization: SX
phase:
Aluminum:
elasticity: {C_11: 106.75e9, C_12: 60.41e9, C_44: 28.34e9, type: hooke}
@ -125,7 +120,6 @@ phase:
h_sl_sl: [1, 1, 1.4, 1.4, 1.4, 1.4]
n_sl: 20
output: [xi_sl]
type: phenopowerlaw
xi_0_sl: [31e6]
xi_inf_sl: [63e6]
type: phenopowerlaw

View File

@ -1,161 +0,0 @@
#!/usr/bin/env python3
import os
import sys
from optparse import OptionParser
import re
import fnmatch
import math # noqa
import numpy as np
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
def sortingList(labels,whitelistitems):
indices = []
names = []
for label in labels:
if re.match(r'^\d+_',label):
indices.append(int(label.split('_',1)[0]))
names.append(label.split('_',1)[1])
else:
indices.append(0)
names.append(label)
return [indices,names,whitelistitems]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
Filter rows according to condition and columns by either white or black listing.
Examples:
Every odd row if x coordinate is positive -- " #ip.x# >= 0.0 and #_row_#%2 == 1 ).
All rows where label 'foo' equals 'bar' -- " #s#foo# == 'bar' "
""", version = scriptID)
parser.add_option('-w','--white',
dest = 'whitelist',
action = 'extend', metavar = '<string LIST>',
help = 'whitelist of column labels (a,b,c,...)')
parser.add_option('-b','--black',
dest = 'blacklist',
action = 'extend', metavar='<string LIST>',
help = 'blacklist of column labels (a,b,c,...)')
parser.add_option('-c','--condition',
dest = 'condition', metavar='string',
help = 'condition to filter rows')
parser.set_defaults(condition = None,
)
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name)
except IOError:
continue
damask.util.report(scriptName,name)
# ------------------------------------------ assemble info ---------------------------------------
table.head_read()
# ------------------------------------------ process data ---------------------------------------
specials = { \
'_row_': 0,
}
labels = []
positions = []
for position,label in enumerate(table.labels(raw = True)):
if (options.whitelist is None or any([ position in table.label_indexrange(needle) \
or fnmatch.fnmatch(label,needle) for needle in options.whitelist])) \
and (options.blacklist is None or not any([ position in table.label_indexrange(needle) \
or fnmatch.fnmatch(label,needle) for needle in options.blacklist])): # a label to keep?
labels.append(label) # remember name...
positions.append(position) # ...and position
if len(labels) > 0 and options.whitelist is not None and options.blacklist is None: # check whether reordering is possible
whitelistitem = np.zeros(len(labels),dtype=int)
for i,label in enumerate(labels): # check each selected label
match = [ positions[i] in table.label_indexrange(needle) \
or fnmatch.fnmatch(label,needle) for needle in options.whitelist] # which whitelist items do match it
whitelistitem[i] = match.index(True) if np.sum(match) == 1 else -1 # unique match to a whitelist item --> store which
order = range(len(labels)) if np.any(whitelistitem < 0) \
else np.lexsort(sortingList(labels,whitelistitem)) # reorder if unique, i.e. no "-1" in whitelistitem
else:
order = range(len(labels)) # maintain original order of labels
# --------------------------------------- evaluate condition ---------------------------------------
if options.condition is not None:
condition = options.condition # copy per file, since might be altered inline
breaker = False
for position,(all,marker,column) in enumerate(set(re.findall(r'#(([s]#)?(.+?))#',condition))): # find three groups
idx = table.label_index(column)
dim = table.label_dimension(column)
if idx < 0 and column not in specials:
damask.util.croak('column "{}" not found.'.format(column))
breaker = True
else:
if column in specials:
replacement = 'specials["{}"]'.format(column)
elif dim == 1: # scalar input
replacement = '{}(table.data[{}])'.format({ '':'float',
's#':'str'}[marker],idx) # take float or string value of data column
elif dim > 1: # multidimensional input (vector, tensor, etc.)
replacement = 'np.array(table.data[{}:{}],dtype=float)'.format(idx,idx+dim) # use (flat) array representation
condition = condition.replace('#'+all+'#',replacement)
if breaker: continue # found mistake in condition evaluation --> next file
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_clear()
table.labels_append(np.array(labels)[order]) # update with new label set
table.head_write()
# ------------------------------------------ process and output data ------------------------------------------
positions = np.array(positions)[order]
atOnce = options.condition is None
if atOnce: # read full array and filter columns
try:
table.data_readArray(positions+1) # read desired columns (indexed 1,...)
table.data_writeArray() # directly write out
except Exception:
table.data_rewind()
atOnce = False # data contains items that prevent array chunking
if not atOnce: # read data line by line
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
specials['_row_'] += 1 # count row
if options.condition is None or eval(condition): # valid row ?
table.data = [table.data[position] for position in positions] # retain filtered columns
outputAlive = table.data_write() # output processed line
# ------------------------------------------ finalize output -----------------------------------------
table.close() # close input ASCII table (works for stdin)

View File

@ -52,16 +52,11 @@ parser.add_option('-q', '--quaternion',
type = 'string',
metavar='string',
help = 'name of the dataset containing pointwise/average orientation as quaternion [%default]')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.set_defaults(pointwise = 'CellData',
quaternion = 'Quats',
phase = 'Phases',
microstructure = 'FeatureIds',
homogenization = 1,
)
(options, filenames) = parser.parse_args()
@ -150,8 +145,7 @@ for name in filenames:
header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\
+ config_header
geom = damask.Geom(microstructure,size,origin,
homogenization=options.homogenization,comments=header)
geom = damask.Geom(microstructure,size,origin,comments=header)
damask.util.croak(geom)
geom.save_ASCII(os.path.splitext(name)[0]+'.geom',compress=False)

View File

@ -4,8 +4,6 @@ import os
import sys
from optparse import OptionParser
import numpy as np
import damask
@ -13,14 +11,7 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
minimal_surfaces = ['primitive','gyroid','diamond']
surface = {
'primitive': lambda x,y,z: np.cos(x)+np.cos(y)+np.cos(z),
'gyroid': lambda x,y,z: np.sin(x)*np.cos(y)+np.sin(y)*np.cos(z)+np.cos(x)*np.sin(z),
'diamond': lambda x,y,z: np.cos(x-y)*np.cos(z)+np.sin(x+y)*np.sin(z),
}
minimal_surfaces = list(damask.Geom._minimal_surface.keys())
# --------------------------------------------------------------------
# MAIN
@ -52,10 +43,6 @@ parser.add_option('-p', '--periods',
dest = 'periods',
type = 'int', metavar = 'int',
help = 'number of repetitions of unit cell [%default]')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.add_option('--m',
dest = 'microstructure',
type = 'int', nargs = 2, metavar = 'int int',
@ -66,7 +53,6 @@ parser.set_defaults(type = minimal_surfaces[0],
periods = 1,
grid = (16,16,16),
size = (1.0,1.0,1.0),
homogenization = 1,
microstructure = (1,2),
)
@ -76,17 +62,8 @@ parser.set_defaults(type = minimal_surfaces[0],
name = None if filename == [] else filename[0]
damask.util.report(scriptName,name)
x,y,z = np.meshgrid(options.periods*2.0*np.pi*(np.arange(options.grid[0])+0.5)/options.grid[0],
options.periods*2.0*np.pi*(np.arange(options.grid[1])+0.5)/options.grid[1],
options.periods*2.0*np.pi*(np.arange(options.grid[2])+0.5)/options.grid[2],
indexing='xy',sparse=True)
microstructure = np.where(options.threshold < surface[options.type](x,y,z),
options.microstructure[1],options.microstructure[0])
geom=damask.Geom(microstructure,options.size,
homogenization=options.homogenization,
comments=[scriptID + ' ' + ' '.join(sys.argv[1:])])
geom=damask.Geom.from_minimal_surface(options.grid,options.size,options.type,options.threshold,
options.periods,options.microstructure)
damask.util.croak(geom)
geom.save_ASCII(sys.stdout if name is None else name,compress=False)

View File

@ -57,10 +57,6 @@ parser.add_option('-w', '--omega',
dest='omega',
type='float', metavar = 'float',
help='rotation angle around normal of osteon [%default]')
parser.add_option( '--homogenization',
dest='homogenization',
type='int', metavar = 'int',
help='homogenization index to be used [%default]')
parser.set_defaults(canal = 25e-6,
osteon = 100e-6,
@ -70,7 +66,7 @@ parser.set_defaults(canal = 25e-6,
amplitude = 60,
size = (300e-6,300e-6),
grid = (512,512),
homogenization = 1)
)
(options,filename) = parser.parse_args()
@ -139,7 +135,7 @@ header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\
+ config_header
geom = damask.Geom(microstructure.reshape(grid),
size,-size/2,
homogenization=options.homogenization,comments=header)
comments=header)
damask.util.croak(geom)
geom.save_ASCII(sys.stdout if name is None else name,compress=False)

View File

@ -44,14 +44,9 @@ parser.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame [+x +y +z]')
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.set_defaults(homogenization = 1,
pos = 'pos',
parser.set_defaults(pos = 'pos',
)
(options,filenames) = parser.parse_args()
@ -102,7 +97,7 @@ for name in filenames:
header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\
+ config_header
geom = damask.Geom(microstructure,size,origin,
homogenization=options.homogenization,comments=header)
comments=header)
damask.util.croak(geom)
geom.save_ASCII(sys.stdout if name is None else os.path.splitext(name)[0]+'.geom',compress=False)

View File

@ -1,231 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import multiprocessing
from io import StringIO
from functools import partial
from optparse import OptionParser,OptionGroup
import numpy as np
from scipy import spatial
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
def findClosestSeed(seeds, weights, point):
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
def Laguerre_tessellation(grid, size, seeds, weights, origin = np.zeros(3), periodic = True, cpus = 2):
if periodic:
weights_p = np.tile(weights.squeeze(),27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
coords = damask.grid_filters.cell_coord0(grid*3,size*3,-origin-size).reshape(-1,3)
else:
weights_p = weights.squeeze()
seeds_p = seeds
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3)
if cpus > 1:
pool = multiprocessing.Pool(processes = cpus)
result = pool.map_async(partial(findClosestSeed,seeds_p,weights_p), [coord for coord in coords])
pool.close()
pool.join()
closest_seed = np.array(result.get()).reshape(-1,3)
else:
closest_seed= np.array([findClosestSeed(seeds_p,weights_p,coord) for coord in coords])
if periodic:
closest_seed = closest_seed.reshape(grid*3)
return closest_seed[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0]
else:
return closest_seed
def Voronoi_tessellation(grid, size, seeds, origin = np.zeros(3), periodic = True):
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3)
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
devNull,closest_seed = KDTree.query(coords)
return closest_seed
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [seedfile(s)]', description = """
Generate geometry description and material configuration by tessellation of given seeds file.
""", version = scriptID)
group = OptionGroup(parser, "Tessellation","")
group.add_option('-l',
'--laguerre',
dest = 'laguerre',
action = 'store_true',
help = 'use Laguerre (weighted Voronoi) tessellation')
group.add_option('--cpus',
dest = 'cpus',
type = 'int', metavar = 'int',
help = 'number of parallel processes to use for Laguerre tessellation [%default]')
group.add_option('--nonperiodic',
dest = 'periodic',
action = 'store_false',
help = 'nonperiodic tessellation')
parser.add_option_group(group)
group = OptionGroup(parser, "Geometry","")
group.add_option('-g',
'--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
help = 'a,b,c grid of hexahedral box')
group.add_option('-s',
'--size',
dest = 'size',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'x,y,z size of hexahedral box [1.0 1.0 1.0]')
group.add_option('-o',
'--origin',
dest = 'origin',
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
help = 'origin of grid [0.0 0.0 0.0]')
parser.add_option_group(group)
group = OptionGroup(parser, "Seeds","")
group.add_option('-p',
'--pos', '--seedposition',
dest = 'pos',
type = 'string', metavar = 'string',
help = 'label of coordinates [%default]')
group.add_option('-w',
'--weight',
dest = 'weight',
type = 'string', metavar = 'string',
help = 'label of weights [%default]')
group.add_option('-m',
'--microstructure',
dest = 'microstructure',
type = 'string', metavar = 'string',
help = 'label of microstructures [%default]')
group.add_option('-e',
'--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'label of Euler angles [%default]')
group.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame')
parser.add_option_group(group)
group = OptionGroup(parser, "Configuration","")
group.add_option('--without-config',
dest = 'config',
action = 'store_false',
help = 'omit material configuration header')
group.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
group.add_option('--phase',
dest = 'phase',
type = 'int', metavar = 'int',
help = 'phase index to be used [%default]')
parser.add_option_group(group)
parser.set_defaults(pos = 'pos',
weight = 'weight',
microstructure = 'microstructure',
eulers = 'euler',
homogenization = 1,
phase = 1,
cpus = 2,
laguerre = False,
periodic = True,
config = True,
)
(options,filenames) = parser.parse_args()
if filenames == []: filenames = [None]
for name in filenames:
damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
size = np.ones(3)
origin = np.zeros(3)
for line in table.comments:
items = line.lower().strip().split()
key = items[0] if items else ''
if key == 'grid':
grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
elif key == 'size':
size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
elif key == 'origin':
origin = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
if options.grid: grid = np.array(options.grid)
if options.size: size = np.array(options.size)
if options.origin: origin = np.array(options.origin)
seeds = table.get(options.pos)
grains = table.get(options.microstructure) if options.microstructure in table.labels else np.arange(len(seeds))+1
grainIDs = np.unique(grains).astype('i')
if options.eulers in table.labels:
eulers = table.get(options.eulers)
if options.laguerre:
indices = grains[Laguerre_tessellation(grid,size,seeds,table.get(options.weight),origin,
options.periodic,options.cpus)]
else:
indices = grains[Voronoi_tessellation (grid,size,seeds,origin,options.periodic)]
config_header = []
if options.config:
if options.eulers in table.labels:
config_header += ['<texture>']
for ID in grainIDs:
eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id
config_header += ['[Grain{}]'.format(ID),
'(gauss)\tphi1 {:.2f}\tPhi {:.2f}\tphi2 {:.2f}'.format(*eulers[eulerID])
]
if options.axes: config_header += ['axes\t{} {} {}'.format(*options.axes)]
config_header += ['<microstructure>']
for ID in grainIDs:
config_header += ['[Grain{}]'.format(ID),
'(constituent)\tphase {}\ttexture {}\tfraction 1.0'.format(options.phase,ID)
]
config_header += ['<!skip>']
header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\
+ config_header
geom = damask.Geom(indices.reshape(grid),size,origin,
homogenization=options.homogenization,comments=header)
damask.util.croak(geom)
geom.save_ASCII(sys.stdout if name is None else os.path.splitext(name)[0]+'.geom',compress=False)

View File

@ -41,7 +41,7 @@ parser.add_option('-N', '--iterations',
help = 'curvature flow iterations [%default]')
parser.add_option('-i', '--immutable',
action = 'extend', dest = 'immutable', metavar = '<int LIST>',
help = 'list of immutable microstructure indices')
help = 'list of immutable material indices')
parser.add_option('--ndimage',
dest = 'ndimage', action='store_true',
help = 'use ndimage.gaussian_filter in lieu of explicit FFT')
@ -64,15 +64,15 @@ for name in filenames:
geom = damask.Geom.load_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid_original = geom.get_grid()
grid_original = geom.grid
damask.util.croak(geom)
microstructure = np.tile(geom.microstructure,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1
grid = np.array(microstructure.shape)
material = np.tile(geom.material,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1
grid = np.array(material.shape)
# --- initialize support data ---------------------------------------------------------------------
# store a copy the initial microstructure to find locations of immutable indices
microstructure_original = np.copy(microstructure)
# store a copy of the initial material indices to find locations of immutable indices
material_original = np.copy(material)
if not options.ndimage:
X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]]
@ -88,14 +88,14 @@ for name in filenames:
for smoothIter in range(options.N):
interfaceEnergy = np.zeros(microstructure.shape,dtype=np.float32)
interfaceEnergy = np.zeros(material.shape,dtype=np.float32)
for i in (-1,0,1):
for j in (-1,0,1):
for k in (-1,0,1):
# assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood)
interfaceEnergy = np.maximum(interfaceEnergy,
getInterfaceEnergy(microstructure,np.roll(np.roll(np.roll(
microstructure,i,axis=0), j,axis=1), k,axis=2)))
getInterfaceEnergy(material,np.roll(np.roll(np.roll(
material,i,axis=0), j,axis=1), k,axis=2)))
# periodically extend interfacial energy array by half a grid size in positive and negative directions
periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]//2:-grid[0]//2,
@ -129,13 +129,13 @@ for name in filenames:
iterations = int(round(options.d*2.))-1),# fat boundary
periodic_bulkEnergy[grid[0]//2:-grid[0]//2, # retain filled energy on fat boundary...
grid[1]//2:-grid[1]//2,
grid[2]//2:-grid[2]//2], # ...and zero everywhere else
grid[2]//2:-grid[2]//2], # ...and zero everywhere else
0.)).astype(np.complex64) *
gauss).astype(np.float32)
periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]//2:-grid[0]//2,
grid[1]//2:-grid[1]//2,
grid[2]//2:-grid[2]//2] # periodically extend the smoothed bulk energy
grid[2]//2:-grid[2]//2] # periodically extend the smoothed bulk energy
# transform voxels close to interface region
@ -143,33 +143,35 @@ for name in filenames:
return_distances = False,
return_indices = True) # want index of closest bulk grain
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]//2:-grid[0]//2,
grid[1]//2:-grid[1]//2,
grid[2]//2:-grid[2]//2] # periodically extend the microstructure
periodic_material = np.tile(material,(3,3,3))[grid[0]//2:-grid[0]//2,
grid[1]//2:-grid[1]//2,
grid[2]//2:-grid[2]//2] # periodically extend the geometry
microstructure = periodic_microstructure[index[0],
index[1],
index[2]].reshape(2*grid)[grid[0]//2:-grid[0]//2,
grid[1]//2:-grid[1]//2,
grid[2]//2:-grid[2]//2] # extent grains into interface region
material = periodic_material[index[0],
index[1],
index[2]].reshape(2*grid)[grid[0]//2:-grid[0]//2,
grid[1]//2:-grid[1]//2,
grid[2]//2:-grid[2]//2] # extent grains into interface region
# replace immutable microstructures with closest mutable ones
index = ndimage.morphology.distance_transform_edt(np.in1d(microstructure,options.immutable).reshape(grid),
# replace immutable materials with closest mutable ones
index = ndimage.morphology.distance_transform_edt(np.in1d(material,options.immutable).reshape(grid),
return_distances = False,
return_indices = True)
microstructure = microstructure[index[0],
index[1],
index[2]]
material = material[index[0],
index[1],
index[2]]
immutable = np.zeros(microstructure.shape, dtype=np.bool)
# find locations where immutable microstructures have been in original structure
immutable = np.zeros(material.shape, dtype=np.bool)
# find locations where immutable materials have been in original structure
for micro in options.immutable:
immutable += microstructure_original == micro
immutable += material_original == micro
# undo any changes involving immutable microstructures
microstructure = np.where(immutable, microstructure_original,microstructure)
# undo any changes involving immutable materials
material = np.where(immutable, material_original,material)
geom = geom.duplicate(microstructure[0:grid_original[0],0:grid_original[1],0:grid_original[2]])
geom.add_comments(scriptID + ' ' + ' '.join(sys.argv[1:]))
geom.save_ASCII(sys.stdout if name is None else name,compress=False)
damask.Geom(material = material[0:grid_original[0],0:grid_original[1],0:grid_original[2]],
size = geom.size,
origin = geom.origin,
comments = geom.comments + [scriptID + ' ' + ' '.join(sys.argv[1:])],
)\
.save_ASCII(sys.stdout if name is None else name,compress=False)

View File

@ -1,349 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import math
import random
from io import StringIO
from optparse import OptionParser
import numpy as np
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --- helper functions ---
def integerFactorization(i):
j = int(math.floor(math.sqrt(float(i))))
while j>1 and int(i)%j != 0:
j -= 1
return j
def binAsBins(bin,intervals):
"""Explode compound bin into 3D bins list."""
bins = [0]*3
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
bins[1] = (bin//intervals[2]) % intervals[1]
bins[2] = bin % intervals[2]
return bins
def binsAsBin(bins,intervals):
"""Implode 3D bins into compound bin."""
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
def EulersAsBins(Eulers,intervals,deltas,center):
"""Return list of Eulers translated into 3D bins list."""
return [int((euler+(0.5-center)*delta)//delta)%interval \
for euler,delta,interval in zip(Eulers,deltas,intervals) \
]
def binAsEulers(bin,intervals,deltas,center):
"""Compound bin number translated into list of Eulers."""
Eulers = [0.0]*3
Eulers[2] = (bin%intervals[2] + center)*deltas[2]
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
Eulers[0] = (bin//(intervals[2]*intervals[1]) + center)*deltas[0]
return Eulers
def directInvRepetitions(probability,scale):
"""Calculate number of samples drawn by direct inversion."""
nDirectInv = 0
for bin in range(len(probability)): # loop over bins
nDirectInv += int(round(probability[bin]*scale)) # calc repetition
return nDirectInv
# ---------------------- sampling methods -----------------------------------------------------------------------
# ----- efficient algorithm ---------
def directInversion (ODF,nSamples):
"""ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians)."""
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
nInvSamples = 0
repetition = [None]*ODF['nBins']
scaleLower = 0.0
nInvSamplesLower = 0
scaleUpper = float(nOptSamples)
incFactor = 1.0
nIter = 0
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
while (\
(scaleUpper-scaleLower > scaleUpper*1e-15 or nInvSamplesUpper < nOptSamples) and \
nInvSamplesUpper != nOptSamples \
): # closer match required?
if nInvSamplesUpper < nOptSamples:
scaleLower,scaleUpper = scaleUpper,scaleUpper+incFactor*(scaleUpper-scaleLower)/2.0
incFactor *= 2.0
nInvSamplesLower,nInvSamplesUpper = nInvSamplesUpper,directInvRepetitions(ODF['dV_V'],scaleUpper)
else:
scaleUpper = (scaleLower+scaleUpper)/2.0
incFactor = 1.0
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
nIter += 1
damask.util.croak('%i:(%12.11f,%12.11f) %i <= %i <= %i'%(nIter,scaleLower,scaleUpper,
nInvSamplesLower,nOptSamples,nInvSamplesUpper))
nInvSamples = nInvSamplesUpper
scale = scaleUpper
damask.util.croak('created set of %i samples (%12.11f) with scaling %12.11f delivering %i'%(nInvSamples,
float(nInvSamples)/nOptSamples-1.0,
scale,nSamples))
repetition = [None]*ODF['nBins'] # preallocate and clear
for bin in range(ODF['nBins']): # loop over bins
repetition[bin] = int(round(ODF['dV_V'][bin]*scale)) # calc repetition
# build set
set = [None]*nInvSamples
i = 0
for bin in range(ODF['nBins']):
set[i:i+repetition[bin]] = [bin]*repetition[bin] # fill set with bin, i.e. orientation
i += repetition[bin] # advance set counter
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
for j in range(nSamples):
if (j == nInvSamples-1): ex = j
else: ex = int(round(random.uniform(j+0.5,nInvSamples-0.5)))
bin = set[ex]
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
orientations[j] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
set[ex] = set[j] # exchange orientations
return orientations, reconstructedODF
# ----- trial and error algorithms ---------
def MonteCarloEulers (ODF,nSamples):
"""ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians)."""
countMC = 0
maxdV_V = max(ODF['dV_V'])
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
for j in range(nSamples):
MC = maxdV_V*2.0
bin = 0
while MC > ODF['dV_V'][bin]:
countMC += 1
MC = maxdV_V*random.random()
Eulers = [limit*random.random() for limit in ODF['limit']]
bins = EulersAsBins(Eulers,ODF['interval'],ODF['delta'],ODF['center'])
bin = binsAsBin(bins,ODF['interval'])
orientations[j] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
return orientations, reconstructedODF, countMC
def MonteCarloBins (ODF,nSamples):
"""ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians)."""
countMC = 0
maxdV_V = max(ODF['dV_V'])
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
for j in range(nSamples):
MC = maxdV_V*2.0
bin = 0
while MC > ODF['dV_V'][bin]:
countMC += 1
MC = maxdV_V*random.random()
bin = int(ODF['nBins'] * random.random())
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
orientations[j] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
return orientations, reconstructedODF
def TothVanHoutteSTAT (ODF,nSamples):
"""ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians)."""
orientations = np.zeros((nSamples,3),'f')
reconstructedODF = np.zeros(ODF['nBins'],'f')
unitInc = 1.0/nSamples
selectors = [random.random() for i in range(nSamples)]
selectors.sort()
indexSelector = 0
cumdV_V = 0.0
countSamples = 0
for bin in range(ODF['nBins']) :
cumdV_V += ODF['dV_V'][bin]
while indexSelector < nSamples and selectors[indexSelector] < cumdV_V:
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
orientations[countSamples] = np.degrees(Eulers)
reconstructedODF[bin] += unitInc
countSamples += 1
indexSelector += 1
damask.util.croak('created set of %i when asked to deliver %i'%(countSamples,nSamples))
return orientations, reconstructedODF
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description ="""
Transform linear binned ODF data into given number of orientations.
IA: integral approximation, STAT: Van Houtte, MC: Monte Carlo
""", version = scriptID)
algorithms = ['IA', 'STAT','MC']
parser.add_option('-n', '--nsamples',
dest = 'number',
type = 'int', metavar = 'int',
help = 'number of orientations to be generated [%default]')
parser.add_option('-a','--algorithm',
dest = 'algorithm',
choices = algorithms, metavar = 'string',
help = 'sampling algorithm {%s} [IA]'%(', '.join(algorithms)))
parser.add_option('-p','--phase',
dest = 'phase',
type = 'int', metavar = 'int',
help = 'phase index to be used [%default]')
parser.add_option('-r', '--rnd',
dest = 'randomSeed',
type = 'int', metavar = 'int', \
help = 'seed of random number generator [%default]')
parser.set_defaults(randomSeed = None,
number = 500,
algorithm = 'IA',
phase = 1,
ang = True,
)
(options,filenames) = parser.parse_args()
if filenames == []: filenames = [None]
for name in filenames:
damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
randomSeed = int(os.urandom(4).hex(),16) if options.randomSeed is None else options.randomSeed # random seed per file
random.seed(randomSeed)
# --------------- figure out limits (left/right), delta, and interval -----------------------------
ODF = {}
eulers = table.get('euler')
limits = np.array([np.min(eulers,axis=0),np.max(eulers,axis=0)]) # min/max euler angles in degrees
ODF['limit'] = np.radians(limits[1,:]) # right hand limits in radians
ODF['center'] = 0.0 if all(limits[0,:]<1e-8) else 0.5 # vertex or cell centered
ODF['interval'] = np.array(list(map(len,[np.unique(eulers[:,i]) for i in range(3)])),'i') # steps are number of distict values
ODF['nBins'] = ODF['interval'].prod()
ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1)) # step size
if eulers.shape[0] != ODF['nBins']:
damask.util.croak('expecting %i values but got %i'%(ODF['nBins'],eulers.shape[0]))
continue
# ----- build binnedODF array and normalize ------------------------------------------------------
sumdV_V = 0.0
ODF['dV_V'] = [None]*ODF['nBins']
ODF['nNonZero'] = 0
dg = ODF['delta'][0]*2.0*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
intensity = table.get('intensity')
for b in range(ODF['nBins']):
ODF['dV_V'][b] = \
max(0.0,intensity[b,0]) * dg * \
math.sin(((b//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
if ODF['dV_V'][b] > 0.0:
sumdV_V += ODF['dV_V'][b]
ODF['nNonZero'] += 1
for b in range(ODF['nBins']):
ODF['dV_V'][b] /= sumdV_V # normalize dV/V
damask.util.croak(['non-zero fraction: %12.11f (%i/%i)'%(float(ODF['nNonZero'])/ODF['nBins'],
ODF['nNonZero'],
ODF['nBins']),
'Volume integral of ODF: %12.11f\n'%sumdV_V,
'Reference Integral: %12.11f\n'%(ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))),
])
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
method = Functions[options.algorithm]
Orientations, ReconstructedODF = (globals()[method])(ODF,options.number)
# calculate accuracy of sample
squaredDiff = {'orig':0.0,method:0.0}
squaredRelDiff = {'orig':0.0,method:0.0}
mutualProd = {'orig':0.0,method:0.0}
indivSum = {'orig':0.0,method:0.0}
indivSquaredSum = {'orig':0.0,method:0.0}
for bin in range(ODF['nBins']):
squaredDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[bin])**2
if ODF['dV_V'][bin] > 0.0:
squaredRelDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[bin])**2/ODF['dV_V'][bin]**2
mutualProd[method] += ODF['dV_V'][bin]*ReconstructedODF[bin]
indivSum[method] += ReconstructedODF[bin]
indivSquaredSum[method] += ReconstructedODF[bin]**2
indivSum['orig'] += ODF['dV_V'][bin]
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
damask.util.croak(['sqrt(N*)RMSD of ODFs:\t %12.11f'% math.sqrt(options.number*squaredDiff[method]),
'RMSrD of ODFs:\t %12.11f'%math.sqrt(squaredRelDiff[method]),
'rMSD of ODFs:\t %12.11f'%(squaredDiff[method]/indivSquaredSum['orig']),
'nNonZero correlation slope:\t %12.11f'\
%((ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/\
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)),
'nNonZero correlation confidence:\t %12.11f'\
%((mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))),
])
if method == 'IA' and options.number < ODF['nNonZero']:
strOpt = '(%i)'%ODF['nNonZero']
formatwidth = 1+int(math.log10(options.number))
materialConfig = [
'#' + scriptID + ' ' + ' '.join(sys.argv[1:]),
'# random seed %i'%randomSeed,
'#-------------------#',
'<microstructure>',
'#-------------------#',
]
for i,ID in enumerate(range(options.number)):
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
'(constituent) phase %i texture %s fraction 1.0'%(options.phase,str(ID+1).rjust(formatwidth)),
]
materialConfig += [
'#-------------------#',
'<texture>',
'#-------------------#',
]
for ID in range(options.number):
eulers = Orientations[ID]
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
'(gauss) phi1 {} Phi {} phi2 {} scatter 0.0 fraction 1.0'.format(*eulers),
]
#--- output finalization --------------------------------------------------------------------------
with (open(os.path.splitext(name)[0]+'_'+method+'_'+str(options.number)+'_material.config','w')) as outfile:
outfile.write('\n'.join(materialConfig)+'\n')

View File

@ -100,7 +100,7 @@ def mesh(r,d):
#-------------------------------------------------------------------------------------------------
def material():
def materials():
return [\
"*new_mater standard",
"*mater_option general:state:solid",
@ -130,10 +130,10 @@ def geometry():
#-------------------------------------------------------------------------------------------------
def initial_conditions(microstructures):
def initial_conditions(material):
elements = []
element = 0
for id in microstructures:
for id in material:
element += 1
if len(elements) < id:
for i in range(id-len(elements)):
@ -153,7 +153,7 @@ def initial_conditions(microstructures):
for grain,elementList in enumerate(elements):
cmds.append([\
"*new_icond",
"*icond_name microstructure_%i"%(grain+1),
"*icond_name material_%i"%(grain+1),
"*icond_type state_variable",
"*icond_param_value state_var_id 2",
"*icond_dof_value var %i"%(grain+1),
@ -197,14 +197,14 @@ for name in filenames:
damask.util.report(scriptName,name)
geom = damask.Geom.load_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
microstructure = geom.get_microstructure().flatten(order='F')
material = geom.material.flatten(order='F')
cmds = [\
init(),
mesh(geom.grid,geom.size),
material(),
materials(),
geometry(),
initial_conditions(microstructure),
initial_conditions(material),
'*identify_sets',
'*show_model',
'*redraw',

View File

@ -30,7 +30,7 @@ class myThread (threading.Thread):
def run(self):
global bestSeedsUpdate
global bestSeedsVFile
global nMicrostructures
global nMaterials
global delta
global points
global target
@ -48,7 +48,6 @@ class myThread (threading.Thread):
myBestSeedsVFile = StringIO() # store local copy of best seeds file
perturbedSeedsVFile = StringIO() # perturbed best seeds file
perturbedGeomVFile = StringIO() # tessellated geom file
#--- still not matching desired bin class ----------------------------------------------------------
while bestMatch < options.threshold:
@ -70,7 +69,7 @@ class myThread (threading.Thread):
selectedMs = []
direction = []
for i in range(NmoveGrains):
selectedMs.append(random.randrange(1,nMicrostructures))
selectedMs.append(random.randrange(1,nMaterials))
direction.append((np.random.random()-0.5)*delta)
@ -92,20 +91,15 @@ class myThread (threading.Thread):
perturbedSeedsTable.set('pos',coords).save(perturbedSeedsVFile,legacy=True)
#--- do tesselation with perturbed seed file ------------------------------------------------------
perturbedGeomVFile.close()
perturbedGeomVFile = StringIO()
perturbedSeedsVFile.seek(0)
perturbedGeomVFile.write(damask.util.execute('geom_fromVoronoiTessellation '+
' -g '+' '.join(list(map(str, options.grid))),streamIn=perturbedSeedsVFile)[0])
perturbedGeomVFile.seek(0)
perturbedGeom = damask.Geom.from_Voronoi_tessellation(options.grid,np.ones(3),coords)
#--- evaluate current seeds file ------------------------------------------------------------------
perturbedGeom = damask.Geom.load_ASCII(perturbedGeomVFile)
myNmicrostructures = len(np.unique(perturbedGeom.microstructure))
currentData=np.bincount(perturbedGeom.microstructure.ravel())[1:]/points
myNmaterials = len(np.unique(perturbedGeom.material))
currentData = np.bincount(perturbedGeom.material.ravel())[1:]/points
currentError=[]
currentHist=[]
for i in range(nMicrostructures): # calculate the deviation in all bins per histogram
for i in range(nMaterials): # calculate the deviation in all bins per histogram
currentHist.append(np.histogram(currentData,bins=target[i]['bins'])[0])
currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum()))
@ -117,12 +111,12 @@ class myThread (threading.Thread):
bestMatch = match
#--- count bin classes with no mismatch ----------------------------------------------------------------------
myMatch=0
for i in range(nMicrostructures):
for i in range(nMaterials):
if currentError[i] > 0.0: break
myMatch = i+1
if myNmicrostructures == nMicrostructures:
for i in range(min(nMicrostructures,myMatch+options.bins)):
if myNmaterials == nMaterials:
for i in range(min(nMaterials,myMatch+options.bins)):
if currentError[i] > target[i]['error']: # worse fitting, next try
randReset = True
break
@ -141,25 +135,25 @@ class myThread (threading.Thread):
for line in perturbedSeedsVFile:
currentSeedsFile.write(line)
bestSeedsVFile.write(line)
for j in range(nMicrostructures): # save new errors for all bins
for j in range(nMaterials): # save new errors for all bins
target[j]['error'] = currentError[j]
if myMatch > match: # one or more new bins have no deviation
damask.util.croak( 'Stage {:d} cleared'.format(myMatch))
match=myMatch
sys.stdout.flush()
break
if i == min(nMicrostructures,myMatch+options.bins)-1: # same quality as before: take it to keep on moving
if i == min(nMaterials,myMatch+options.bins)-1: # same quality as before: take it to keep on moving
bestSeedsUpdate = time.time()
perturbedSeedsVFile.seek(0)
bestSeedsVFile.close()
bestSeedsVFile = StringIO()
bestSeedsVFile.writelines(perturbedSeedsVFile.readlines())
for j in range(nMicrostructures):
for j in range(nMaterials):
target[j]['error'] = currentError[j]
randReset = True
else: #--- not all grains are tessellated
damask.util.croak('Thread {:d}: Microstructure mismatch ({:d} microstructures mapped)'\
.format(self.threadID,myNmicrostructures))
damask.util.croak('Thread {:d}: Material mismatch ({:d} material indices mapped)'\
.format(self.threadID,myNmaterials))
randReset = True
@ -217,38 +211,31 @@ points = np.array(options.grid).prod().astype('float')
# ----------- calculate target distribution and bin edges
targetGeom = damask.Geom.load_ASCII(os.path.splitext(os.path.basename(options.target))[0]+'.geom')
nMicrostructures = len(np.unique(targetGeom.microstructure))
targetVolFrac = np.bincount(targetGeom.microstructure.flatten())/targetGeom.grid.prod().astype(np.float)
nMaterials = len(np.unique(targetGeom.material))
targetVolFrac = np.bincount(targetGeom.material.flatten())/targetGeom.grid.prod().astype(np.float)
target = []
for i in range(1,nMicrostructures+1):
for i in range(1,nMaterials+1):
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
target.append({'histogram':targetHist,'bins':targetBins})
# ----------- create initial seed file or open existing one
bestSeedsVFile = StringIO()
if os.path.isfile(os.path.splitext(options.seedFile)[0]+'.seeds'):
with open(os.path.splitext(options.seedFile)[0]+'.seeds') as initialSeedFile:
for line in initialSeedFile: bestSeedsVFile.write(line)
initial_seeds = damask.Table.load(os.path.splitext(options.seedFile)[0]+'.seeds').get('pos')
else:
bestSeedsVFile.write(damask.util.execute('seeds_fromRandom'+\
' -g '+' '.join(list(map(str, options.grid)))+\
' -r {:d}'.format(options.randomSeed)+\
' -N '+str(nMicrostructures))[0])
initial_seeds = damask.seeds.from_random(np.ones(3),nMaterials,options.grid,options.randomSeed)
bestSeedsUpdate = time.time()
# ----------- tessellate initial seed file to get and evaluate geom file
bestSeedsVFile.seek(0)
initialGeomVFile = StringIO()
initialGeomVFile.write(damask.util.execute('geom_fromVoronoiTessellation '+
' -g '+' '.join(list(map(str, options.grid))),bestSeedsVFile)[0])
initialGeomVFile.seek(0)
initialGeom = damask.Geom.load_ASCII(initialGeomVFile)
initialGeom = damask.Geom.from_Voronoi_tessellation(options.grid,np.ones(3),initial_seeds)
if len(np.unique(targetGeom.microstructure)) != nMicrostructures:
damask.util.croak('error. Microstructure count mismatch')
if len(np.unique(targetGeom.material)) != nMaterials:
damask.util.croak('error. Material count mismatch')
initialData = np.bincount(initialGeom.microstructure.flatten())/points
for i in range(nMicrostructures):
initialData = np.bincount(initialGeom.material.flatten())/points
for i in range(nMaterials):
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
@ -257,19 +244,18 @@ if target[0]['error'] > 0.0:
target[0]['error'] *=((target[0]['bins'][0]-np.min(initialData))**2.0+
(target[0]['bins'][1]-np.max(initialData))**2.0)**0.5
match=0
for i in range(nMicrostructures):
for i in range(nMaterials):
if target[i]['error'] > 0.0: break
match = i+1
if options.maxseeds < 1:
maxSeeds = len(np.unique(initialGeom.microstructure))
maxSeeds = len(np.unique(initialGeom.material))
else:
maxSeeds = options.maxseeds
if match >0: damask.util.croak('Stage {:d} cleared'.format(match))
sys.stdout.flush()
initialGeomVFile.close()
# start mulithreaded monte carlo simulation
threads = []

View File

@ -1,68 +0,0 @@
#!/usr/bin/env python3
import os
import sys
from io import StringIO
from optparse import OptionParser
import numpy as np
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
#--------------------------------------------------------------------------------------------------
# MAIN
#--------------------------------------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Create seed file taking microstructure indices from given geom file.
Indices can be black-listed or white-listed.
""", version = scriptID)
parser.add_option('-w',
'--white',
action = 'extend', metavar = '<int LIST>',
dest = 'whitelist',
help = 'whitelist of grain IDs')
parser.add_option('-b',
'--black',
action = 'extend', metavar = '<int LIST>',
dest = 'blacklist',
help = 'blacklist of grain IDs')
parser.set_defaults(whitelist = [],
blacklist = [],
)
(options,filenames) = parser.parse_args()
if filenames == []: filenames = [None]
options.whitelist = [int(i) for i in options.whitelist]
options.blacklist = [int(i) for i in options.blacklist]
for name in filenames:
damask.util.report(scriptName,name)
geom = damask.Geom.load_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
microstructure = geom.get_microstructure().reshape((-1,1),order='F')
mask = np.logical_and(np.in1d(microstructure,options.whitelist,invert=False) if options.whitelist else \
np.full(geom.grid.prod(),True,dtype=bool),
np.in1d(microstructure,options.blacklist,invert=True) if options.blacklist else \
np.full(geom.grid.prod(),True,dtype=bool))
seeds = damask.grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F')
comments = geom.comments \
+ [scriptID + ' ' + ' '.join(sys.argv[1:]),
'grid\ta {}\tb {}\tc {}'.format(*geom.grid),
'size\tx {}\ty {}\tz {}'.format(*geom.size),
'origin\tx {}\ty {}\tz {}'.format(*geom.origin),
'homogenization\t{}'.format(geom.homogenization)]
damask.Table(seeds[mask],{'pos':(3,)},comments)\
.add('microstructure',microstructure[mask].astype(int))\
.save(sys.stdout if name is None else os.path.splitext(name)[0]+'.seeds',legacy=True)

View File

@ -76,7 +76,7 @@ for name in filenames:
g[2] = k + offset[2]
g %= geom.grid
seeds[n,0:3] = (g+0.5)/geom.grid # normalize coordinates to box
seeds[n, 3] = geom.microstructure[g[0],g[1],g[2]]
seeds[n, 3] = geom.material[g[0],g[1],g[2]]
if options.x: g[0] += 1
if options.y: g[1] += 1
n += 1
@ -88,9 +88,9 @@ for name in filenames:
'grid\ta {}\tb {}\tc {}'.format(*geom.grid),
'size\tx {}\ty {}\tz {}'.format(*geom.size),
'origin\tx {}\ty {}\tz {}'.format(*geom.origin),
'homogenization\t{}'.format(geom.homogenization)]
]
table = damask.Table(seeds,{'pos':(3,),'microstructure':(1,)},comments)
table.set('microstructure',table.get('microstructure').astype(np.int))\
table = damask.Table(seeds,{'pos':(3,),'material':(1,)},comments)
table.set('material',table.get('material').astype(np.int))\
.save(sys.stdout if name is None else \
os.path.splitext(name)[0]+f'_poked_{options.N}.seeds',legacy=True)

View File

@ -1,165 +0,0 @@
#!/usr/bin/env python3
import os
import sys
from optparse import OptionParser,OptionGroup
import numpy as np
from scipy import spatial
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options', description = """
Distribute given number of points randomly within rectangular cuboid.
Reports positions with random crystal orientations in seeds file format to STDOUT.
""", version = scriptID)
parser.add_option('-N',
dest = 'N',
type = 'int', metavar = 'int',
help = 'number of seed points [%default]')
parser.add_option('-s',
'--size',
dest = 'size',
type = 'float', nargs = 3, metavar = 'float float float',
help='size x,y,z of unit cube to fill %default')
parser.add_option('-g',
'--grid',
dest = 'grid',
type = 'int', nargs = 3, metavar = 'int int int',
help='min a,b,c grid of hexahedral box %default')
parser.add_option('-m',
'--microstructure',
dest = 'microstructure',
type = 'int', metavar = 'int',
help = 'first microstructure index [%default]')
parser.add_option('-r',
'--rnd',
dest = 'randomSeed', type = 'int', metavar = 'int',
help = 'seed of random number generator [%default]')
group = OptionGroup(parser, "Laguerre Tessellation",
"Parameters determining shape of weight distribution of seed points"
)
group.add_option( '-w',
'--weights',
action = 'store_true',
dest = 'weights',
help = 'assign random weights to seed points for Laguerre tessellation [%default]')
group.add_option( '--max',
dest = 'max',
type = 'float', metavar = 'float',
help = 'max of uniform distribution for weights [%default]')
group.add_option( '--mean',
dest = 'mean',
type = 'float', metavar = 'float',
help = 'mean of normal distribution for weights [%default]')
group.add_option( '--sigma',
dest = 'sigma',
type = 'float', metavar = 'float',
help='standard deviation of normal distribution for weights [%default]')
parser.add_option_group(group)
group = OptionGroup(parser, "Selective Seeding",
"More uniform distribution of seed points using Mitchell's Best Candidate Algorithm"
)
group.add_option( '--selective',
action = 'store_true',
dest = 'selective',
help = 'selective picking of seed points from random seed points')
group.add_option( '--distance',
dest = 'distance',
type = 'float', metavar = 'float',
help = 'minimum distance to next neighbor [%default]')
group.add_option( '--numCandidates',
dest = 'numCandidates',
type = 'int', metavar = 'int',
help = 'size of point group to select best distance from [%default]')
parser.add_option_group(group)
parser.set_defaults(randomSeed = None,
grid = (16,16,16),
size = (1.0,1.0,1.0),
N = 20,
weights = False,
max = 0.0,
mean = 0.2,
sigma = 0.05,
microstructure = 1,
selective = False,
distance = 0.2,
numCandidates = 10,
)
(options,filenames) = parser.parse_args()
if filenames == []: filenames = [None]
size = np.array(options.size)
grid = np.array(options.grid)
np.random.seed(int(os.urandom(4).hex(),16) if options.randomSeed is None else options.randomSeed)
for name in filenames:
damask.util.report(scriptName,name)
if options.N > np.prod(grid):
damask.util.croak('More seeds than grid positions.')
sys.exit()
if options.selective and options.distance < min(size/grid):
damask.util.croak('Distance must be larger than grid spacing.')
sys.exit()
if options.selective and options.distance**3*options.N > 0.5*np.prod(size):
damask.util.croak('Number of seeds for given size and distance should be < {}.'\
.format(int(0.5*np.prod(size)/options.distance**3)))
eulers = np.random.rand(options.N,3) # create random Euler triplets
eulers[:,0] *= 360.0 # phi_1 is uniformly distributed
eulers[:,1] = np.degrees(np.arccos(2*eulers[:,1]-1.0)) # cos(Phi) is uniformly distributed
eulers[:,2] *= 360.0 # phi_2 is uniformly distributed
if not options.selective:
coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
seeds = coords[np.random.choice(np.prod(grid), options.N, replace=False)] \
+ np.broadcast_to(size/grid,(options.N,3))*(np.random.rand(options.N,3)*.5-.25) # wobble without leaving grid
else:
seeds = np.empty((options.N,3))
seeds[0] = np.random.random(3) * size
i = 1
progress = damask.util._ProgressBar(options.N,'',50)
while i < options.N:
candidates = np.random.rand(options.numCandidates,3)*np.broadcast_to(size,(options.numCandidates,3))
tree = spatial.cKDTree(seeds[:i])
distances, dev_null = tree.query(candidates)
best = distances.argmax()
if distances[best] > options.distance: # require minimum separation
seeds[i] = candidates[best] # maximum separation to existing point cloud
i += 1
progress.update(i)
comments = [scriptID + ' ' + ' '.join(sys.argv[1:]),
'grid\ta {}\tb {}\tc {}'.format(*grid),
'size\tx {}\ty {}\tz {}'.format(*size),
'randomSeed\t{}'.format(options.randomSeed),
]
table = damask.Table(np.hstack((seeds,eulers)),{'pos':(3,),'euler':(3,)},comments)\
.add('microstructure',np.arange(options.microstructure,options.microstructure + options.N,dtype=int))
if options.weights:
weights = np.random.uniform(low = 0, high = options.max, size = options.N) if options.max > 0.0 \
else np.random.normal(loc = options.mean, scale = options.sigma, size = options.N)
table = table.add('weight',weights)
table.save(sys.stdout if name is None else name,legacy=True)

View File

@ -20,6 +20,12 @@ from ._result import Result # noqa
from ._geom import Geom # noqa
from ._material import Material # noqa
from . import solver # noqa
from . import util # noqa
from . import seeds # noqa
from . import grid_filters # noqa
from . import mechanics # noqa
# deprecated
Environment = _

View File

@ -147,12 +147,12 @@ class Colormap(mpl.colors.ListedColormap):
References
----------
.. [1] DAMASK colormap theory
https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
.. [2] DAMASK colormaps first use
https://doi.org/10.1016/j.ijplas.2012.09.012
.. [3] Matplotlib colormaps overview
https://matplotlib.org/tutorials/colors/colormaps.html
[1] DAMASK colormap theory
https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
[2] DAMASK colormaps first use
https://doi.org/10.1016/j.ijplas.2012.09.012
[3] Matplotlib colormaps overview
https://matplotlib.org/tutorials/colors/colormaps.html
"""
print('DAMASK colormaps')

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,8 @@
import numpy as np
from . import mechanics
from . import util
from . import grid_filters
_P = -1
@ -212,7 +214,7 @@ class Rotation:
Returns
-------
q : numpy.ndarray of shape (...,4)
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), |q|=1, q_0 0.
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), ǀqǀ=1, q_0 0.
"""
return self.quaternion.copy()
@ -255,7 +257,7 @@ class Rotation:
-------
axis_angle : numpy.ndarray of shape (...,4) unless pair == True:
tuple containing numpy.ndarray of shapes (...,3) and (...)
Axis angle pair: (n_1, n_2, n_3, ω), |n| = 1 and ω [0,π]
Axis angle pair: (n_1, n_2, n_3, ω), ǀnǀ = 1 and ω [0,π]
unless degrees = True: ω [0,180].
"""
@ -290,7 +292,7 @@ class Rotation:
-------
rho : numpy.ndarray of shape (...,4) unless vector == True:
numpy.ndarray of shape (...,3)
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], |n| = 1 and ω [0,π].
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω [0,π].
"""
ro = Rotation._qu2ro(self.quaternion)
@ -307,7 +309,7 @@ class Rotation:
Returns
-------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), |h| < 1/2*π^(2/3).
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3).
"""
return Rotation._qu2ho(self.quaternion)
@ -353,7 +355,7 @@ class Rotation:
----------
q : numpy.ndarray of shape (...,4)
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3),
|q|=1, q_0 0.
ǀqǀ=1, q_0 0.
accept_homomorph : boolean, optional
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
Defaults to False.
@ -416,12 +418,12 @@ class Rotation:
Parameters
----------
axis_angle : numpy.ndarray of shape (...,4)
Axis angle pair: [n_1, n_2, n_3, ω], |n| = 1 and ω [0,π]
Axis angle pair: [n_1, n_2, n_3, ω], ǀnǀ = 1 and ω [0,π]
unless degrees = True: ω [0,180].
degrees : boolean, optional
Angle ω is given in degrees. Defaults to False.
normalize: boolean, optional
Allow |n| 1. Defaults to False.
Allow ǀnǀ 1. Defaults to False.
P : int {-1,1}, optional
Convention used. Defaults to -1.
@ -503,9 +505,9 @@ class Rotation:
----------
rho : numpy.ndarray of shape (...,4)
Rodrigues-Frank vector (angle separated from axis).
(n_1, n_2, n_3, tan(ω/2)), |n| = 1 and ω [0,π].
(n_1, n_2, n_3, tan(ω/2)), ǀnǀ = 1 and ω [0,π].
normalize : boolean, optional
Allow |n| 1. Defaults to False.
Allow ǀnǀ 1. Defaults to False.
P : int {-1,1}, optional
Convention used. Defaults to -1.
@ -534,7 +536,7 @@ class Rotation:
Parameters
----------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), |h| < (3/4*π)^(1/3).
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
P : int {-1,1}, optional
Convention used. Defaults to -1.
@ -647,13 +649,63 @@ class Rotation:
return Rotation(q.reshape(r.shape[:-1]+(4,)) if shape is not None else q)._standardize()
# for compatibility (old names do not follow convention)
fromEulers = from_Eulers
fromQuaternion = from_quaternion
asAxisAngle = as_axis_angle
# for compatibility
__mul__ = __matmul__
@staticmethod
def from_ODF(weights,Eulers,N=500,degrees=True,fractions=True,seed=None):
"""
Sample discrete values from a binned ODF.
Parameters
----------
weights : numpy.ndarray of shape (n)
Texture intensity values (probability density or volume fraction) at Euler grid points.
Eulers : numpy.ndarray of shape (n,3)
Grid coordinates in Euler space at which weights are defined.
N : integer, optional
Number of discrete orientations to be sampled from the given ODF.
Defaults to 500.
degrees : boolean, optional
Euler grid values are in degrees. Defaults to True.
fractions : boolean, optional
ODF values correspond to volume fractions, not probability density.
Defaults to True.
seed: {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
will be pulled from the OS.
Returns
-------
samples : damask.Rotation of shape (N)
Array of sampled rotations closely representing the input ODF.
Notes
-----
Due to the distortion of Euler space in the vicinity of ϕ = 0, probability densities, p, defined on
grid points with ϕ = 0 will never result in reconstructed orientations as their dV/V = p dγ = p × 0.
Hence, it is recommended to transform any such dataset to cell centers that avoid grid points at ϕ = 0.
References
----------
P. Eisenlohr, F. Roters, Computational Materials Science 42(4), 670-678, 2008
https://doi.org/10.1016/j.commatsci.2007.09.015
"""
def _dg(eu,deg):
"""Return infinitesimal Euler space volume of bin(s)."""
Eulers_sorted = eu[np.lexsort((eu[:,0],eu[:,1],eu[:,2]))]
steps,size,_ = grid_filters.cell_coord0_gridSizeOrigin(Eulers_sorted)
delta = np.radians(size/steps) if deg else size/steps
return delta[0]*2.0*np.sin(delta[1]/2.0)*delta[2] / 8.0 / np.pi**2 * np.sin(np.radians(eu[:,1]) if deg else eu[:,1])
dg = 1.0 if fractions else _dg(Eulers,degrees)
dV_V = dg * np.maximum(0.0,weights.squeeze())
return Rotation.from_Eulers(Eulers[util.hybrid_IA(dV_V,N,seed)],degrees)
@staticmethod
def from_spherical_component(center,sigma,N=500,degrees=True,seed=None):
"""

113
python/damask/seeds.py Normal file
View File

@ -0,0 +1,113 @@
from scipy import spatial as _spatial
import numpy as _np
from . import util
from . import grid_filters
def from_random(size,N_seeds,grid=None,seed=None):
"""
Random seeding in space.
Parameters
----------
size : numpy.ndarray of shape (3)
Physical size of the seeding domain.
N_seeds : int
Number of seeds.
grid : numpy.ndarray of shape (3), optional.
If given, ensures that all seeds initiate one grain if using a
standard Voronoi tessellation.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
"""
rng = _np.random.default_rng(seed)
if grid is None:
coords = rng.random((N_seeds,3)) * size
else:
grid_coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
coords = grid_coords[rng.choice(_np.prod(grid),N_seeds, replace=False)] \
+ _np.broadcast_to(size/grid,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving grid
return coords
def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,seed=None):
"""
Seeding in space according to a Poisson disc distribution.
Parameters
----------
size : numpy.ndarray of shape (3)
Physical size of the seeding domain.
N_seeds : int
Number of seeds.
N_candidates : int
Number of candidates to consider for finding best candidate.
distance : float
Minimum acceptable distance to other seeds.
periodic : boolean, optional
Calculate minimum distance for periodically repeated grid.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
"""
rng = _np.random.default_rng(seed)
coords = _np.empty((N_seeds,3))
coords[0] = rng.random(3) * size
i = 1
progress = util._ProgressBar(N_seeds+1,'',50)
while i < N_seeds:
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
tree = _spatial.cKDTree(coords[:i],boxsize=size) if periodic else \
_spatial.cKDTree(coords[:i])
distances, dev_null = tree.query(candidates)
best = distances.argmax()
if distances[best] > distance: # require minimum separation
coords[i] = candidates[best] # maximum separation to existing point cloud
i += 1
progress.update(i)
return coords
def from_geom(geom,selection=None,invert=False,average=False,periodic=True):
"""
Create seed from existing geometry description.
Parameters
----------
geom : damask.Geom
Geometry, from which the material IDs are used as seeds.
selection : iterable of integers, optional
Material IDs to consider.
invert : boolean, false
Do not consider the material IDs given in selection. Defaults to False.
average : boolean, optional
Seed corresponds to center of gravity of material ID cloud.
periodic : boolean, optional
Center of gravity with periodic boundaries.
"""
material = geom.material.reshape((-1,1),order='F')
mask = _np.full(geom.grid.prod(),True,dtype=bool) if selection is None else \
_np.isin(material,selection,invert=invert).flatten()
coords = grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F')
if not average:
return (coords[mask],material[mask])
else:
materials = _np.unique(material[mask])
coords_ = _np.zeros((materials.size,3),dtype=float)
for i,mat in enumerate(materials):
pc = (2*_np.pi*coords[material[:,0]==mat,:]-geom.origin)/geom.size
coords_[i] = geom.origin + geom.size / 2 / _np.pi * (_np.pi +
_np.arctan2(-_np.average(_np.sin(pc),axis=0),
-_np.average(_np.cos(pc),axis=0))) \
if periodic else \
_np.average(coords[material[:,0]==mat,:],axis=0)
return (coords_,materials)

View File

@ -20,6 +20,7 @@ __all__=[
'execute',
'show_progress',
'scale_to_coprime',
'hybrid_IA',
'return_message',
'extendableOption',
'execution_stamp'
@ -173,7 +174,7 @@ def scale_to_coprime(v):
m = (np.array(v) * reduce(lcm, map(lambda x: int(get_square_denominator(x)),v)) ** 0.5).astype(np.int)
m = m//reduce(np.gcd,m)
with np.errstate(divide='ignore'):
with np.errstate(invalid='ignore'):
if not np.allclose(np.ma.masked_invalid(v/m),v[np.argmax(abs(v))]/m[np.argmax(abs(v))]):
raise ValueError(f'Invalid result {m} for input {v}. Insufficient precision?')
@ -187,6 +188,20 @@ def execution_stamp(class_name,function_name=None):
return f'damask.{class_name}{_function_name} v{version} ({now})'
def hybrid_IA(dist,N,seed=None):
N_opt_samples,N_inv_samples = (max(np.count_nonzero(dist),N),0) # random subsampling if too little samples requested
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
while (not np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
repeats = np.rint(scale*dist).astype(int)
N_inv_samples = np.sum(repeats)
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
if N_inv_samples < N_opt_samples else \
(scale_,0.5*(scale_ + scale), 1.0)
return np.repeat(np.arange(len(dist)),repeats)[np.random.default_rng(seed).permutation(N_inv_samples)[:N]]
####################################################################################################
# Classes
####################################################################################################

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATgAAAA==eF4FwUEKgCAUBNCO4rIWX8ZJsbxA5/iUFqQVBJ2/9zZt+p52yXeza816mW+0sBCtz6HCGGSPE1wJjMX0BCGYhTQuJLrkKfDA0P0d3xK6
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAZwAAAA==eF7t0rcOgmAAhVEgNmyo2AuoWN//BR04EwsJcfzvcvabL47qxcFOJg177HPAIUdMOeaEU844Z8YFl1wx55obbrnjngceeeKZFxYseeWNd1Z88MkX3/zwy+Z/wf8YOqzX1uEPlgwHCA==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF5LScxNLM7Wc0/Nz9VLzklNzFMoM9Yz0DPQTcwpyEjUNTI31U03tzAwTDM1Mk9T0DAyMDLQNbDUNTJSMDS1MjK0MgFyTQwMNBkAHc8SuA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAagAAAA==eF7t0rkOglAARFExLrgCKuKuqLj8/w9acCoSY7B+05x+cqNOvSj4l92GPfY54JAxRxxzwilnnDNhyowLLrlizjULbrjljnseeOSJZ15Y8sob76z44JMvvtn8L9jObz2GDuv96vADk5QHBg==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwdEJgDAMBUBH6ad+JLzElmoXcI6grYKtCoLze7dZs/fkJd+N15rtct/IYJDV5zDSGGiPE6QEjcX1CgVhJlUnIakkLwQPDN0PHdcSuQ==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAZAAAAA==eF7t0scRglAAQEEBAyZUMCuomPtv0ANbgMNw/O+yDbyo1xQFWxkzYZ8DDjliyjEnnHLGOTMuuOSKOQuuueGWO+554JEnnlmy4oVX3ljzzgeffPHND7+Mg50aPmz698MfmvQHCg==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwVEKgCAQBcCO4md97PJcE9MLdI6ltCCtIOj8zuza9Lt4zU/jrWa9ze8YDNL6nkoSPB1hgS1eQjGjQECIJGKsT2KTi4QZmIYOHg4SwA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAYwAAAA==eF7t0scBgkAAAEHBgBEwgDmBsf8GfTANCN/bzzSwUa8pCrYyZp8DDjliwjEnnHLGORdMmTHnkiuuuWHBklvuuOeBR5545oVX3nhnxZoPPvnimx9+GQc7GT5sqvjvhz+ZtAcJ
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwdEJgDAMBUBH6ad+JLzElmoXcI6grYKtCoLze7dZs/fkJd+N15rtct/IYJDV5zDSGGiPE6QEjcX1CgVhJlUnIakkLwQPDN0PHdcSuQ==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="2">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="2">
AQAAAACAAAAABQAAGwAAAA==eF5jZIAAxlF6lB4AmmmUpogeDUfKaAD7jwDw
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwVEKgCAQBcCO4md97PJcE9MLdI6ltCCtIOj8zuza9Lt4zU/jrWa9ze8YDNL6nkoSPB1hgS1eQjGjQECIJGKsT2KTi4QZmIYOHg4SwA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="2">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="2">
AQAAAACAAAAABQAAGQAAAA==eF5jZIAAxlF6lB4AmmmUHqUHkAYA/M8A8Q==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATgAAAA==eF4FwUEKgCAUBNCO4rIWX8ZJsbxA5/iUFqQVBJ2/9zZt+p52yXeza816mW+0sBCtz6HCGGSPE1wJjMX0BCGYhTQuJLrkKfDA0P0d3xK6
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAZwAAAA==eF7t0rcOgmAAhVEgNmyo2AuoWN//BR04EwsJcfzvcvabL47qxcFOJg177HPAIUdMOeaEU844Z8YFl1wx55obbrnjngceeeKZFxYseeWNd1Z88MkX3/zwy+Z/wf8YOqzX1uEPlgwHCA==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF5LScxNLM7Wc0/Nz9VLzklNzFMoM9Yz0DPQTcwpyEjUNTI31U03tzAwTDM1Mk9T0DAyMDLQNbDUNTJSMDS1MjK0MgFyTQwMNBkAHc8SuA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAagAAAA==eF7t0rkOglAARFExLrgCKuKuqLj8/w9acCoSY7B+05x+cqNOvSj4l92GPfY54JAxRxxzwilnnDNhyowLLrlizjULbrjljnseeOSJZ15Y8sob76z44JMvvtn8L9jObz2GDuv96vADk5QHBg==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwdEJgDAMBUBH6ad+JLzElmoXcI6grYKtCoLze7dZs/fkJd+N15rtct/IYJDV5zDSGGiPE6QEjcX1CgVhJlUnIakkLwQPDN0PHdcSuQ==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAZAAAAA==eF7t0scRglAAQEEBAyZUMCuomPtv0ANbgMNw/O+yDbyo1xQFWxkzYZ8DDjliyjEnnHLGOTMuuOSKOQuuueGWO+554JEnnlmy4oVX3ljzzgeffPHND7+Mg50aPmz698MfmvQHCg==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF5LScxNLM7Wc0/Nz9VLzklNzFMoM9Yz0DPQTcwpyEjUNTI31U03tzAwTDM1Mk9T0DAyMDLQNbDUNTJSMDS1MjK0MgFyTQwMNBkAHc8SuA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAYwAAAA==eF7t0scBgkAAAEHBgBEwgDmBsf8GfTANCN/bzzSwUa8pCrYyZp8DDjliwjEnnHLGORdMmTHnkiuuuWHBklvuuOeBR5545oVX3nhnxZoPPvnimx9+GQc7GT5sqvjvhz+ZtAcJ
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwdEJgDAMBUBH6ad+JLzElmoXcI6grYKtCoLze7dZs/fkJd+N15rtct/IYJDV5zDSGGiPE6QEjcX1CgVhJlUnIakkLwQPDN0PHdcSuQ==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="2">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="2">
AQAAAACAAAAABQAAIgAAAA==eF5jZIAAxlGaLJoJjSakntr6hzqN7v9RepSmJw0AC04A9Q==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwVEKgCAQBcCO4md97PJcE9MLdI6ltCCtIOj8zuza9Lt4zU/jrWa9ze8YDNL6nkoSPB1hgS1eQjGjQECIJGKsT2KTi4QZmIYOHg4SwA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="2">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="2">
AQAAAACAAAAABQAALwAAAA==eF5jZIAAxlGaLJoJjSakHpc+cvUTUkdrmlL3j9KU0dROF5TqH2iaVPcDAALOANU=
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATgAAAA==eF4FwUEKgCAUBNCO4rIWX8ZJsbxA5/iUFqQVBJ2/9zZt+p52yXeza816mW+0sBCtz6HCGGSPE1wJjMX0BCGYhTQuJLrkKfDA0P0d3xK6
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAcQAAAA==eF7t0rkOglAUBFAxKu6igvsKrv//gxYcm9fQGEPBNKe6yc1kolaZqPEndthljzH7HHDIEceccMoZE8654JIpM6645oZb7rjngUeeeOaFV+YseOOdDz754pthf+3Aqr7rdv9vw3+/NjssU7XDD0/8BuQ=
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF5LScxNLM7Wc0/Nz9VLzklNzFMoM9Yz0DPQTcwpyEjUNTI31U03tzAwTDM1Mk9T0DAyMDLQNbDUNTJSMDS1MjK0MgFyTQwMNBkAHc8SuA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAYQAAAA==eF7t0scVglAAAEHgqZgBA2ZExdR/gx6YCpDj38s0sEnUlgR7ccAhR0w55oRTzjjngktmzFlwxTU33LLkjnseeOSJZ15Y8cqaN975YMMnX3zzwy/j4F+GD9u6fvgD+gwHCA==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATgAAAA==eF4FwUEKgCAUBNCO4rIWX8ZJsbxA5/iUFqQVBJ2/9zZt+p52yXeza816mW+0sBCtz6HCGGSPE1wJjMX0BCGYhTQuJLrkKfDA0P0d3xK6
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="41">
AQAAAACAAAAABQAAZAAAAA==eF7t0scRglAAQEEBAyZUMCuomPtv0ANbgMNw/O+yDbyo1xQFWxkzYZ8DDjliyjEnnHLGOTMuuOSKOQuuueGWO+554JEnnlmy4oVX3ljzzgeffPHND7+Mg50aPmz698MfmvQHCg==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF5LScxNLM7Wc0/Nz9VLzklNzFMoM9Yz0DPQTcwpyEjUNTI31U03tzAwTDM1Mk9T0DAyMDLQNbDUNTJSMDS1MjK0MgFyTQwMNBkAHc8SuA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="2" RangeMax="41">
<DataArray type="Int64" Name="material" format="binary" RangeMin="2" RangeMax="41">
AQAAAACAAAAABQAAZAAAAA==eF7t0rcSglAARFEHE0bAgBkE8///oAWnF8b2bXP6nRv1mkXBv+xzwCFHHDPmhFPOOOeCSyZMmXHFNTfcMueOex545IlnXliw5JUVa95454NPvvjmh79+DXYzdNisbYdfSqMHMg==
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwdEJgDAMBUBH6ad+JLzElmoXcI6grYKtCoLze7dZs/fkJd+N15rtct/IYJDV5zDSGGiPE6QEjcX1CgVhJlUnIakkLwQPDN0PHdcSuQ==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="2">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="2">
AQAAAACAAAAABQAAIAAAAA==eF5jZIAAxlF6lB4AmokAPdj1DzRNyP2jNH4aAMufANU=
</DataArray>
</CellData>

View File

@ -1,11 +1,16 @@
<?xml version="1.0"?>
<VTKFile type="RectilinearGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<RectilinearGrid WholeExtent="0 8 0 5 0 4">
<FieldData>
<Array type="String" Name="comments" NumberOfTuples="1" format="binary">
AQAAAACAAABJAAAATwAAAA==eF4FwVEKgCAQBcCO4md97PJcE9MLdI6ltCCtIOj8zuza9Lt4zU/jrWa9ze8YDNL6nkoSPB1hgS1eQjGjQECIJGKsT2KTi4QZmIYOHg4SwA==
</Array>
</FieldData>
<Piece Extent="0 8 0 5 0 4">
<PointData>
</PointData>
<CellData>
<DataArray type="Int64" Name="materialpoint" format="binary" RangeMin="1" RangeMax="2">
<DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="2">
AQAAAACAAAAABQAAMAAAAA==eF5jYoAAJhw0IwEalz566aeUptT+oa6fUppS+4e6fkppSu0f6voppSm1HwBAngDh
</DataArray>
</CellData>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -77,17 +77,17 @@ class TestColormap:
@pytest.mark.parametrize('format',['ASCII','paraview','GOM','gmsh'])
@pytest.mark.parametrize('model',['rgb','hsv','hsl','xyz','lab','msh'])
def test_from_range(self,model,format,tmpdir):
def test_from_range(self,model,format,tmp_path):
N = np.random.randint(2,256)
c = Colormap.from_range(np.random.rand(3),np.random.rand(3),model=model,N=N) # noqa
eval(f'c.save_{format}(tmpdir/"color_out")')
eval(f'c.save_{format}(tmp_path/"color_out")')
@pytest.mark.parametrize('format',['ASCII','paraview','GOM','gmsh'])
@pytest.mark.parametrize('name',['strain','gnuplot','Greys','PRGn','viridis'])
def test_from_predefined(self,name,format,tmpdir):
def test_from_predefined(self,name,format,tmp_path):
N = np.random.randint(2,256)
c = Colormap.from_predefined(name,N) # noqa
os.chdir(tmpdir)
os.chdir(tmp_path)
eval(f'c.save_{format}()')
@pytest.mark.parametrize('format,name',[('ASCII','test.txt'),
@ -95,9 +95,9 @@ class TestColormap:
('GOM','test.legend'),
('gmsh','test.msh')
])
def test_write_filehandle(self,format,name,tmpdir):
def test_write_filehandle(self,format,name,tmp_path):
c = Colormap.from_predefined('Dark2') # noqa
fname = tmpdir/name
fname = tmp_path/name
with open(fname,'w') as f: # noqa
eval(f'c.save_{format}(f)')
for i in range(10):
@ -146,14 +146,14 @@ class TestColormap:
('GOM','.legend'),
('gmsh','.msh')
])
def test_compare_reference(self,format,ext,tmpdir,reference_dir,update):
def test_compare_reference(self,format,ext,tmp_path,reference_dir,update):
name = 'binary'
c = Colormap.from_predefined(name) # noqa
if update:
os.chdir(reference_dir)
eval(f'c.save_{format}()')
else:
os.chdir(tmpdir)
os.chdir(tmp_path)
eval(f'c.save_{format}()')
time.sleep(.5)
assert filecmp.cmp(tmpdir/(name+ext),reference_dir/(name+ext))
assert filecmp.cmp(tmp_path/(name+ext),reference_dir/(name+ext))

View File

@ -11,9 +11,9 @@ from damask import util
def geom_equal(a,b):
return np.all(a.get_microstructure() == b.get_microstructure()) and \
np.all(a.get_grid() == b.get_grid()) and \
np.allclose(a.get_size(), b.get_size()) and \
return np.all(a.material == b.material) and \
np.all(a.grid == b.grid) and \
np.allclose(a.size, b.size) and \
str(a.diff(b)) == str(b.diff(a))
@pytest.fixture
@ -33,104 +33,96 @@ def reference_dir(reference_dir_base):
class TestGeom:
@pytest.mark.parametrize('flavor',['plain','explicit'])
def test_duplicate(self,default,flavor):
if flavor == 'plain':
modified = default.duplicate()
elif flavor == 'explicit':
modified = default.duplicate(
default.get_microstructure(),
default.get_size(),
default.get_origin()
)
print(modified)
assert geom_equal(default,modified)
def test_diff_equal(self,default):
assert str(default.diff(default)) == ''
def test_diff_not_equal(self,default):
new = Geom(default.microstructure[1:,1:,1:]+1,default.size*.9,np.ones(3)-default.origin,comments=['modified'])
new = Geom(default.material[1:,1:,1:]+1,default.size*.9,np.ones(3)-default.origin,comments=['modified'])
assert str(default.diff(new)) != ''
@pytest.mark.parametrize('masked',[True,False])
def test_set_microstructure(self,default,masked):
old = default.get_microstructure()
new = np.random.randint(200,size=default.grid)
default.set_microstructure(np.ma.MaskedArray(new,np.full_like(new,masked)))
assert np.all(default.microstructure==(old if masked else new))
def test_write_read_str(self,default,tmpdir):
default.save_ASCII(str(tmpdir/'default.geom'))
new = Geom.load_ASCII(str(tmpdir/'default.geom'))
def test_write_read_str(self,default,tmp_path):
default.save_ASCII(str(tmp_path/'default.geom'))
new = Geom.load_ASCII(str(tmp_path/'default.geom'))
assert geom_equal(default,new)
def test_write_read_file(self,default,tmpdir):
with open(tmpdir/'default.geom','w') as f:
def test_write_read_file(self,default,tmp_path):
with open(tmp_path/'default.geom','w') as f:
default.save_ASCII(f,compress=True)
with open(tmpdir/'default.geom') as f:
with open(tmp_path/'default.geom') as f:
new = Geom.load_ASCII(f)
assert geom_equal(default,new)
def test_read_write_vtr(self,default,tmpdir):
default.save(tmpdir/'default')
def test_read_write_vtr(self,default,tmp_path):
default.save(tmp_path/'default')
for _ in range(10):
time.sleep(.2)
if os.path.exists(tmpdir/'default.vtr'): break
if os.path.exists(tmp_path/'default.vtr'): break
new = Geom.load(tmpdir/'default.vtr')
new = Geom.load(tmp_path/'default.vtr')
assert geom_equal(new,default)
def test_invalid_geom(self,tmpdir):
with open('invalid_file','w') as f:
def test_invalid_geom(self,tmp_path):
with open(tmp_path/'invalid_file','w') as f:
f.write('this is not a valid header')
with open('invalid_file','r') as f:
with open(tmp_path/'invalid_file','r') as f:
with pytest.raises(TypeError):
Geom.load_ASCII(f)
def test_invalid_vtr(self,tmpdir):
def test_invalid_vtr(self,tmp_path):
v = VTK.from_rectilinearGrid(np.random.randint(5,10,3)*2,np.random.random(3) + 1.0)
v.save(tmpdir/'no_materialpoint.vtr')
v.save(tmp_path/'no_materialpoint.vtr')
for _ in range(10):
time.sleep(.2)
if os.path.exists(tmpdir/'no_materialpoint.vtr'): break
if os.path.exists(tmp_path/'no_materialpoint.vtr'): break
with pytest.raises(ValueError):
Geom.load(tmpdir/'no_materialpoint.vtr')
Geom.load(tmp_path/'no_materialpoint.vtr')
def test_invalid_material(self):
with pytest.raises(TypeError):
Geom(np.zeros((3,3,3),dtype='complex'),np.ones(3))
def test_cast_to_int(self):
g = Geom(np.zeros((3,3,3)),np.ones(3))
assert g.material.dtype in np.sctypes['int']
@pytest.mark.parametrize('compress',[True,False])
def test_compress(self,default,tmpdir,compress):
default.save_ASCII(tmpdir/'default.geom',compress=compress)
new = Geom.load_ASCII(tmpdir/'default.geom')
def test_compress(self,default,tmp_path,compress):
default.save_ASCII(tmp_path/'default.geom',compress=compress)
new = Geom.load_ASCII(tmp_path/'default.geom')
assert geom_equal(new,default)
def test_invalid_combination(self,default):
with pytest.raises(ValueError):
default.duplicate(default.microstructure[1:,1:,1:],size=np.ones(3), autosize=True)
def test_invalid_size(self,default):
with pytest.raises(ValueError):
default.duplicate(default.microstructure[1:,1:,1:],size=np.ones(2))
Geom(default.material[1:,1:,1:],
size=np.ones(2))
def test_invalid_origin(self,default):
with pytest.raises(ValueError):
default.duplicate(default.microstructure[1:,1:,1:],origin=np.ones(4))
Geom(default.material[1:,1:,1:],
size=np.ones(3),
origin=np.ones(4))
def test_invalid_microstructure_size(self,default):
microstructure = np.ones((3,3))
def test_invalid_materials_shape(self,default):
material = np.ones((3,3))
with pytest.raises(ValueError):
default.duplicate(microstructure)
Geom(material,
size=np.ones(3))
def test_invalid_microstructure_type(self,default):
microstructure = np.random.randint(1,300,(3,4,5))==1
with pytest.raises(TypeError):
default.duplicate(microstructure)
def test_invalid_homogenization(self,default):
def test_invalid_materials_type(self,default):
material = np.random.randint(1,300,(3,4,5))==1
with pytest.raises(TypeError):
default.set_homogenization(homogenization=0)
Geom(material)
@pytest.mark.parametrize('directions,reflect',[
(['x'], False),
@ -147,6 +139,7 @@ class TestGeom:
assert geom_equal(Geom.load_ASCII(reference),
modified)
@pytest.mark.parametrize('directions',[(1,2,'y'),('a','b','x'),[1]])
def test_mirror_invalid(self,default,directions):
with pytest.raises(ValueError):
@ -168,13 +161,16 @@ class TestGeom:
assert geom_equal(Geom.load_ASCII(reference),
modified)
def test_flip_invariant(self,default):
assert geom_equal(default,default.flip([]))
@pytest.mark.parametrize('direction',[['x'],['x','y']])
def test_flip_double(self,default,direction):
assert geom_equal(default,default.flip(direction).flip(direction))
@pytest.mark.parametrize('directions',[(1,2,'y'),('a','b','x'),[1]])
def test_flip_invalid(self,default,directions):
with pytest.raises(ValueError):
@ -196,6 +192,7 @@ class TestGeom:
current
)
@pytest.mark.parametrize('grid',[
(10,11,10),
[10,13,10],
@ -213,22 +210,29 @@ class TestGeom:
assert geom_equal(Geom.load_ASCII(reference),
modified)
def test_renumber(self,default):
microstructure = default.get_microstructure()
for m in np.unique(microstructure):
microstructure[microstructure==m] = microstructure.max() + np.random.randint(1,30)
modified = default.duplicate(microstructure)
material = default.material.copy()
for m in np.unique(material):
material[material==m] = material.max() + np.random.randint(1,30)
modified = Geom(material,
default.size,
default.origin)
assert not geom_equal(modified,default)
assert geom_equal(default,
modified.renumber())
def test_substitute(self,default):
offset = np.random.randint(1,500)
modified = default.duplicate(default.get_microstructure() + offset)
modified = Geom(default.material + offset,
default.size,
default.origin)
assert not geom_equal(modified,default)
assert geom_equal(default,
modified.substitute(np.arange(default.microstructure.max())+1+offset,
np.arange(default.microstructure.max())+1))
modified.substitute(np.arange(default.material.max())+1+offset,
np.arange(default.material.max())+1))
@pytest.mark.parametrize('axis_angle',[np.array([1,0,0,86.7]), np.array([0,1,0,90.4]), np.array([0,0,1,90]),
np.array([1,0,0,175]),np.array([0,-1,0,178]),np.array([0,0,1,180])])
@ -238,6 +242,7 @@ class TestGeom:
modified.rotate(Rotation.from_axis_angle(axis_angle,degrees=True))
assert geom_equal(default,modified)
@pytest.mark.parametrize('Eulers',[[32.0,68.0,21.0],
[0.0,32.0,240.0]])
def test_rotate(self,default,update,reference_dir,Eulers):
@ -248,11 +253,13 @@ class TestGeom:
assert geom_equal(Geom.load_ASCII(reference),
modified)
def test_canvas(self,default):
grid = default.grid
grid_add = np.random.randint(0,30,(3))
modified = default.canvas(grid + grid_add)
assert np.all(modified.microstructure[:grid[0],:grid[1],:grid[2]] == default.microstructure)
assert np.all(modified.material[:grid[0],:grid[1],:grid[2]] == default.material)
@pytest.mark.parametrize('center1,center2',[(np.random.random(3)*.5,np.random.random()*8),
(np.random.randint(4,8,(3)),np.random.randint(9,12,(3)))])
@ -265,13 +272,14 @@ class TestGeom:
np.random.rand()*4,
np.random.randint(20)])
def test_add_primitive_shift(self,center1,center2,diameter,exponent):
"""Same volume fraction for periodic microstructures and different center."""
"""Same volume fraction for periodic geometries and different center."""
o = np.random.random(3)-.5
g = np.random.randint(8,32,(3))
s = np.random.random(3)+.5
G_1 = Geom(np.ones(g,'i'),s,o).add_primitive(diameter,center1,exponent)
G_2 = Geom(np.ones(g,'i'),s,o).add_primitive(diameter,center2,exponent)
assert np.count_nonzero(G_1.microstructure!=2) == np.count_nonzero(G_2.microstructure!=2)
assert np.count_nonzero(G_1.material!=2) == np.count_nonzero(G_2.material!=2)
@pytest.mark.parametrize('center',[np.random.randint(4,10,(3)),
np.random.randint(2,10),
@ -288,6 +296,7 @@ class TestGeom:
G_2 = Geom(np.ones(g,'i'),[1.,1.,1.]).add_primitive(.3,center,1,fill,Rotation.from_Eulers(eu),inverse,periodic=periodic)
assert geom_equal(G_1,G_2)
@pytest.mark.parametrize('trigger',[[1],[]])
def test_vicinity_offset(self,trigger):
offset = np.random.randint(2,4)
@ -306,13 +315,15 @@ class TestGeom:
geom = Geom(m,np.random.rand(3)).vicinity_offset(vicinity,offset,trigger=trigger)
assert np.all(m2==geom.microstructure)
assert np.all(m2==geom.material)
@pytest.mark.parametrize('periodic',[True,False])
def test_vicinity_offset_invariant(self,default,periodic):
old = default.get_microstructure()
default.vicinity_offset(trigger=[old.max()+1,old.min()-1])
assert np.all(old==default.microstructure)
offset = default.vicinity_offset(trigger=[default.material.max()+1,
default.material.min()-1])
assert np.all(offset.material==default.material)
@pytest.mark.parametrize('periodic',[True,False])
def test_tessellation_approaches(self,periodic):
@ -320,10 +331,11 @@ class TestGeom:
size = np.random.random(3) + 1.0
N_seeds= np.random.randint(10,30)
seeds = np.random.rand(N_seeds,3) * np.broadcast_to(size,(N_seeds,3))
Voronoi = Geom.from_Voronoi_tessellation( grid,size,seeds, periodic)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(N_seeds),periodic)
Voronoi = Geom.from_Voronoi_tessellation( grid,size,seeds, np.arange(N_seeds)+5,periodic)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(N_seeds),np.arange(N_seeds)+5,periodic)
assert geom_equal(Laguerre,Voronoi)
def test_Laguerre_weights(self):
grid = np.random.randint(10,20,3)
size = np.random.random(3) + 1.0
@ -332,18 +344,61 @@ class TestGeom:
weights= np.full((N_seeds),-np.inf)
ms = np.random.randint(1, N_seeds+1)
weights[ms-1] = np.random.random()
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,weights,np.random.random()>0.5)
assert np.all(Laguerre.microstructure == ms)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,weights,periodic=np.random.random()>0.5)
assert np.all(Laguerre.material == ms)
@pytest.mark.parametrize('approach',['Laguerre','Voronoi'])
def test_tessellate_bicrystal(self,approach):
grid = np.random.randint(5,10,3)*2
size = grid.astype(np.float)
seeds = np.vstack((size*np.array([0.5,0.25,0.5]),size*np.array([0.5,0.75,0.5])))
microstructure = np.ones(grid)
microstructure[:,grid[1]//2:,:] = 2
material = np.ones(grid)
material[:,grid[1]//2:,:] = 2
if approach == 'Laguerre':
geom = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(2),np.random.random()>0.5)
geom = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(2),periodic=np.random.random()>0.5)
elif approach == 'Voronoi':
geom = Geom.from_Voronoi_tessellation(grid,size,seeds, np.random.random()>0.5)
assert np.all(geom.microstructure == microstructure)
geom = Geom.from_Voronoi_tessellation(grid,size,seeds, periodic=np.random.random()>0.5)
assert np.all(geom.material == material)
@pytest.mark.parametrize('surface',['Schwarz P',
'Double Primitive',
'Schwarz D',
'Complementary D',
'Double Diamond',
'Dprime',
'Gyroid',
'Gprime',
'Karcher K',
'Lidinoid',
'Neovius',
'Fisher-Koch S',
])
def test_minimal_surface_basic_properties(self,surface):
grid = np.random.randint(60,100,3)
size = np.ones(3)+np.random.rand(3)
threshold = 2*np.random.rand()-1.
periods = np.random.randint(2)+1
materials = np.random.randint(0,40,2)
geom = Geom.from_minimal_surface(grid,size,surface,threshold,periods,materials)
assert set(geom.material.flatten()) | set(materials) == set(materials) \
and (geom.size == size).all() and (geom.grid == grid).all()
@pytest.mark.parametrize('surface,threshold',[('Schwarz P',0),
('Double Primitive',-1./6.),
('Schwarz D',0),
('Complementary D',0),
('Double Diamond',-0.133),
('Dprime',-0.0395),
('Gyroid',0),
('Gprime',0.22913),
('Karcher K',0.17045),
('Lidinoid',0.14455),
('Neovius',0),
('Fisher-Koch S',0),
])
def test_minimal_surface_volume(self,surface,threshold):
grid = np.ones(3,dtype=int)*64
geom = Geom.from_minimal_surface(grid,np.ones(3),surface,threshold)
assert np.isclose(np.count_nonzero(geom.material==1)/np.prod(geom.grid),.5,rtol=1e-3)

View File

@ -1,11 +1,11 @@
import os
import pytest
import numpy as np
from scipy import stats
from damask import Rotation
from damask import Table
from damask import _rotation
from damask import grid_filters
n = 1000
atol=1.e-4
@ -13,7 +13,7 @@ atol=1.e-4
@pytest.fixture
def reference_dir(reference_dir_base):
"""Directory containing reference results."""
return os.path.join(reference_dir_base,'Rotation')
return reference_dir_base/'Rotation'
@pytest.fixture
def set_of_rotations(set_of_quaternions):
@ -943,3 +943,39 @@ class TestRotation:
sigma_out = np.degrees(np.std(dist))
p = np.average(p)
assert (.9 < sigma/sigma_out < 1.1) and p > 1e-2, f'{sigma/sigma_out},{p}'
@pytest.mark.parametrize('fractions',[True,False])
@pytest.mark.parametrize('degrees',[True,False])
@pytest.mark.parametrize('N',[2**13,2**14,2**15])
def test_ODF_cell(self,reference_dir,fractions,degrees,N):
steps = np.array([144,36,36])
limits = np.array([360.,90.,90.])
rng = tuple(zip(np.zeros(3),limits))
weights = Table.load(reference_dir/'ODF_experimental_cell.txt').get('intensity').flatten()
Eulers = grid_filters.cell_coord0(steps,limits)
Eulers = np.radians(Eulers) if not degrees else Eulers
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees,fractions).as_Eulers(True)
weights_r = np.histogramdd(Eulers_r,steps,rng)[0].flatten(order='F')/N * np.sum(weights)
if fractions: assert np.sqrt(((weights_r - weights) ** 2).mean()) < 4
@pytest.mark.parametrize('degrees',[True,False])
@pytest.mark.parametrize('N',[2**13,2**14,2**15])
def test_ODF_node(self,reference_dir,degrees,N):
steps = np.array([144,36,36])
limits = np.array([360.,90.,90.])
rng = tuple(zip(-limits/steps*.5,limits-limits/steps*.5))
weights = Table.load(reference_dir/'ODF_experimental.txt').get('intensity')
weights = weights.reshape(steps+1,order='F')[:-1,:-1,:-1].reshape(-1,order='F')
Eulers = grid_filters.node_coord0(steps,limits)[:-1,:-1,:-1]
Eulers = np.radians(Eulers) if not degrees else Eulers
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees).as_Eulers(True)
weights_r = np.histogramdd(Eulers_r,steps,rng)[0].flatten(order='F')/N * np.sum(weights)
assert np.sqrt(((weights_r - weights) ** 2).mean()) < 5

View File

@ -34,31 +34,31 @@ class TestTable:
assert np.allclose(d,1.0) and d.shape[1:] == (1,)
@pytest.mark.parametrize('mode',['str','path'])
def test_write_read(self,default,tmpdir,mode):
default.save(tmpdir/'default.txt')
def test_write_read(self,default,tmp_path,mode):
default.save(tmp_path/'default.txt')
if mode == 'path':
new = Table.load(tmpdir/'default.txt')
new = Table.load(tmp_path/'default.txt')
elif mode == 'str':
new = Table.load(str(tmpdir/'default.txt'))
new = Table.load(str(tmp_path/'default.txt'))
assert all(default.data==new.data) and default.shapes == new.shapes
def test_write_read_file(self,default,tmpdir):
with open(tmpdir/'default.txt','w') as f:
def test_write_read_file(self,default,tmp_path):
with open(tmp_path/'default.txt','w') as f:
default.save(f)
with open(tmpdir/'default.txt') as f:
with open(tmp_path/'default.txt') as f:
new = Table.load(f)
assert all(default.data==new.data) and default.shapes == new.shapes
def test_write_read_legacy_style(self,default,tmpdir):
with open(tmpdir/'legacy.txt','w') as f:
def test_write_read_legacy_style(self,default,tmp_path):
with open(tmp_path/'legacy.txt','w') as f:
default.save(f,legacy=True)
with open(tmpdir/'legacy.txt') as f:
with open(tmp_path/'legacy.txt') as f:
new = Table.load(f)
assert all(default.data==new.data) and default.shapes == new.shapes
def test_write_invalid_format(self,default,tmpdir):
def test_write_invalid_format(self,default,tmp_path):
with pytest.raises(TypeError):
default.save(tmpdir/'shouldnotbethere.txt',format='invalid')
default.save(tmp_path/'shouldnotbethere.txt',format='invalid')
@pytest.mark.parametrize('mode',['str','path'])
def test_read_ang(self,reference_dir,mode):

View File

@ -0,0 +1,62 @@
import pytest
import numpy as np
from scipy.spatial import cKDTree
from damask import seeds
from damask import grid_filters
from damask import Geom
class TestSeeds:
@pytest.mark.parametrize('grid',[None,np.ones(3,dtype='i')*10])
def test_from_random(self,grid):
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
assert (0<=coords).all() and (coords<size).all()
@pytest.mark.parametrize('periodic',[True,False])
def test_from_Poisson_disc(self,periodic):
N_seeds = np.random.randint(30,300)
N_candidates = N_seeds//15
distance = np.random.random()
size = np.ones(3)*distance*N_seeds
coords = seeds.from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=periodic)
min_dists, _ = cKDTree(coords,boxsize=size).query(coords, 2) if periodic else \
cKDTree(coords).query(coords, 2)
assert (0<= coords).all() and (coords<size).all() and np.min(min_dists[:,1])>=distance
def test_from_geom_reconstruct(self):
grid = np.random.randint(10,20,3)
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
geom_1 = Geom.from_Voronoi_tessellation(grid,size,coords)
coords,material = seeds.from_geom(geom_1)
geom_2 = Geom.from_Voronoi_tessellation(grid,size,coords,material)
assert (geom_2.material==geom_1.material).all()
@pytest.mark.parametrize('periodic',[True,False])
@pytest.mark.parametrize('average',[True,False])
def test_from_geom_grid(self,periodic,average):
grid = np.random.randint(10,20,3)
size = np.ones(3) + np.random.random(3)
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
np.random.shuffle(coords)
geom_1 = Geom.from_Voronoi_tessellation(grid,size,coords)
coords,material = seeds.from_geom(geom_1,average=average,periodic=periodic)
geom_2 = Geom.from_Voronoi_tessellation(grid,size,coords,material)
assert (geom_2.material==geom_1.material).all()
@pytest.mark.parametrize('periodic',[True,False])
@pytest.mark.parametrize('average',[True,False])
@pytest.mark.parametrize('invert',[True,False])
def test_from_geom_selection(self,periodic,average,invert):
grid = np.random.randint(10,20,3)
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
geom = Geom.from_Voronoi_tessellation(grid,size,coords)
selection=np.random.randint(N_seeds)+1
coords,material = seeds.from_geom(geom,average=average,periodic=periodic,invert=invert,selection=[selection])
assert selection not in material if invert else (selection==material).all()

View File

@ -1,5 +1,7 @@
import pytest
import numpy as np
from scipy import stats
from damask import util
@ -31,3 +33,14 @@ class TestUtil:
def test_lackofprecision(self):
with pytest.raises(ValueError):
util.scale_to_coprime(np.array([1/333.333,1,1]))
@pytest.mark.parametrize('rv',[stats.rayleigh(),stats.weibull_min(1.2),stats.halfnorm(),stats.pareto(2.62)])
def test_hybridIA(self,rv):
bins = np.linspace(0,10,100000)
centers = (bins[1:]+bins[:-1])/2
N_samples = bins.shape[0]-1000
dist = rv.pdf(centers)
selected = util.hybrid_IA(dist,N_samples)
dist_sampled = np.histogram(centers[selected],bins)[0]/N_samples*np.sum(dist)
assert np.sqrt(((dist - dist_sampled) ** 2).mean()) < .025 and selected.shape[0]==N_samples

View File

@ -103,7 +103,6 @@ end subroutine CPFEM_initAll
subroutine CPFEM_init
class(tNode), pointer :: &
num_commercialFEM, &
debug_CPFEM
print'(/,a)', ' <<<+- CPFEM init -+>>>'; flush(IO_STDOUT)
@ -112,12 +111,6 @@ subroutine CPFEM_init
allocate(CPFEM_dcsdE( 6,6,discretization_nIP,discretization_nElem), source= 0.0_pReal)
allocate(CPFEM_dcsdE_knownGood(6,6,discretization_nIP,discretization_nElem), source= 0.0_pReal)
!------------------------------------------------------------------------------
! read numerical parameters and do sanity check
num_commercialFEM => config_numerics%get('commercialFEM',defaultVal=emptyDict)
num%iJacoStiffness = num_commercialFEM%get_asInt('ijacostiffness',defaultVal=1)
if (num%iJacoStiffness < 1) call IO_error(301,ext_msg='iJacoStiffness')
!------------------------------------------------------------------------------
! read debug options
@ -161,7 +154,6 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
integer(pInt) elCP, & ! crystal plasticity element number
i, j, k, l, m, n, ph, homog, mySource
logical updateJaco ! flag indicating if Jacobian has to be updated
real(pReal), parameter :: ODD_STRESS = 1e15_pReal, & !< return value for stress if terminallyIll
ODD_JACOBIAN = 1e50_pReal !< return value for jacobian if terminallyIll
@ -204,12 +196,11 @@ subroutine CPFEM_general(mode, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyS
CPFEM_dcsde(1:6,1:6,ip,elCP) = ODD_JACOBIAN * math_eye(6)
else validCalculation
updateJaco = mod(cycleCounter,num%iJacoStiffness) == 0
FEsolving_execElem = elCP
FEsolving_execIP = ip
if (debugCPFEM%extensive) &
print'(a,i8,1x,i2)', '<< CPFEM >> calculation for elFE ip ',elFE,ip
call materialpoint_stressAndItsTangent(updateJaco, dt)
call materialpoint_stressAndItsTangent(dt)
terminalIllness: if (terminallyIll) then

View File

@ -61,13 +61,13 @@ void signalusr2_c(void (*handler)(int)){
void inflate_c(const uLong *s_deflated, const uLong *s_inflated, const Byte deflated[], Byte inflated[]){
/* make writable copy, uncompress will write to it */
uLong s_inflated_;
uLong s_inflated_,i;
s_inflated_ = *s_inflated;
if(uncompress((Bytef *)inflated, &s_inflated_, (Bytef *)deflated, *s_deflated) == Z_OK)
return;
else{
for(uLong i=0;i<*s_inflated;i++){
for(i=0;i<*s_inflated;i++){
inflated[i] = 0;
}
}

View File

@ -82,7 +82,7 @@ subroutine DAMASK_interface_init
print'(/,a)', ' <<<+- DAMASK_interface init -+>>>'
open(OUTPUT_unit, encoding='UTF-8') ! for special characters in output
if(worldrank == 0) open(OUTPUT_UNIT, encoding='UTF-8') ! for special characters in output
! http://patorjk.com/software/taag/#p=display&f=Lean&t=DAMASK%203
#ifdef DEBUG

View File

@ -427,20 +427,20 @@ subroutine IO_error(error_ID,el,ip,g,instance,ext_msg)
case (146)
msg = 'number of values does not match'
case (148)
msg = 'Nconstituents mismatch between homogenization and microstructure'
msg = 'Nconstituents mismatch between homogenization and material'
!--------------------------------------------------------------------------------------------------
! material error messages and related messages in mesh
case (150)
msg = 'index out of bounds'
case (151)
msg = 'microstructure has no constituents'
msg = 'material has no constituents'
case (153)
msg = 'sum of phase fractions differs from 1'
case (155)
msg = 'microstructure index out of bounds'
msg = 'material index out of bounds'
case (180)
msg = 'missing/invalid microstructure definition via State Variable 2'
msg = 'missing/invalid material definition via State Variable 2'
case (190)
msg = 'unknown element type:'
case (191)
@ -526,7 +526,7 @@ subroutine IO_error(error_ID,el,ip,g,instance,ext_msg)
case (842)
msg = 'incomplete information in grid mesh header'
case (843)
msg = 'microstructure count mismatch'
msg = 'material count mismatch'
case (844)
msg = 'invalid VTR file'
case (846)

View File

@ -17,18 +17,18 @@ submodule(constitutive:constitutive_plastic) plastic_disloTungsten
D_0 = 1.0_pReal, & !< prefactor for self-diffusion coefficient
Q_cl = 1.0_pReal !< activation energy for dislocation climb
real(pReal), allocatable, dimension(:) :: &
b_sl, & !< magnitude of burgers vector [m]
b_sl, & !< magnitude of Burgers vector [m]
D_a, &
i_sl, & !< Adj. parameter for distance between 2 forest dislocations
atomicVolume, & !< factor to calculate atomic volume
tau_0, & !< Peierls stress
f_at, & !< factor to calculate atomic volume
tau_Peierls, & !< Peierls stress
!* mobility law parameters
delta_F, & !< activation energy for glide [J]
v0, & !< dislocation velocity prefactor [m/s]
Q_s, & !< activation energy for glide [J]
v_0, & !< dislocation velocity prefactor [m/s]
p, & !< p-exponent in glide velocity
q, & !< q-exponent in glide velocity
B, & !< friction coefficient
kink_height, & !< height of the kink pair
h, & !< height of the kink pair
w, & !< width of the kink pair
omega !< attempt frequency for kink pair nucleation
real(pReal), allocatable, dimension(:,:) :: &
@ -142,7 +142,7 @@ module function plastic_disloTungsten_init() result(myPlasticity)
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
if(trim(phase%get_asString('lattice')) == 'bcc') then
a = pl%get_asFloats('nonSchmid_coefficients',defaultVal = emptyRealArray)
a = pl%get_asFloats('a_nonSchmid',defaultVal = emptyRealArray)
prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1)
prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1)
else
@ -158,17 +158,17 @@ module function plastic_disloTungsten_init() result(myPlasticity)
rho_mob_0 = pl%get_asFloats('rho_mob_0', requiredSize=size(N_sl))
rho_dip_0 = pl%get_asFloats('rho_dip_0', requiredSize=size(N_sl))
prm%v0 = pl%get_asFloats('v_0', requiredSize=size(N_sl))
prm%v_0 = pl%get_asFloats('v_0', requiredSize=size(N_sl))
prm%b_sl = pl%get_asFloats('b_sl', requiredSize=size(N_sl))
prm%delta_F = pl%get_asFloats('Q_s', requiredSize=size(N_sl))
prm%Q_s = pl%get_asFloats('Q_s', requiredSize=size(N_sl))
prm%i_sl = pl%get_asFloats('i_sl', requiredSize=size(N_sl))
prm%tau_0 = pl%get_asFloats('tau_peierls', requiredSize=size(N_sl))
prm%tau_Peierls = pl%get_asFloats('tau_Peierls', requiredSize=size(N_sl))
prm%p = pl%get_asFloats('p_sl', requiredSize=size(N_sl), &
defaultVal=[(1.0_pReal,i=1,size(N_sl))])
prm%q = pl%get_asFloats('q_sl', requiredSize=size(N_sl), &
defaultVal=[(1.0_pReal,i=1,size(N_sl))])
prm%kink_height = pl%get_asFloats('h', requiredSize=size(N_sl))
prm%h = pl%get_asFloats('h', requiredSize=size(N_sl))
prm%w = pl%get_asFloats('w', requiredSize=size(N_sl))
prm%omega = pl%get_asFloats('omega', requiredSize=size(N_sl))
prm%B = pl%get_asFloats('B', requiredSize=size(N_sl))
@ -176,7 +176,7 @@ module function plastic_disloTungsten_init() result(myPlasticity)
prm%D = pl%get_asFloat('D')
prm%D_0 = pl%get_asFloat('D_0')
prm%Q_cl = pl%get_asFloat('Q_cl')
prm%atomicVolume = pl%get_asFloat('f_at') * prm%b_sl**3.0_pReal
prm%f_at = pl%get_asFloat('f_at') * prm%b_sl**3.0_pReal
prm%D_a = pl%get_asFloat('D_a') * prm%b_sl
prm%dipoleformation = pl%get_asBool('dipole_formation_factor', defaultVal = .true.)
@ -186,16 +186,16 @@ module function plastic_disloTungsten_init() result(myPlasticity)
rho_dip_0 = math_expand(rho_dip_0, N_sl)
prm%q = math_expand(prm%q, N_sl)
prm%p = math_expand(prm%p, N_sl)
prm%delta_F = math_expand(prm%delta_F, N_sl)
prm%Q_s = math_expand(prm%Q_s, N_sl)
prm%b_sl = math_expand(prm%b_sl, N_sl)
prm%kink_height = math_expand(prm%kink_height, N_sl)
prm%h = math_expand(prm%h, N_sl)
prm%w = math_expand(prm%w, N_sl)
prm%omega = math_expand(prm%omega, N_sl)
prm%tau_0 = math_expand(prm%tau_0, N_sl)
prm%v0 = math_expand(prm%v0, N_sl)
prm%tau_Peierls = math_expand(prm%tau_Peierls, N_sl)
prm%v_0 = math_expand(prm%v_0, N_sl)
prm%B = math_expand(prm%B, N_sl)
prm%i_sl = math_expand(prm%i_sl, N_sl)
prm%atomicVolume = math_expand(prm%atomicVolume, N_sl)
prm%f_at = math_expand(prm%f_at, N_sl)
prm%D_a = math_expand(prm%D_a, N_sl)
! sanity checks
@ -203,17 +203,17 @@ module function plastic_disloTungsten_init() result(myPlasticity)
if ( prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0'
if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0'
if (any(prm%v_0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0'
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%delta_F <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s'
if (any(prm%tau_0 < 0.0_pReal)) extmsg = trim(extmsg)//' tau_peierls'
if (any(prm%Q_s <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s'
if (any(prm%tau_Peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_Peierls'
if (any(prm%D_a <= 0.0_pReal)) extmsg = trim(extmsg)//' D_a or b_sl'
if (any(prm%atomicVolume <= 0.0_pReal)) extmsg = trim(extmsg)//' f_at or b_sl'
if (any(prm%f_at <= 0.0_pReal)) extmsg = trim(extmsg)//' f_at or b_sl'
else slipActive
rho_mob_0= emptyRealArray; rho_dip_0 = emptyRealArray
allocate(prm%b_sl,prm%D_a,prm%i_sl,prm%atomicVolume,prm%tau_0, &
prm%delta_F,prm%v0,prm%p,prm%q,prm%B,prm%kink_height,prm%w,prm%omega, &
allocate(prm%b_sl,prm%D_a,prm%i_sl,prm%f_at,prm%tau_Peierls, &
prm%Q_s,prm%v_0,prm%p,prm%q,prm%B,prm%h,prm%w,prm%omega, &
source = emptyRealArray)
allocate(prm%forestProjection(0,0))
allocate(prm%h_sl_sl (0,0))
@ -354,7 +354,7 @@ module subroutine plastic_disloTungsten_dotState(Mp,T,instance,of)
dot_rho_dip_formation = merge(2.0_pReal*dip_distance* stt%rho_mob(:,of)*abs(dot%gamma_sl(:,of))/prm%b_sl, & ! ToDo: ignore region of spontaneous annihilation
0.0_pReal, &
prm%dipoleformation)
v_cl = (3.0_pReal*prm%mu*VacancyDiffusion*prm%atomicVolume/(2.0_pReal*pi*kB*T)) &
v_cl = (3.0_pReal*prm%mu*VacancyDiffusion*prm%f_at/(2.0_pReal*pi*kB*T)) &
* (1.0_pReal/(dip_distance+prm%D_a))
dot_rho_dip_climb = (4.0_pReal*v_cl*stt%rho_dip(:,of))/(dip_distance-prm%D_a) ! ToDo: Discuss with Franz: Stress dependency?
end where
@ -477,12 +477,12 @@ pure subroutine kinetics(Mp,T,instance,of, &
if (present(tau_pos_out)) tau_pos_out = tau_pos
if (present(tau_neg_out)) tau_neg_out = tau_neg
associate(BoltzmannRatio => prm%delta_F/(kB*T), &
dot_gamma_0 => stt%rho_mob(:,of)*prm%b_sl*prm%v0, &
associate(BoltzmannRatio => prm%Q_s/(kB*T), &
dot_gamma_0 => stt%rho_mob(:,of)*prm%b_sl*prm%v_0, &
effectiveLength => dst%Lambda_sl(:,of) - prm%w)
significantPositiveTau: where(abs(tau_pos)-dst%threshold_stress(:,of) > tol_math_check)
StressRatio = (abs(tau_pos)-dst%threshold_stress(:,of))/prm%tau_0
StressRatio = (abs(tau_pos)-dst%threshold_stress(:,of))/prm%tau_Peierls
StressRatio_p = StressRatio** prm%p
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
needsGoodName = exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)
@ -490,7 +490,7 @@ pure subroutine kinetics(Mp,T,instance,of, &
t_n = prm%b_sl/(needsGoodName*prm%omega*effectiveLength)
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos)
vel = prm%kink_height/(t_n + t_k)
vel = prm%h/(t_n + t_k)
dot_gamma_pos = dot_gamma_0 * sign(vel,tau_pos) * 0.5_pReal
else where significantPositiveTau
@ -500,10 +500,10 @@ pure subroutine kinetics(Mp,T,instance,of, &
if (present(ddot_gamma_dtau_pos)) then
significantPositiveTau2: where(abs(tau_pos)-dst%threshold_stress(:,of) > tol_math_check)
dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) &
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_0
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls
dtk = -1.0_pReal * t_k / tau_pos
dvel = -1.0_pReal * prm%kink_height * (dtk + dtn) / (t_n + t_k)**2.0_pReal
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2.0_pReal
ddot_gamma_dtau_pos = dot_gamma_0 * dvel* 0.5_pReal
else where significantPositiveTau2
@ -512,7 +512,7 @@ pure subroutine kinetics(Mp,T,instance,of, &
endif
significantNegativeTau: where(abs(tau_neg)-dst%threshold_stress(:,of) > tol_math_check)
StressRatio = (abs(tau_neg)-dst%threshold_stress(:,of))/prm%tau_0
StressRatio = (abs(tau_neg)-dst%threshold_stress(:,of))/prm%tau_Peierls
StressRatio_p = StressRatio** prm%p
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
needsGoodName = exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q)
@ -520,7 +520,7 @@ pure subroutine kinetics(Mp,T,instance,of, &
t_n = prm%b_sl/(needsGoodName*prm%omega*effectiveLength)
t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos)
vel = prm%kink_height/(t_n + t_k)
vel = prm%h/(t_n + t_k)
dot_gamma_neg = dot_gamma_0 * sign(vel,tau_neg) * 0.5_pReal
else where significantNegativeTau
@ -530,10 +530,10 @@ pure subroutine kinetics(Mp,T,instance,of, &
if (present(ddot_gamma_dtau_neg)) then
significantNegativeTau2: where(abs(tau_neg)-dst%threshold_stress(:,of) > tol_math_check)
dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) &
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_0
* (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_Peierls
dtk = -1.0_pReal * t_k / tau_neg
dvel = -1.0_pReal * prm%kink_height * (dtk + dtn) / (t_n + t_k)**2.0_pReal
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2.0_pReal
ddot_gamma_dtau_neg = dot_gamma_0 * dvel * 0.5_pReal
else where significantNegativeTau2

View File

@ -16,38 +16,38 @@ submodule(constitutive:constitutive_plastic) plastic_dislotwin
real(pReal) :: &
mu = 1.0_pReal, & !< equivalent shear modulus
nu = 1.0_pReal, & !< equivalent shear Poisson's ratio
D0 = 1.0_pReal, & !< prefactor for self-diffusion coefficient
Qsd = 1.0_pReal, & !< activation energy for dislocation climb
D_0 = 1.0_pReal, & !< prefactor for self-diffusion coefficient
Q_cl = 1.0_pReal, & !< activation energy for dislocation climb
omega = 1.0_pReal, & !< frequency factor for dislocation climb
D = 1.0_pReal, & !< grain size
p_sb = 1.0_pReal, & !< p-exponent in shear band velocity
q_sb = 1.0_pReal, & !< q-exponent in shear band velocity
CEdgeDipMinDistance = 1.0_pReal, & !< adjustment parameter to calculate minimum dipole distance
D_a = 1.0_pReal, & !< adjustment parameter to calculate minimum dipole distance
i_tw = 1.0_pReal, & !< adjustment parameter to calculate MFP for twinning
tau_0 = 1.0_pReal, & !< strength due to elements in solid solution
L_tw = 1.0_pReal, & !< Length of twin nuclei in Burgers vectors
L_tr = 1.0_pReal, & !< Length of trans nuclei in Burgers vectors
xc_twin = 1.0_pReal, & !< critical distance for formation of twin nucleus
xc_trans = 1.0_pReal, & !< critical distance for formation of trans nucleus
x_c_tw = 1.0_pReal, & !< critical distance for formation of twin nucleus
x_c_tr = 1.0_pReal, & !< critical distance for formation of trans nucleus
V_cs = 1.0_pReal, & !< cross slip volume
sbResistance = 1.0_pReal, & !< value for shearband resistance
sbVelocity = 1.0_pReal, & !< value for shearband velocity_0
xi_sb = 1.0_pReal, & !< value for shearband resistance
v_sb = 1.0_pReal, & !< value for shearband velocity_0
E_sb = 1.0_pReal, & !< activation energy for shear bands
SFE_0K = 1.0_pReal, & !< stacking fault energy at zero K
dSFE_dT = 1.0_pReal, & !< temperature dependence of stacking fault energy
gamma_fcc_hex = 1.0_pReal, & !< Free energy difference between austensite and martensite
Gamma_sf_0K = 1.0_pReal, & !< stacking fault energy at zero K
dGamma_sf_dT = 1.0_pReal, & !< temperature dependence of stacking fault energy
delta_G = 1.0_pReal, & !< Free energy difference between austensite and martensite
i_tr = 1.0_pReal, & !< adjustment parameter to calculate MFP for transformation
h = 1.0_pReal !< Stack height of hex nucleus
real(pReal), allocatable, dimension(:) :: &
b_sl, & !< absolute length of burgers vector [m] for each slip system
b_tw, & !< absolute length of burgers vector [m] for each twin system
b_tr, & !< absolute length of burgers vector [m] for each transformation system
Delta_F,& !< activation energy for glide [J] for each slip system
v0, & !< dislocation velocity prefactor [m/s] for each slip system
b_sl, & !< absolute length of Burgers vector [m] for each slip system
b_tw, & !< absolute length of Burgers vector [m] for each twin system
b_tr, & !< absolute length of Burgers vector [m] for each transformation system
Q_s,& !< activation energy for glide [J] for each slip system
v_0, & !< dislocation velocity prefactor [m/s] for each slip system
dot_N_0_tw, & !< twin nucleation rate [1/m³s] for each twin system
dot_N_0_tr, & !< trans nucleation rate [1/m³s] for each trans system
t_tw, & !< twin thickness [m] for each twin system
CLambdaSlip, & !< Adj. parameter for distance between 2 forest dislocations for each slip system
i_sl, & !< Adj. parameter for distance between 2 forest dislocations for each slip system
t_tr, & !< martensite lamellar thickness [m] for each trans system and instance
p, & !< p-exponent in glide velocity
q, & !< q-exponent in glide velocity
@ -209,23 +209,23 @@ module function plastic_dislotwin_init() result(myPlasticity)
rho_mob_0 = pl%get_asFloats('rho_mob_0', requiredSize=size(N_sl))
rho_dip_0 = pl%get_asFloats('rho_dip_0', requiredSize=size(N_sl))
prm%v0 = pl%get_asFloats('v_0', requiredSize=size(N_sl))
prm%b_sl = pl%get_asFloats('b_sl', requiredSize=size(N_sl))
prm%Delta_F = pl%get_asFloats('Q_s', requiredSize=size(N_sl))
prm%CLambdaSlip = pl%get_asFloats('i_sl', requiredSize=size(N_sl))
prm%p = pl%get_asFloats('p_sl', requiredSize=size(N_sl))
prm%q = pl%get_asFloats('q_sl', requiredSize=size(N_sl))
prm%B = pl%get_asFloats('B', requiredSize=size(N_sl), &
prm%v_0 = pl%get_asFloats('v_0', requiredSize=size(N_sl))
prm%b_sl = pl%get_asFloats('b_sl', requiredSize=size(N_sl))
prm%Q_s = pl%get_asFloats('Q_s', requiredSize=size(N_sl))
prm%i_sl = pl%get_asFloats('i_sl', requiredSize=size(N_sl))
prm%p = pl%get_asFloats('p_sl', requiredSize=size(N_sl))
prm%q = pl%get_asFloats('q_sl', requiredSize=size(N_sl))
prm%B = pl%get_asFloats('B', requiredSize=size(N_sl), &
defaultVal=[(0.0_pReal, i=1,size(N_sl))])
prm%tau_0 = pl%get_asFloat('tau_0')
prm%CEdgeDipMinDistance = pl%get_asFloat('D_a')
prm%D0 = pl%get_asFloat('D_0')
prm%Qsd = pl%get_asFloat('Q_cl')
prm%D_a = pl%get_asFloat('D_a')
prm%D_0 = pl%get_asFloat('D_0')
prm%Q_cl = pl%get_asFloat('Q_cl')
prm%ExtendedDislocations = pl%get_asBool('extend_dislocations',defaultVal = .false.)
if (prm%ExtendedDislocations) then
prm%SFE_0K = pl%get_asFloat('Gamma_sf_0K')
prm%dSFE_dT = pl%get_asFloat('dGamma_sf_dT')
prm%Gamma_sf_0K = pl%get_asFloat('Gamma_sf_0K')
prm%dGamma_sf_dT = pl%get_asFloat('dGamma_sf_dT')
endif
prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation',defaultVal = .false.)
@ -238,29 +238,29 @@ module function plastic_dislotwin_init() result(myPlasticity)
! expand: family => system
rho_mob_0 = math_expand(rho_mob_0, N_sl)
rho_dip_0 = math_expand(rho_dip_0, N_sl)
prm%v0 = math_expand(prm%v0, N_sl)
prm%v_0 = math_expand(prm%v_0, N_sl)
prm%b_sl = math_expand(prm%b_sl, N_sl)
prm%Delta_F = math_expand(prm%Delta_F, N_sl)
prm%CLambdaSlip = math_expand(prm%CLambdaSlip, N_sl)
prm%Q_s = math_expand(prm%Q_s, N_sl)
prm%i_sl = math_expand(prm%i_sl, N_sl)
prm%p = math_expand(prm%p, N_sl)
prm%q = math_expand(prm%q, N_sl)
prm%B = math_expand(prm%B, N_sl)
! sanity checks
if ( prm%D0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0'
if ( prm%Qsd <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0'
if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0'
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%Delta_F <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s'
if (any(prm%CLambdaSlip <= 0.0_pReal)) extmsg = trim(extmsg)//' i_sl'
if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p_sl'
if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q_sl'
if ( prm%D_0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0'
if ( prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0'
if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
if (any(prm%v_0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0'
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%Q_s <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s'
if (any(prm%i_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' i_sl'
if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p_sl'
if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q_sl'
else slipActive
rho_mob_0 = emptyRealArray; rho_dip_0 = emptyRealArray
allocate(prm%b_sl,prm%Delta_F,prm%v0,prm%CLambdaSlip,prm%p,prm%q,prm%B,source=emptyRealArray)
allocate(prm%b_sl,prm%Q_s,prm%v_0,prm%i_sl,prm%p,prm%q,prm%B,source=emptyRealArray)
allocate(prm%forestProjection(0,0),prm%h_sl_sl(0,0))
endif slipActive
@ -279,7 +279,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%t_tw = pl%get_asFloats('t_tw', requiredSize=size(N_tw))
prm%r = pl%get_asFloats('p_tw', requiredSize=size(N_tw))
prm%xc_twin = pl%get_asFloat('x_c_tw')
prm%x_c_tw = pl%get_asFloat('x_c_tw')
prm%L_tw = pl%get_asFloat('L_tw')
prm%i_tw = pl%get_asFloat('i_tw')
@ -300,7 +300,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%r = math_expand(prm%r,N_tw)
! sanity checks
if ( prm%xc_twin < 0.0_pReal) extmsg = trim(extmsg)//' x_c_twin'
if ( prm%x_c_tw < 0.0_pReal) extmsg = trim(extmsg)//' x_c_twin'
if ( prm%L_tw < 0.0_pReal) extmsg = trim(extmsg)//' L_tw'
if ( prm%i_tw < 0.0_pReal) extmsg = trim(extmsg)//' i_tw'
if (any(prm%b_tw < 0.0_pReal)) extmsg = trim(extmsg)//' b_tw'
@ -324,8 +324,8 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%h = pl%get_asFloat('h', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%i_tr = pl%get_asFloat('i_tr', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%gamma_fcc_hex = pl%get_asFloat('delta_G')
prm%xc_trans = pl%get_asFloat('x_c_tr', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%delta_G = pl%get_asFloat('delta_G')
prm%x_c_tr = pl%get_asFloat('x_c_tr', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%L_tr = pl%get_asFloat('L_tr')
prm%h_tr_tr = lattice_interaction_TransByTrans(N_tr,pl%get_asFloats('h_tr_tr'), &
@ -351,7 +351,7 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%s = math_expand(prm%s,N_tr)
! sanity checks
if ( prm%xc_trans < 0.0_pReal) extmsg = trim(extmsg)//' x_c_trans'
if ( prm%x_c_tr < 0.0_pReal) extmsg = trim(extmsg)//' x_c_trans'
if ( prm%L_tr < 0.0_pReal) extmsg = trim(extmsg)//' L_tr'
if ( prm%i_tr < 0.0_pReal) extmsg = trim(extmsg)//' i_tr'
if (any(prm%t_tr < 0.0_pReal)) extmsg = trim(extmsg)//' t_tr'
@ -366,15 +366,15 @@ module function plastic_dislotwin_init() result(myPlasticity)
!--------------------------------------------------------------------------------------------------
! shearband related parameters
prm%sbVelocity = pl%get_asFloat('v_sb',defaultVal=0.0_pReal)
if (prm%sbVelocity > 0.0_pReal) then
prm%sbResistance = pl%get_asFloat('xi_sb')
prm%v_sb = pl%get_asFloat('v_sb',defaultVal=0.0_pReal)
if (prm%v_sb > 0.0_pReal) then
prm%xi_sb = pl%get_asFloat('xi_sb')
prm%E_sb = pl%get_asFloat('Q_sb')
prm%p_sb = pl%get_asFloat('p_sb')
prm%q_sb = pl%get_asFloat('q_sb')
! sanity checks
if (prm%sbResistance < 0.0_pReal) extmsg = trim(extmsg)//' xi_sb'
if (prm%xi_sb < 0.0_pReal) extmsg = trim(extmsg)//' xi_sb'
if (prm%E_sb < 0.0_pReal) extmsg = trim(extmsg)//' Q_sb'
if (prm%p_sb <= 0.0_pReal) extmsg = trim(extmsg)//' p_sb'
if (prm%q_sb <= 0.0_pReal) extmsg = trim(extmsg)//' q_sb'
@ -386,8 +386,8 @@ module function plastic_dislotwin_init() result(myPlasticity)
prm%D = pl%get_asFloat('D')
twinOrSlipActive: if (prm%sum_N_tw + prm%sum_N_tr > 0) then
prm%SFE_0K = pl%get_asFloat('Gamma_sf_0K')
prm%dSFE_dT = pl%get_asFloat('dGamma_sf_dT')
prm%Gamma_sf_0K = pl%get_asFloat('Gamma_sf_0K')
prm%dGamma_sf_dT = pl%get_asFloat('dGamma_sf_dT')
prm%V_cs = pl%get_asFloat('V_cs')
endif twinOrSlipActive
@ -602,7 +602,7 @@ module subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
Lp = Lp * f_unrotated
dLp_dMp = dLp_dMp * f_unrotated
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
shearBandingContribution: if(dNeq0(prm%v_sb)) then
BoltzmannRatio = prm%E_sb/(kB*T)
call math_eigh33(eigValues,eigVectors,Mp) ! is Mp symmetric by design?
@ -613,10 +613,10 @@ module subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
tau = math_tensordot(Mp,P_sb)
significantShearBandStress: if (abs(tau) > tol_math_check) then
StressRatio_p = (abs(tau)/prm%sbResistance)**prm%p_sb
dot_gamma_sb = sign(prm%sbVelocity*exp(-BoltzmannRatio*(1-StressRatio_p)**prm%q_sb), tau)
ddot_gamma_dtau = abs(dot_gamma_sb)*BoltzmannRatio* prm%p_sb*prm%q_sb/ prm%sbResistance &
* (abs(tau)/prm%sbResistance)**(prm%p_sb-1.0_pReal) &
StressRatio_p = (abs(tau)/prm%xi_sb)**prm%p_sb
dot_gamma_sb = sign(prm%v_sb*exp(-BoltzmannRatio*(1-StressRatio_p)**prm%q_sb), tau)
ddot_gamma_dtau = abs(dot_gamma_sb)*BoltzmannRatio* prm%p_sb*prm%q_sb/ prm%xi_sb &
* (abs(tau)/prm%xi_sb)**(prm%p_sb-1.0_pReal) &
* (1.0_pReal-StressRatio_p)**(prm%q_sb-1.0_pReal)
Lp = Lp + dot_gamma_sb * P_sb
@ -654,7 +654,7 @@ module subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
Gamma, & !< stacking fault energy
tau, &
sigma_cl, & !< climb stress
b_d !< ratio of burgers vector to stacking fault width
b_d !< ratio of Burgers vector to stacking fault width
real(pReal), dimension(param(instance)%sum_N_sl) :: &
dot_rho_dip_formation, &
dot_rho_dip_climb, &
@ -675,7 +675,7 @@ module subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
call kinetics_slip(Mp,T,instance,of,dot_gamma_sl)
dot%gamma_sl(:,of) = abs(dot_gamma_sl)
rho_dip_distance_min = prm%CEdgeDipMinDistance*prm%b_sl
rho_dip_distance_min = prm%D_a*prm%b_sl
slipState: do i = 1, prm%sum_N_sl
tau = math_tensordot(Mp,prm%P_sl(1:3,1:3,i))
@ -701,12 +701,12 @@ module subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
!@details: Refer: Argon & Moffat, Acta Metallurgica, Vol. 29, pg 293 to 299, 1981
sigma_cl = dot_product(prm%n0_sl(1:3,i),matmul(Mp,prm%n0_sl(1:3,i)))
if (prm%ExtendedDislocations) then
Gamma = prm%SFE_0K + prm%dSFE_dT * T
Gamma = prm%Gamma_sf_0K + prm%dGamma_sf_dT * T
b_d = 24.0_pReal*PI*(1.0_pReal - prm%nu)/(2.0_pReal + prm%nu)* Gamma/(prm%mu*prm%b_sl(i))
else
b_d = 1.0_pReal
endif
v_cl = 2.0_pReal*prm%omega*b_d**2.0_pReal*exp(-prm%Qsd/(kB*T)) &
v_cl = 2.0_pReal*prm%omega*b_d**2.0_pReal*exp(-prm%Q_cl/(kB*T)) &
* (exp(abs(sigma_cl)*prm%b_sl(i)**3.0_pReal/(kB*T)) - 1.0_pReal)
dot_rho_dip_climb(i) = 4.0_pReal*v_cl*stt%rho_dip(i,of) &
@ -768,7 +768,7 @@ module subroutine plastic_dislotwin_dependentState(T,instance,of)
sumf_twin = sum(stt%f_tw(1:prm%sum_N_tw,of))
sumf_trans = sum(stt%f_tr(1:prm%sum_N_tr,of))
Gamma = prm%SFE_0K + prm%dSFE_dT * T
Gamma = prm%Gamma_sf_0K + prm%dGamma_sf_dT * T
!* rescaled volume fraction for topology
f_over_t_tw = stt%f_tw(1:prm%sum_N_tw,of)/prm%t_tw ! this is per system ...
@ -776,7 +776,7 @@ module subroutine plastic_dislotwin_dependentState(T,instance,of)
! ToDo ...Physically correct, but naming could be adjusted
inv_lambda_sl_sl = sqrt(matmul(prm%forestProjection, &
stt%rho_mob(:,of)+stt%rho_dip(:,of)))/prm%CLambdaSlip
stt%rho_mob(:,of)+stt%rho_dip(:,of)))/prm%i_sl
if (prm%sum_N_tw > 0 .and. prm%sum_N_sl > 0) &
inv_lambda_sl_tw = matmul(prm%h_sl_tw,f_over_t_tw)/(1.0_pReal-sumf_twin)
@ -805,21 +805,21 @@ module subroutine plastic_dislotwin_dependentState(T,instance,of)
!* threshold stress for growing twin/martensite
if(prm%sum_N_tw == prm%sum_N_sl) &
dst%tau_hat_tw(:,of) = Gamma/(3.0_pReal*prm%b_tw) &
+ 3.0_pReal*prm%b_tw*prm%mu/(prm%L_tw*prm%b_sl) ! slip burgers here correct?
+ 3.0_pReal*prm%b_tw*prm%mu/(prm%L_tw*prm%b_sl) ! slip Burgers here correct?
if(prm%sum_N_tr == prm%sum_N_sl) &
dst%tau_hat_tr(:,of) = Gamma/(3.0_pReal*prm%b_tr) &
+ 3.0_pReal*prm%b_tr*prm%mu/(prm%L_tr*prm%b_sl) & ! slip burgers here correct?
+ prm%h*prm%gamma_fcc_hex/ (3.0_pReal*prm%b_tr)
+ 3.0_pReal*prm%b_tr*prm%mu/(prm%L_tr*prm%b_sl) & ! slip Burgers here correct?
+ prm%h*prm%delta_G/ (3.0_pReal*prm%b_tr)
dst%V_tw(:,of) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,of)**2.0_pReal
dst%V_tr(:,of) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,of)**2.0_pReal
x0 = prm%mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip and is the same for twin and trans
dst%tau_r_tw(:,of) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
x0 = prm%mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip and is the same for twin and trans
dst%tau_r_tw(:,of) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(pi/3.0_pReal)/x0)
x0 = prm%mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip
dst%tau_r_tr(:,of) = prm%mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
x0 = prm%mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the Burgers vector for slip
dst%tau_r_tr(:,of) = prm%mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(pi/3.0_pReal)/x0)
end associate
@ -927,8 +927,8 @@ pure subroutine kinetics_slip(Mp,T,instance,of, &
significantStress: where(tau_eff > tol_math_check)
stressRatio = tau_eff/prm%tau_0
StressRatio_p = stressRatio** prm%p
BoltzmannRatio = prm%Delta_F/(kB*T)
v_wait_inverse = prm%v0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q)
BoltzmannRatio = prm%Q_s/(kB*T)
v_wait_inverse = prm%v_0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q)
v_run_inverse = prm%B/(tau_eff*prm%b_sl)
dot_gamma_sl = sign(stt%rho_mob(:,of)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau)

View File

@ -14,7 +14,7 @@ submodule(constitutive:constitutive_plastic) plastic_isotropic
M, & !< Taylor factor
dot_gamma_0, & !< reference strain rate
n, & !< stress exponent
h0, &
h_0, &
h_ln, &
xi_inf, & !< maximum critical stress
a, &
@ -109,7 +109,7 @@ module function plastic_isotropic_init() result(myPlasticity)
prm%xi_inf = pl%get_asFloat('xi_inf')
prm%dot_gamma_0 = pl%get_asFloat('dot_gamma_0')
prm%n = pl%get_asFloat('n')
prm%h0 = pl%get_asFloat('h_0')
prm%h_0 = pl%get_asFloat('h_0')
prm%M = pl%get_asFloat('M')
prm%h_ln = pl%get_asFloat('h_ln', defaultVal=0.0_pReal)
prm%c_1 = pl%get_asFloat('c_1', defaultVal=0.0_pReal)
@ -310,7 +310,7 @@ module subroutine plastic_isotropic_dotState(Mp,instance,of)
/ prm%c_4 * (dot_gamma / prm%dot_gamma_0)**(1.0_pReal / prm%n)
endif
dot%xi(of) = dot_gamma &
* ( prm%h0 + prm%h_ln * log(dot_gamma) ) &
* ( prm%h_0 + prm%h_ln * log(dot_gamma) ) &
* abs( 1.0_pReal - stt%xi(of)/xi_inf_star )**prm%a &
* sign(1.0_pReal, 1.0_pReal - stt%xi(of)/xi_inf_star)
else

View File

@ -9,15 +9,15 @@ submodule(constitutive:constitutive_plastic) plastic_kinehardening
type :: tParameters
real(pReal) :: &
gdot0 = 1.0_pReal, & !< reference shear strain rate for slip
n = 1.0_pReal !< stress exponent for slip
n = 1.0_pReal, & !< stress exponent for slip
dot_gamma_0 = 1.0_pReal !< reference shear strain rate for slip
real(pReal), allocatable, dimension(:) :: &
theta0, & !< initial hardening rate of forward stress for each slip
theta1, & !< asymptotic hardening rate of forward stress for each slip
theta0_b, & !< initial hardening rate of back stress for each slip
theta1_b, & !< asymptotic hardening rate of back stress for each slip
tau1, &
tau1_b
h_0_f, & !< initial hardening rate of forward stress for each slip
h_inf_f, & !< asymptotic hardening rate of forward stress for each slip
h_0_b, & !< initial hardening rate of back stress for each slip
h_inf_b, & !< asymptotic hardening rate of back stress for each slip
xi_inf_f, &
xi_inf_b
real(pReal), allocatable, dimension(:,:) :: &
interaction_slipslip !< slip resistance from slip activity
real(pReal), allocatable, dimension(:,:,:) :: &
@ -125,7 +125,7 @@ module function plastic_kinehardening_init() result(myPlasticity)
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
if(trim(phase%get_asString('lattice')) == 'bcc') then
a = pl%get_asFloats('nonSchmid_coefficients',defaultVal = emptyRealArray)
a = pl%get_asFloats('a_nonSchmid',defaultVal = emptyRealArray)
if(size(a) > 0) prm%nonSchmidActive = .true.
prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1)
prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1)
@ -137,38 +137,38 @@ module function plastic_kinehardening_init() result(myPlasticity)
pl%get_asFloats('h_sl_sl'), &
phase%get_asString('lattice'))
xi_0 = pl%get_asFloats('xi_0', requiredSize=size(N_sl))
prm%tau1 = pl%get_asFloats('xi_inf_f', requiredSize=size(N_sl))
prm%tau1_b = pl%get_asFloats('xi_inf_b', requiredSize=size(N_sl))
prm%theta0 = pl%get_asFloats('h_0_f', requiredSize=size(N_sl))
prm%theta1 = pl%get_asFloats('h_inf_f', requiredSize=size(N_sl))
prm%theta0_b = pl%get_asFloats('h_0_b', requiredSize=size(N_sl))
prm%theta1_b = pl%get_asFloats('h_inf_b', requiredSize=size(N_sl))
xi_0 = pl%get_asFloats('xi_0', requiredSize=size(N_sl))
prm%xi_inf_f = pl%get_asFloats('xi_inf_f', requiredSize=size(N_sl))
prm%xi_inf_b = pl%get_asFloats('xi_inf_b', requiredSize=size(N_sl))
prm%h_0_f = pl%get_asFloats('h_0_f', requiredSize=size(N_sl))
prm%h_inf_f = pl%get_asFloats('h_inf_f', requiredSize=size(N_sl))
prm%h_0_b = pl%get_asFloats('h_0_b', requiredSize=size(N_sl))
prm%h_inf_b = pl%get_asFloats('h_inf_b', requiredSize=size(N_sl))
prm%gdot0 = pl%get_asFloat('dot_gamma_0')
prm%n = pl%get_asFloat('n')
prm%dot_gamma_0 = pl%get_asFloat('dot_gamma_0')
prm%n = pl%get_asFloat('n')
! expand: family => system
xi_0 = math_expand(xi_0, N_sl)
prm%tau1 = math_expand(prm%tau1, N_sl)
prm%tau1_b = math_expand(prm%tau1_b, N_sl)
prm%theta0 = math_expand(prm%theta0, N_sl)
prm%theta1 = math_expand(prm%theta1, N_sl)
prm%theta0_b = math_expand(prm%theta0_b,N_sl)
prm%theta1_b = math_expand(prm%theta1_b,N_sl)
xi_0 = math_expand(xi_0, N_sl)
prm%xi_inf_f = math_expand(prm%xi_inf_f, N_sl)
prm%xi_inf_b = math_expand(prm%xi_inf_b, N_sl)
prm%h_0_f = math_expand(prm%h_0_f, N_sl)
prm%h_inf_f = math_expand(prm%h_inf_f, N_sl)
prm%h_0_b = math_expand(prm%h_0_b, N_sl)
prm%h_inf_b = math_expand(prm%h_inf_b, N_sl)
!--------------------------------------------------------------------------------------------------
! sanity checks
if ( prm%gdot0 <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0'
if ( prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' n'
if (any(xi_0 <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0'
if (any(prm%tau1 <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_f'
if (any(prm%tau1_b <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_b'
if ( prm%dot_gamma_0 <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0'
if ( prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' n'
if (any(xi_0 <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0'
if (any(prm%xi_inf_f <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_f'
if (any(prm%xi_inf_b <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_b'
!ToDo: Any sensible checks for theta?
else slipActive
xi_0 = emptyRealArray
allocate(prm%tau1,prm%tau1_b,prm%theta0,prm%theta1,prm%theta0_b,prm%theta1_b,source=emptyRealArray)
allocate(prm%xi_inf_f,prm%xi_inf_b,prm%h_0_f,prm%h_inf_f,prm%h_0_b,prm%h_inf_b,source=emptyRealArray)
allocate(prm%interaction_SlipSlip(0,0))
endif slipActive
@ -303,16 +303,16 @@ module subroutine plastic_kinehardening_dotState(Mp,instance,of)
dot%crss(:,of) = matmul(prm%interaction_SlipSlip,dot%accshear(:,of)) &
* ( prm%theta1 &
+ (prm%theta0 - prm%theta1 + prm%theta0*prm%theta1*sumGamma/prm%tau1) &
* exp(-sumGamma*prm%theta0/prm%tau1) &
* ( prm%h_inf_f &
+ (prm%h_0_f - prm%h_inf_f + prm%h_0_f*prm%h_inf_f*sumGamma/prm%xi_inf_f) &
* exp(-sumGamma*prm%h_0_f/prm%xi_inf_f) &
)
dot%crss_back(:,of) = stt%sense(:,of)*dot%accshear(:,of) * &
( prm%theta1_b + &
(prm%theta0_b - prm%theta1_b &
+ prm%theta0_b*prm%theta1_b/(prm%tau1_b+stt%chi0(:,of))*(stt%accshear(:,of)-stt%gamma0(:,of))&
) *exp(-(stt%accshear(:,of)-stt%gamma0(:,of)) *prm%theta0_b/(prm%tau1_b+stt%chi0(:,of))) &
( prm%h_inf_b + &
(prm%h_0_b - prm%h_inf_b &
+ prm%h_0_b*prm%h_inf_b/(prm%xi_inf_b+stt%chi0(:,of))*(stt%accshear(:,of)-stt%gamma0(:,of))&
) *exp(-(stt%accshear(:,of)-stt%gamma0(:,of)) *prm%h_0_b/(prm%xi_inf_b+stt%chi0(:,of))) &
)
end associate
@ -442,14 +442,14 @@ pure subroutine kinetics(Mp,instance,of, &
enddo
where(dNeq0(tau_pos))
gdot_pos = prm%gdot0 * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
gdot_pos = prm%dot_gamma_0 * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
* sign(abs(tau_pos/stt%crss(:,of))**prm%n, tau_pos)
else where
gdot_pos = 0.0_pReal
end where
where(dNeq0(tau_neg))
gdot_neg = prm%gdot0 * 0.5_pReal & ! only used if non-Schmid active, always 1/2
gdot_neg = prm%dot_gamma_0 * 0.5_pReal & ! only used if non-Schmid active, always 1/2
* sign(abs(tau_neg/stt%crss(:,of))**prm%n, tau_neg)
else where
gdot_neg = 0.0_pReal

View File

@ -46,58 +46,58 @@ submodule(constitutive:constitutive_plastic) plastic_nonlocal
type :: tInitialParameters !< container type for internal constitutive parameters
real(pReal) :: &
rhoSglScatter, & !< standard deviation of scatter in initial dislocation density
rhoSglRandom, &
rhoSglRandomBinning
sigma_rho_u, & !< standard deviation of scatter in initial dislocation density
random_rho_u, &
random_rho_u_binning
real(pReal), dimension(:), allocatable :: &
rhoSglEdgePos0, & !< initial edge_pos dislocation density
rhoSglEdgeNeg0, & !< initial edge_neg dislocation density
rhoSglScrewPos0, & !< initial screw_pos dislocation density
rhoSglScrewNeg0, & !< initial screw_neg dislocation density
rhoDipEdge0, & !< initial edge dipole dislocation density
rhoDipScrew0 !< initial screw dipole dislocation density
rho_u_ed_pos_0, & !< initial edge_pos dislocation density
rho_u_ed_neg_0, & !< initial edge_neg dislocation density
rho_u_sc_pos_0, & !< initial screw_pos dislocation density
rho_u_sc_neg_0, & !< initial screw_neg dislocation density
rho_d_ed_0, & !< initial edge dipole dislocation density
rho_d_sc_0 !< initial screw dipole dislocation density
integer, dimension(:), allocatable :: &
N_sl
end type tInitialParameters
type :: tParameters !< container type for internal constitutive parameters
real(pReal) :: &
atomicVolume, & !< atomic volume
Dsd0, & !< prefactor for self-diffusion coefficient
selfDiffusionEnergy, & !< activation enthalpy for diffusion
V_at, & !< atomic volume
D_0, & !< prefactor for self-diffusion coefficient
Q_cl, & !< activation enthalpy for diffusion
atol_rho, & !< absolute tolerance for dislocation density in state integration
significantRho, & !< density considered significant
significantN, & !< number of dislocations considered significant
doublekinkwidth, & !< width of a doubkle kink in multiples of the burgers vector length b
solidSolutionEnergy, & !< activation energy for solid solution in J
solidSolutionSize, & !< solid solution obstacle size in multiples of the burgers vector length
solidSolutionConcentration, & !< concentration of solid solution in atomic parts
rho_significant, & !< density considered significant
rho_min, & !< number of dislocations considered significant
w, & !< width of a doubkle kink in multiples of the Burgers vector length b
Q_sol, & !< activation energy for solid solution in J
f_sol, & !< solid solution obstacle size in multiples of the Burgers vector length
c_sol, & !< concentration of solid solution in atomic parts
p, & !< parameter for kinetic law (Kocks,Argon,Ashby)
q, & !< parameter for kinetic law (Kocks,Argon,Ashby)
viscosity, & !< viscosity for dislocation glide in Pa s
fattack, & !< attack frequency in Hz
surfaceTransmissivity, & !< transmissivity at free surface
grainboundaryTransmissivity, & !< transmissivity at grain boundary (identified by different texture)
CFLfactor, & !< safety factor for CFL flux condition
fEdgeMultiplication, & !< factor that determines how much edge dislocations contribute to multiplication (0...1)
linetensionEffect, &
edgeJogFactor, &
eta, & !< viscosity for dislocation glide in Pa s
nu_a, & !< attack frequency in Hz
chi_surface, & !< transmissivity at free surface
chi_GB, & !< transmissivity at grain boundary (identified by different texture)
f_c, & !< safety factor for CFL flux condition
f_ed_mult, & !< factor that determines how much edge dislocations contribute to multiplication (0...1)
f_F, &
f_ed, &
mu, &
nu
real(pReal), dimension(:), allocatable :: &
minDipoleHeight_edge, & !< minimum stable edge dipole height
minDipoleHeight_screw, & !< minimum stable screw dipole height
peierlsstress_edge, &
peierlsstress_screw, &
lambda0, & !< mean free path prefactor for each
burgers !< absolute length of burgers vector [m]
d_ed, & !< minimum stable edge dipole height
d_sc, & !< minimum stable screw dipole height
tau_Peierls_ed, &
tau_Peierls_sc, &
i_sl, & !< mean free path prefactor for each
b_sl !< absolute length of Burgers vector [m]
real(pReal), dimension(:,:), allocatable :: &
slip_normal, &
slip_direction, &
slip_transverse, &
minDipoleHeight, & ! edge and screw
peierlsstress, & ! edge and screw
interactionSlipSlip ,& !< coefficients for slip-slip interaction
h_sl_sl ,& !< coefficients for slip-slip interaction
forestProjection_Edge, & !< matrix of forest projections of edge dislocations
forestProjection_Screw !< matrix of forest projections of screw dislocations
real(pReal), dimension(:,:,:), allocatable :: &
@ -244,7 +244,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
if(trim(phase%get_asString('lattice')) == 'bcc') then
a = pl%get_asFloats('nonSchmid_coefficients',defaultVal = emptyRealArray)
a = pl%get_asFloats('a_nonSchmid',defaultVal = emptyRealArray)
if(size(a) > 0) prm%nonSchmidActive = .true.
prm%nonSchmid_pos = lattice_nonSchmidMatrix(ini%N_sl,a,+1)
prm%nonSchmid_neg = lattice_nonSchmidMatrix(ini%N_sl,a,-1)
@ -253,9 +253,9 @@ module function plastic_nonlocal_init() result(myPlasticity)
prm%nonSchmid_neg = prm%Schmid
endif
prm%interactionSlipSlip = lattice_interaction_SlipBySlip(ini%N_sl, &
pl%get_asFloats('h_sl_sl'), &
phase%get_asString('lattice'))
prm%h_sl_sl = lattice_interaction_SlipBySlip(ini%N_sl, &
pl%get_asFloats('h_sl_sl'), &
phase%get_asString('lattice'))
prm%forestProjection_edge = lattice_forestProjection_edge (ini%N_sl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
@ -279,113 +279,113 @@ module function plastic_nonlocal_init() result(myPlasticity)
enddo
enddo
ini%rhoSglEdgePos0 = pl%get_asFloats('rho_u_ed_pos_0', requiredSize=size(ini%N_sl))
ini%rhoSglEdgeNeg0 = pl%get_asFloats('rho_u_ed_neg_0', requiredSize=size(ini%N_sl))
ini%rhoSglScrewPos0 = pl%get_asFloats('rho_u_sc_pos_0', requiredSize=size(ini%N_sl))
ini%rhoSglScrewNeg0 = pl%get_asFloats('rho_u_sc_neg_0', requiredSize=size(ini%N_sl))
ini%rhoDipEdge0 = pl%get_asFloats('rho_d_ed_0', requiredSize=size(ini%N_sl))
ini%rhoDipScrew0 = pl%get_asFloats('rho_d_sc_0', requiredSize=size(ini%N_sl))
ini%rho_u_ed_pos_0 = pl%get_asFloats('rho_u_ed_pos_0', requiredSize=size(ini%N_sl))
ini%rho_u_ed_neg_0 = pl%get_asFloats('rho_u_ed_neg_0', requiredSize=size(ini%N_sl))
ini%rho_u_sc_pos_0 = pl%get_asFloats('rho_u_sc_pos_0', requiredSize=size(ini%N_sl))
ini%rho_u_sc_neg_0 = pl%get_asFloats('rho_u_sc_neg_0', requiredSize=size(ini%N_sl))
ini%rho_d_ed_0 = pl%get_asFloats('rho_d_ed_0', requiredSize=size(ini%N_sl))
ini%rho_d_sc_0 = pl%get_asFloats('rho_d_sc_0', requiredSize=size(ini%N_sl))
prm%lambda0 = pl%get_asFloats('i_sl', requiredSize=size(ini%N_sl))
prm%burgers = pl%get_asFloats('b_sl', requiredSize=size(ini%N_sl))
prm%i_sl = pl%get_asFloats('i_sl', requiredSize=size(ini%N_sl))
prm%b_sl = pl%get_asFloats('b_sl', requiredSize=size(ini%N_sl))
prm%lambda0 = math_expand(prm%lambda0,ini%N_sl)
prm%burgers = math_expand(prm%burgers,ini%N_sl)
prm%i_sl = math_expand(prm%i_sl,ini%N_sl)
prm%b_sl = math_expand(prm%b_sl,ini%N_sl)
prm%minDipoleHeight_edge = pl%get_asFloats('d_ed', requiredSize=size(ini%N_sl))
prm%minDipoleHeight_screw = pl%get_asFloats('d_sc', requiredSize=size(ini%N_sl))
prm%minDipoleHeight_edge = math_expand(prm%minDipoleHeight_edge, ini%N_sl)
prm%minDipoleHeight_screw = math_expand(prm%minDipoleHeight_screw,ini%N_sl)
prm%d_ed = pl%get_asFloats('d_ed', requiredSize=size(ini%N_sl))
prm%d_sc = pl%get_asFloats('d_sc', requiredSize=size(ini%N_sl))
prm%d_ed = math_expand(prm%d_ed,ini%N_sl)
prm%d_sc = math_expand(prm%d_sc,ini%N_sl)
allocate(prm%minDipoleHeight(prm%sum_N_sl,2))
prm%minDipoleHeight(:,1) = prm%minDipoleHeight_edge
prm%minDipoleHeight(:,2) = prm%minDipoleHeight_screw
prm%minDipoleHeight(:,1) = prm%d_ed
prm%minDipoleHeight(:,2) = prm%d_sc
prm%peierlsstress_edge = pl%get_asFloats('tau_peierls_ed', requiredSize=size(ini%N_sl))
prm%peierlsstress_screw = pl%get_asFloats('tau_peierls_sc', requiredSize=size(ini%N_sl))
prm%peierlsstress_edge = math_expand(prm%peierlsstress_edge, ini%N_sl)
prm%peierlsstress_screw = math_expand(prm%peierlsstress_screw,ini%N_sl)
prm%tau_Peierls_ed = pl%get_asFloats('tau_Peierls_ed', requiredSize=size(ini%N_sl))
prm%tau_Peierls_sc = pl%get_asFloats('tau_Peierls_sc', requiredSize=size(ini%N_sl))
prm%tau_Peierls_ed = math_expand(prm%tau_Peierls_ed,ini%N_sl)
prm%tau_Peierls_sc = math_expand(prm%tau_Peierls_sc,ini%N_sl)
allocate(prm%peierlsstress(prm%sum_N_sl,2))
prm%peierlsstress(:,1) = prm%peierlsstress_edge
prm%peierlsstress(:,2) = prm%peierlsstress_screw
prm%peierlsstress(:,1) = prm%tau_Peierls_ed
prm%peierlsstress(:,2) = prm%tau_Peierls_sc
prm%significantRho = pl%get_asFloat('rho_significant')
prm%significantN = pl%get_asFloat('rho_num_significant', 0.0_pReal)
prm%CFLfactor = pl%get_asFloat('f_c',defaultVal=2.0_pReal)
prm%rho_significant = pl%get_asFloat('rho_significant')
prm%rho_min = pl%get_asFloat('rho_min', 0.0_pReal)
prm%f_c = pl%get_asFloat('f_c',defaultVal=2.0_pReal)
prm%atomicVolume = pl%get_asFloat('V_at')
prm%Dsd0 = pl%get_asFloat('D_0') !,'dsd0'
prm%selfDiffusionEnergy = pl%get_asFloat('Q_cl') !,'qsd'
prm%linetensionEffect = pl%get_asFloat('f_F')
prm%edgeJogFactor = pl%get_asFloat('f_ed') !,'edgejogs'
prm%doublekinkwidth = pl%get_asFloat('w')
prm%solidSolutionEnergy = pl%get_asFloat('Q_sol')
prm%solidSolutionSize = pl%get_asFloat('f_sol')
prm%solidSolutionConcentration = pl%get_asFloat('c_sol')
prm%V_at = pl%get_asFloat('V_at')
prm%D_0 = pl%get_asFloat('D_0')
prm%Q_cl = pl%get_asFloat('Q_cl')
prm%f_F = pl%get_asFloat('f_F')
prm%f_ed = pl%get_asFloat('f_ed') !,'edgejogs'
prm%w = pl%get_asFloat('w')
prm%Q_sol = pl%get_asFloat('Q_sol')
prm%f_sol = pl%get_asFloat('f_sol')
prm%c_sol = pl%get_asFloat('c_sol')
prm%p = pl%get_asFloat('p_sl')
prm%q = pl%get_asFloat('q_sl')
prm%viscosity = pl%get_asFloat('eta')
prm%fattack = pl%get_asFloat('nu_a')
prm%p = pl%get_asFloat('p_sl')
prm%q = pl%get_asFloat('q_sl')
prm%eta = pl%get_asFloat('eta')
prm%nu_a = pl%get_asFloat('nu_a')
! ToDo: discuss logic
ini%rhoSglScatter = pl%get_asFloat('sigma_rho_u')
ini%rhoSglRandom = pl%get_asFloat('random_rho_u',defaultVal= 0.0_pReal)
ini%sigma_rho_u = pl%get_asFloat('sigma_rho_u')
ini%random_rho_u = pl%get_asFloat('random_rho_u',defaultVal= 0.0_pReal)
if (pl%contains('random_rho_u')) &
ini%rhoSglRandomBinning = pl%get_asFloat('random_rho_u_binning',defaultVal=0.0_pReal) !ToDo: useful default?
ini%random_rho_u_binning = pl%get_asFloat('random_rho_u_binning',defaultVal=0.0_pReal) !ToDo: useful default?
! if (rhoSglRandom(instance) < 0.0_pReal) &
! if (rhoSglRandomBinning(instance) <= 0.0_pReal) &
prm%surfaceTransmissivity = pl%get_asFloat('chi_surface',defaultVal=1.0_pReal)
prm%grainboundaryTransmissivity = pl%get_asFloat('chi_GB', defaultVal=-1.0_pReal)
prm%fEdgeMultiplication = pl%get_asFloat('f_ed_mult')
prm%chi_surface = pl%get_asFloat('chi_surface',defaultVal=1.0_pReal)
prm%chi_GB = pl%get_asFloat('chi_GB', defaultVal=-1.0_pReal)
prm%f_ed_mult = pl%get_asFloat('f_ed_mult')
prm%shortRangeStressCorrection = pl%get_asBool('short_range_stress_correction', defaultVal = .false.)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (any(prm%burgers < 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%lambda0 <= 0.0_pReal)) extmsg = trim(extmsg)//' i_sl'
if (any(prm%b_sl < 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%i_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' i_sl'
if (any(ini%rhoSglEdgePos0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_ed_pos_0'
if (any(ini%rhoSglEdgeNeg0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_ed_neg_0'
if (any(ini%rhoSglScrewPos0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_sc_pos_0'
if (any(ini%rhoSglScrewNeg0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_sc_neg_0'
if (any(ini%rhoDipEdge0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_d_ed_0'
if (any(ini%rhoDipScrew0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_d_sc_0'
if (any(ini%rho_u_ed_pos_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_ed_pos_0'
if (any(ini%rho_u_ed_neg_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_ed_neg_0'
if (any(ini%rho_u_sc_pos_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_sc_pos_0'
if (any(ini%rho_u_sc_neg_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_u_sc_neg_0'
if (any(ini%rho_d_ed_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_d_ed_0'
if (any(ini%rho_d_sc_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_d_sc_0'
if (any(prm%peierlsstress < 0.0_pReal)) extmsg = trim(extmsg)//' tau_peierls'
if (any(prm%minDipoleHeight < 0.0_pReal)) extmsg = trim(extmsg)//' d_ed or d_sc'
if (prm%viscosity <= 0.0_pReal) extmsg = trim(extmsg)//' eta'
if (prm%selfDiffusionEnergy <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
if (prm%fattack <= 0.0_pReal) extmsg = trim(extmsg)//' nu_a'
if (prm%doublekinkwidth <= 0.0_pReal) extmsg = trim(extmsg)//' w'
if (prm%Dsd0 < 0.0_pReal) extmsg = trim(extmsg)//' D_0'
if (prm%atomicVolume <= 0.0_pReal) extmsg = trim(extmsg)//' V_at' ! ToDo: in disloTungsten, the atomic volume is given as a factor
if (prm%eta <= 0.0_pReal) extmsg = trim(extmsg)//' eta'
if (prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl'
if (prm%nu_a <= 0.0_pReal) extmsg = trim(extmsg)//' nu_a'
if (prm%w <= 0.0_pReal) extmsg = trim(extmsg)//' w'
if (prm%D_0 < 0.0_pReal) extmsg = trim(extmsg)//' D_0'
if (prm%V_at <= 0.0_pReal) extmsg = trim(extmsg)//' V_at' ! ToDo: in disloTungsten, the atomic volume is given as a factor
if (prm%significantN < 0.0_pReal) extmsg = trim(extmsg)//' rho_num_significant'
if (prm%significantrho < 0.0_pReal) extmsg = trim(extmsg)//' rho_significant'
if (prm%atol_rho < 0.0_pReal) extmsg = trim(extmsg)//' atol_rho'
if (prm%CFLfactor < 0.0_pReal) extmsg = trim(extmsg)//' f_c'
if (prm%rho_min < 0.0_pReal) extmsg = trim(extmsg)//' rho_min'
if (prm%rho_significant < 0.0_pReal) extmsg = trim(extmsg)//' rho_significant'
if (prm%atol_rho < 0.0_pReal) extmsg = trim(extmsg)//' atol_rho'
if (prm%f_c < 0.0_pReal) extmsg = trim(extmsg)//' f_c'
if (prm%p <= 0.0_pReal .or. prm%p > 1.0_pReal) extmsg = trim(extmsg)//' p_sl'
if (prm%q < 1.0_pReal .or. prm%q > 2.0_pReal) extmsg = trim(extmsg)//' q_sl'
if (prm%p <= 0.0_pReal .or. prm%p > 1.0_pReal) extmsg = trim(extmsg)//' p_sl'
if (prm%q < 1.0_pReal .or. prm%q > 2.0_pReal) extmsg = trim(extmsg)//' q_sl'
if (prm%linetensionEffect < 0.0_pReal .or. prm%linetensionEffect > 1.0_pReal) &
if (prm%f_F < 0.0_pReal .or. prm%f_F > 1.0_pReal) &
extmsg = trim(extmsg)//' f_F'
if (prm%edgeJogFactor < 0.0_pReal .or. prm%edgeJogFactor > 1.0_pReal) &
if (prm%f_ed < 0.0_pReal .or. prm%f_ed > 1.0_pReal) &
extmsg = trim(extmsg)//' f_ed'
if (prm%solidSolutionEnergy <= 0.0_pReal) extmsg = trim(extmsg)//' Q_sol'
if (prm%solidSolutionSize <= 0.0_pReal) extmsg = trim(extmsg)//' f_sol'
if (prm%solidSolutionConcentration <= 0.0_pReal) extmsg = trim(extmsg)//' c_sol'
if (prm%Q_sol <= 0.0_pReal) extmsg = trim(extmsg)//' Q_sol'
if (prm%f_sol <= 0.0_pReal) extmsg = trim(extmsg)//' f_sol'
if (prm%c_sol <= 0.0_pReal) extmsg = trim(extmsg)//' c_sol'
if (prm%grainboundaryTransmissivity > 1.0_pReal) extmsg = trim(extmsg)//' chi_GB'
if (prm%surfaceTransmissivity < 0.0_pReal .or. prm%surfaceTransmissivity > 1.0_pReal) &
extmsg = trim(extmsg)//' chi_surface'
if (prm%chi_GB > 1.0_pReal) extmsg = trim(extmsg)//' chi_GB'
if (prm%chi_surface < 0.0_pReal .or. prm%chi_surface > 1.0_pReal) &
extmsg = trim(extmsg)//' chi_surface'
if (prm%fEdgeMultiplication < 0.0_pReal .or. prm%fEdgeMultiplication > 1.0_pReal) &
extmsg = trim(extmsg)//' f_ed_mult'
if (prm%f_ed_mult < 0.0_pReal .or. prm%f_ed_mult > 1.0_pReal) &
extmsg = trim(extmsg)//' f_ed_mult'
endif slipActive
@ -412,7 +412,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
call IO_error(212,ext_msg='IPneighborhood does not exist')
plasticState(p)%offsetDeltaState = 0 ! ToDo: state structure does not follow convention
plasticState(p)%offsetDeltaState = 0 ! ToDo: state structure does not follow convention
st0%rho => plasticState(p)%state0 (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
stt%rho => plasticState(p)%state (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
@ -620,16 +620,16 @@ module subroutine plastic_nonlocal_dependentState(F, Fp, instance, of, ip, el)
! coefficients are corrected for the line tension effect
! (see Kubin,Devincre,Hoc; 2008; Modeling dislocation storage rates and mean free paths in face-centered cubic crystals)
if (any(lattice_structure(material_phaseAt(1,el)) == [LATTICE_bcc_ID,LATTICE_fcc_ID])) then
myInteractionMatrix = prm%interactionSlipSlip &
* spread(( 1.0_pReal - prm%linetensionEffect &
+ prm%linetensionEffect &
* log(0.35_pReal * prm%burgers * sqrt(max(stt%rho_forest(:,of),prm%significantRho))) &
/ log(0.35_pReal * prm%burgers * 1e6_pReal))** 2.0_pReal,2,prm%sum_N_sl)
myInteractionMatrix = prm%h_sl_sl &
* spread(( 1.0_pReal - prm%f_F &
+ prm%f_F &
* log(0.35_pReal * prm%b_sl * sqrt(max(stt%rho_forest(:,of),prm%rho_significant))) &
/ log(0.35_pReal * prm%b_sl * 1e6_pReal))** 2.0_pReal,2,prm%sum_N_sl)
else
myInteractionMatrix = prm%interactionSlipSlip
myInteractionMatrix = prm%h_sl_sl
endif
dst%tau_pass(:,of) = prm%mu * prm%burgers &
dst%tau_pass(:,of) = prm%mu * prm%b_sl &
* sqrt(matmul(myInteractionMatrix,sum(abs(rho),2)))
!*** calculate the dislocation stress of the neighboring excess dislocation densities
@ -731,7 +731,7 @@ module subroutine plastic_nonlocal_dependentState(F, Fp, instance, of, ip, el)
where(rhoTotal > 0.0_pReal) rhoExcessGradient_over_rho = rhoExcessGradient / rhoTotal
! ... gives the local stress correction when multiplied with a factor
dst%tau_back(s,of) = - prm%mu * prm%burgers(s) / (2.0_pReal * PI) &
dst%tau_back(s,of) = - prm%mu * prm%b_sl(s) / (2.0_pReal * PI) &
* ( rhoExcessGradient_over_rho(1) / (1.0_pReal - prm%nu) &
+ rhoExcessGradient_over_rho(2))
enddo
@ -841,7 +841,7 @@ module subroutine plastic_nonlocal_LpAndItsTangent(Lp,dLp_dMp, &
forall (s = 1:ns, t = 5:8, rhoSgl(s,t) * v(s,t-4) < 0.0_pReal) &
rhoSgl(s,t-4) = rhoSgl(s,t-4) + abs(rhoSgl(s,t))
gdotTotal = sum(rhoSgl(:,1:4) * v, 2) * prm%burgers
gdotTotal = sum(rhoSgl(:,1:4) * v, 2) * prm%b_sl
Lp = 0.0_pReal
dLp_dMp = 0.0_pReal
@ -850,10 +850,10 @@ module subroutine plastic_nonlocal_LpAndItsTangent(Lp,dLp_dMp, &
forall (i=1:3,j=1:3,k=1:3,l=1:3) &
dLp_dMp(i,j,k,l) = dLp_dMp(i,j,k,l) &
+ prm%Schmid(i,j,s) * prm%Schmid(k,l,s) &
* sum(rhoSgl(s,1:4) * dv_dtau(s,1:4)) * prm%burgers(s) &
* sum(rhoSgl(s,1:4) * dv_dtau(s,1:4)) * prm%b_sl(s) &
+ prm%Schmid(i,j,s) &
* ( prm%nonSchmid_pos(k,l,s) * rhoSgl(s,3) * dv_dtauNS(s,3) &
- prm%nonSchmid_neg(k,l,s) * rhoSgl(s,4) * dv_dtauNS(s,4)) * prm%burgers(s)
- prm%nonSchmid_neg(k,l,s) * rhoSgl(s,4) * dv_dtauNS(s,4)) * prm%b_sl(s)
enddo
end associate
@ -929,8 +929,8 @@ module subroutine plastic_nonlocal_deltaState(Mp,instance,of,ip,el)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dUpper(:,1) = prm%mu * prm%burgers/(8.0_pReal * PI * (1.0_pReal - prm%nu) * abs(tau))
dUpper(:,2) = prm%mu * prm%burgers/(4.0_pReal * PI * abs(tau))
dUpper(:,1) = prm%mu * prm%b_sl/(8.0_pReal * PI * (1.0_pReal - prm%nu) * abs(tau))
dUpper(:,2) = prm%mu * prm%b_sl/(4.0_pReal * PI * abs(tau))
where(dNeq0(sqrt(sum(abs(rho(:,edg)),2)))) &
dUpper(:,1) = min(1.0_pReal/sqrt(sum(abs(rho(:,edg)),2)),dUpper(:,1))
@ -1041,7 +1041,7 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
my_rhoSgl0 = rho0(:,sgl)
forall (s = 1:ns, t = 1:4) v(s,t) = plasticState(ph)%state(iV(s,t,instance),of)
gdot = rhoSgl(:,1:4) * v * spread(prm%burgers,2,4)
gdot = rhoSgl(:,1:4) * v * spread(prm%b_sl,2,4)
#ifdef DEBUG
if (debugConstitutive%basic &
@ -1060,8 +1060,8 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
enddo
dLower = prm%minDipoleHeight
dUpper(:,1) = prm%mu * prm%burgers/(8.0_pReal * PI * (1.0_pReal - prm%nu) * abs(tau))
dUpper(:,2) = prm%mu * prm%burgers/(4.0_pReal * PI * abs(tau))
dUpper(:,1) = prm%mu * prm%b_sl/(8.0_pReal * PI * (1.0_pReal - prm%nu) * abs(tau))
dUpper(:,2) = prm%mu * prm%b_sl/(4.0_pReal * PI * abs(tau))
where(dNeq0(sqrt(sum(abs(rho(:,edg)),2)))) &
dUpper(:,1) = min(1.0_pReal/sqrt(sum(abs(rho(:,edg)),2)),dUpper(:,1))
@ -1075,18 +1075,18 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
rhoDotMultiplication = 0.0_pReal
isBCC: if (lattice_structure(ph) == LATTICE_bcc_ID) then
forall (s = 1:ns, sum(abs(v(s,1:4))) > 0.0_pReal)
rhoDotMultiplication(s,1:2) = sum(abs(gdot(s,3:4))) / prm%burgers(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(stt%rho_forest(s,of)) / prm%lambda0(s) ! & ! mean free path
rhoDotMultiplication(s,1:2) = sum(abs(gdot(s,3:4))) / prm%b_sl(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(stt%rho_forest(s,of)) / prm%i_sl(s) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
rhoDotMultiplication(s,3:4) = sum(abs(gdot(s,3:4))) /prm%burgers(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(stt%rho_forest(s,of)) / prm%lambda0(s) ! & ! mean free path
rhoDotMultiplication(s,3:4) = sum(abs(gdot(s,3:4))) /prm%b_sl(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(stt%rho_forest(s,of)) / prm%i_sl(s) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
endforall
else isBCC
rhoDotMultiplication(:,1:4) = spread( &
(sum(abs(gdot(:,1:2)),2) * prm%fEdgeMultiplication + sum(abs(gdot(:,3:4)),2)) &
* sqrt(stt%rho_forest(:,of)) / prm%lambda0 / prm%burgers, 2, 4)
(sum(abs(gdot(:,1:2)),2) * prm%f_ed_mult + sum(abs(gdot(:,3:4)),2)) &
* sqrt(stt%rho_forest(:,of)) / prm%i_sl / prm%b_sl, 2, 4)
endif isBCC
forall (s = 1:ns, t = 1:4) v0(s,t) = plasticState(ph)%state0(iV(s,t,instance),of)
@ -1097,20 +1097,20 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
!*** formation by glide
do c = 1,2
rhoDotSingle2DipoleGlide(:,2*c-1) = -2.0_pReal * dUpper(:,c) / prm%burgers &
rhoDotSingle2DipoleGlide(:,2*c-1) = -2.0_pReal * dUpper(:,c) / prm%b_sl &
* ( rhoSgl(:,2*c-1) * abs(gdot(:,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(:,2*c) * abs(gdot(:,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(:,2*c+4)) * abs(gdot(:,2*c-1))) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(:,2*c) = -2.0_pReal * dUpper(:,c) / prm%burgers &
rhoDotSingle2DipoleGlide(:,2*c) = -2.0_pReal * dUpper(:,c) / prm%b_sl &
* ( rhoSgl(:,2*c-1) * abs(gdot(:,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(:,2*c) * abs(gdot(:,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(:,2*c+3)) * abs(gdot(:,2*c))) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(:,2*c+3) = -2.0_pReal * dUpper(:,c) / prm%burgers &
rhoDotSingle2DipoleGlide(:,2*c+3) = -2.0_pReal * dUpper(:,c) / prm%b_sl &
* rhoSgl(:,2*c+3) * abs(gdot(:,2*c)) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(:,2*c+4) = -2.0_pReal * dUpper(:,c) / prm%burgers &
rhoDotSingle2DipoleGlide(:,2*c+4) = -2.0_pReal * dUpper(:,c) / prm%b_sl &
* rhoSgl(:,2*c+4) * abs(gdot(:,2*c-1)) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(:,c+8) = abs(rhoDotSingle2DipoleGlide(:,2*c+3)) &
@ -1123,27 +1123,27 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
!*** athermal annihilation
rhoDotAthermalAnnihilation = 0.0_pReal
forall (c=1:2) &
rhoDotAthermalAnnihilation(:,c+8) = -2.0_pReal * dLower(:,c) / prm%burgers &
* ( 2.0_pReal * (rhoSgl(:,2*c-1) * abs(gdot(:,2*c)) + rhoSgl(:,2*c) * abs(gdot(:,2*c-1))) & ! was single hitting single
rhoDotAthermalAnnihilation(:,c+8) = -2.0_pReal * dLower(:,c) / prm%b_sl &
* ( 2.0_pReal * (rhoSgl(:,2*c-1) * abs(gdot(:,2*c)) + rhoSgl(:,2*c) * abs(gdot(:,2*c-1))) & ! was single hitting single
+ 2.0_pReal * (abs(rhoSgl(:,2*c+3)) * abs(gdot(:,2*c)) + abs(rhoSgl(:,2*c+4)) * abs(gdot(:,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
+ rhoDip(:,c) * (abs(gdot(:,2*c-1)) + abs(gdot(:,2*c)))) ! single knocks dipole constituent
+ rhoDip(:,c) * (abs(gdot(:,2*c-1)) + abs(gdot(:,2*c)))) ! single knocks dipole constituent
! annihilated screw dipoles leave edge jogs behind on the colinear system
if (lattice_structure(ph) == LATTICE_fcc_ID) &
forall (s = 1:ns, prm%colinearSystem(s) > 0) &
rhoDotAthermalAnnihilation(prm%colinearSystem(s),1:2) = - rhoDotAthermalAnnihilation(s,10) &
* 0.25_pReal * sqrt(stt%rho_forest(s,of)) * (dUpper(s,2) + dLower(s,2)) * prm%edgeJogFactor
* 0.25_pReal * sqrt(stt%rho_forest(s,of)) * (dUpper(s,2) + dLower(s,2)) * prm%f_ed
!*** thermally activated annihilation of edge dipoles by climb
rhoDotThermalAnnihilation = 0.0_pReal
selfDiffusion = prm%Dsd0 * exp(-prm%selfDiffusionEnergy / (kB * Temperature))
vClimb = prm%atomicVolume * selfDiffusion * prm%mu &
selfDiffusion = prm%D_0 * exp(-prm%Q_cl / (kB * Temperature))
vClimb = prm%V_at * selfDiffusion * prm%mu &
/ ( kB * Temperature * PI * (1.0_pReal-prm%nu) * (dUpper(:,1) + dLower(:,1)))
forall (s = 1:ns, dUpper(s,1) > dLower(s,1)) &
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pReal * rhoDip(s,1) * vClimb(s) / (dUpper(s,1) - dLower(s,1)), &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) &
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
rhoDot = rhoDotFlux(F,Fp,timestep, instance,of,ip,el) &
+ rhoDotMultiplication &
@ -1252,7 +1252,7 @@ function rhoDotFlux(F,Fp,timestep, instance,of,ip,el)
my_rhoSgl0 = rho0(:,sgl)
forall (s = 1:ns, t = 1:4) v(s,t) = plasticState(ph)%state(iV(s,t,instance),of) !ToDo: MD: I think we should use state0 here
gdot = rhoSgl(:,1:4) * v * spread(prm%burgers,2,4)
gdot = rhoSgl(:,1:4) * v * spread(prm%b_sl,2,4)
forall (s = 1:ns, t = 1:4) v0(s,t) = plasticState(ph)%state0(iV(s,t,instance),of)
@ -1264,14 +1264,14 @@ function rhoDotFlux(F,Fp,timestep, instance,of,ip,el)
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
.and. prm%CFLfactor * abs(v0) * timestep &
.and. prm%f_c * abs(v0) * timestep &
> IPvolume(ip,el) / maxval(IParea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
#ifdef DEBUG
if (debugConstitutive%extensive) then
print'(a,i5,a,i2)', '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
print'(a,e10.3,a,e10.3)', '<< CONST >> velocity is at ', &
maxval(abs(v0), abs(gdot) > 0.0_pReal &
.and. prm%CFLfactor * abs(v0) * timestep &
.and. prm%f_c * abs(v0) * timestep &
> IPvolume(ip,el) / maxval(IParea(:,ip,el))), &
' at a timestep of ',timestep
print*, '<< CONST >> enforcing cutback !!!'
@ -1334,8 +1334,8 @@ function rhoDotFlux(F,Fp,timestep, instance,of,ip,el)
neighbor_rhoSgl0(s,t) = max(plasticState(np)%state0(iRhoU(s,t,neighbor_instance),no),0.0_pReal)
endforall
where (neighbor_rhoSgl0 * IPvolume(neighbor_ip,neighbor_el) ** 0.667_pReal < prm%significantN &
.or. neighbor_rhoSgl0 < prm%significantRho) &
where (neighbor_rhoSgl0 * IPvolume(neighbor_ip,neighbor_el) ** 0.667_pReal < prm%rho_min &
.or. neighbor_rhoSgl0 < prm%rho_significant) &
neighbor_rhoSgl0 = 0.0_pReal
normal_neighbor2me_defConf = math_det33(Favg) * matmul(math_inv33(transpose(Favg)), &
IPareaNormal(1:3,neighbor_n,neighbor_ip,neighbor_el)) ! normal of the interface in (average) deformed configuration (pointing neighbor => me)
@ -1460,7 +1460,7 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,instance,i,e)
if (neighbor_e <= 0 .or. neighbor_i <= 0) then
!* FREE SURFACE
!* Set surface transmissivity to the value specified in the material.config
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%surfaceTransmissivity)
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%chi_surface)
elseif (neighbor_phase /= ph) then
!* PHASE BOUNDARY
!* If we encounter a different nonlocal phase at the neighbor,
@ -1469,13 +1469,13 @@ module subroutine plastic_nonlocal_updateCompatibility(orientation,instance,i,e)
!* we do not consider this to be a phase boundary, so completely compatible.
if (.not. phase_localPlasticity(neighbor_phase) .and. .not. phase_localPlasticity(ph)) &
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = 0.0_pReal
elseif (prm%grainboundaryTransmissivity >= 0.0_pReal) then
elseif (prm%chi_GB >= 0.0_pReal) then
!* GRAIN BOUNDARY !
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
if (any(dNeq(material_orientation0(1,i,e)%asQuaternion(), &
material_orientation0(1,neighbor_i,neighbor_e)%asQuaternion())) .and. &
(.not. phase_localPlasticity(neighbor_phase))) &
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%grainboundaryTransmissivity)
forall(s1 = 1:ns) my_compatibility(:,s1,s1,n) = sqrt(prm%chi_GB)
else
!* GRAIN BOUNDARY ?
!* Compatibility defined by relative orientation of slip systems:
@ -1631,7 +1631,7 @@ subroutine stateInit(ini,phase,NipcMyPhase,instance)
associate(stt => state(instance))
if (ini%rhoSglRandom > 0.0_pReal) then ! randomly distribute dislocation segments on random slip system and of random type in the volume
if (ini%random_rho_u > 0.0_pReal) then ! randomly distribute dislocation segments on random slip system and of random type in the volume
do e = 1,discretization_nElem
do i = 1,discretization_nIP
if (material_phaseAt(1,e) == phase) volume(material_phasememberAt(1,i,e)) = IPvolume(i,e)
@ -1639,11 +1639,11 @@ subroutine stateInit(ini,phase,NipcMyPhase,instance)
enddo
totalVolume = sum(volume)
minimumIPVolume = minval(volume)
densityBinning = ini%rhoSglRandomBinning / minimumIpVolume ** (2.0_pReal / 3.0_pReal)
densityBinning = ini%random_rho_u_binning / minimumIpVolume ** (2.0_pReal / 3.0_pReal)
! fill random material points with dislocation segments until the desired overall density is reached
meanDensity = 0.0_pReal
do while(meanDensity < ini%rhoSglRandom)
do while(meanDensity < ini%random_rho_u)
call random_number(rnd)
phasemember = nint(rnd(1)*real(NipcMyPhase,pReal) + 0.5_pReal)
s = nint(rnd(2)*real(sum(ini%N_sl),pReal)*4.0_pReal + 0.5_pReal)
@ -1656,15 +1656,15 @@ subroutine stateInit(ini,phase,NipcMyPhase,instance)
from = 1 + sum(ini%N_sl(1:f-1))
upto = sum(ini%N_sl(1:f))
do s = from,upto
noise = [math_sampleGaussVar(0.0_pReal, ini%rhoSglScatter), &
math_sampleGaussVar(0.0_pReal, ini%rhoSglScatter)]
stt%rho_sgl_mob_edg_pos(s,e) = ini%rhoSglEdgePos0(f) + noise(1)
stt%rho_sgl_mob_edg_neg(s,e) = ini%rhoSglEdgeNeg0(f) + noise(1)
stt%rho_sgl_mob_scr_pos(s,e) = ini%rhoSglScrewPos0(f) + noise(2)
stt%rho_sgl_mob_scr_neg(s,e) = ini%rhoSglScrewNeg0(f) + noise(2)
noise = [math_sampleGaussVar(0.0_pReal, ini%sigma_rho_u), &
math_sampleGaussVar(0.0_pReal, ini%sigma_rho_u)]
stt%rho_sgl_mob_edg_pos(s,e) = ini%rho_u_ed_pos_0(f) + noise(1)
stt%rho_sgl_mob_edg_neg(s,e) = ini%rho_u_ed_neg_0(f) + noise(1)
stt%rho_sgl_mob_scr_pos(s,e) = ini%rho_u_sc_pos_0(f) + noise(2)
stt%rho_sgl_mob_scr_neg(s,e) = ini%rho_u_sc_neg_0(f) + noise(2)
enddo
stt%rho_dip_edg(from:upto,e) = ini%rhoDipEdge0(f)
stt%rho_dip_scr(from:upto,e) = ini%rhoDipScrew0(f)
stt%rho_dip_edg(from:upto,e) = ini%rho_d_ed_0(f)
stt%rho_dip_scr(from:upto,e) = ini%rho_d_sc_0(f)
enddo
enddo
endif
@ -1732,14 +1732,14 @@ pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, Tem
!* Effective stress includes non Schmid constributions
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
tauEff = max(0.0_pReal, abs(tauNS(s)) - tauThreshold(s)) ! ensure that the effective stress is positive
meanfreepath_P = prm%burgers(s)
jumpWidth_P = prm%burgers(s)
activationLength_P = prm%doublekinkwidth *prm%burgers(s)
activationVolume_P = activationLength_P * jumpWidth_P * prm%burgers(s)
meanfreepath_P = prm%b_sl(s)
jumpWidth_P = prm%b_sl(s)
activationLength_P = prm%w *prm%b_sl(s)
activationVolume_P = activationLength_P * jumpWidth_P * prm%b_sl(s)
criticalStress_P = prm%peierlsStress(s,c)
activationEnergy_P = criticalStress_P * activationVolume_P
tauRel_P = min(1.0_pReal, tauEff / criticalStress_P) ! ensure that the activation probability cannot become greater than one
tPeierls = 1.0_pReal / prm%fattack &
tPeierls = 1.0_pReal / prm%nu_a &
* exp(activationEnergy_P / (kB * Temperature) &
* (1.0_pReal - tauRel_P**prm%p)**prm%q)
if (tauEff < criticalStress_P) then
@ -1752,14 +1752,14 @@ pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, Tem
!* Contribution from solid solution strengthening
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
tauEff = abs(tau(s)) - tauThreshold(s)
meanfreepath_S = prm%burgers(s) / sqrt(prm%solidSolutionConcentration)
jumpWidth_S = prm%solidSolutionSize * prm%burgers(s)
activationLength_S = prm%burgers(s) / sqrt(prm%solidSolutionConcentration)
activationVolume_S = activationLength_S * jumpWidth_S * prm%burgers(s)
activationEnergy_S = prm%solidSolutionEnergy
meanfreepath_S = prm%b_sl(s) / sqrt(prm%c_sol)
jumpWidth_S = prm%f_sol * prm%b_sl(s)
activationLength_S = prm%b_sl(s) / sqrt(prm%c_sol)
activationVolume_S = activationLength_S * jumpWidth_S * prm%b_sl(s)
activationEnergy_S = prm%Q_sol
criticalStress_S = activationEnergy_S / activationVolume_S
tauRel_S = min(1.0_pReal, tauEff / criticalStress_S) ! ensure that the activation probability cannot become greater than one
tSolidSolution = 1.0_pReal / prm%fattack &
tSolidSolution = 1.0_pReal / prm%nu_a &
* exp(activationEnergy_S / (kB * Temperature)* (1.0_pReal - tauRel_S**prm%p)**prm%q)
if (tauEff < criticalStress_S) then
dtSolidSolution_dtau = tSolidSolution * prm%p * prm%q * activationVolume_S / (kB * Temperature) &
@ -1770,7 +1770,7 @@ pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, Tem
!* viscous glide velocity
tauEff = abs(tau(s)) - tauThreshold(s)
mobility = prm%burgers(s) / prm%viscosity
mobility = prm%b_sl(s) / prm%eta
vViscous = mobility * tauEff
!* Mean velocity results from waiting time at peierls barriers and solid solution obstacles with respective meanfreepath of
@ -1805,7 +1805,7 @@ pure function getRho(instance,of,ip,el)
getRho(:,mob) = max(getRho(:,mob),0.0_pReal)
getRho(:,dip) = max(getRho(:,dip),0.0_pReal)
where(abs(getRho) < max(prm%significantN/IPvolume(ip,el)**(2.0_pReal/3.0_pReal),prm%significantRho)) &
where(abs(getRho) < max(prm%rho_min/IPvolume(ip,el)**(2.0_pReal/3.0_pReal),prm%rho_significant)) &
getRho = 0.0_pReal
end associate
@ -1830,7 +1830,7 @@ pure function getRho0(instance,of,ip,el)
getRho0(:,mob) = max(getRho0(:,mob),0.0_pReal)
getRho0(:,dip) = max(getRho0(:,dip),0.0_pReal)
where(abs(getRho0) < max(prm%significantN/IPvolume(ip,el)**(2.0_pReal/3.0_pReal),prm%significantRho)) &
where(abs(getRho0) < max(prm%rho_min/IPvolume(ip,el)**(2.0_pReal/3.0_pReal),prm%rho_significant)) &
getRho0 = 0.0_pReal
end associate

View File

@ -8,28 +8,28 @@ submodule(constitutive:constitutive_plastic) plastic_phenopowerlaw
type :: tParameters
real(pReal) :: &
gdot0_slip = 1.0_pReal, & !< reference shear strain rate for slip
gdot0_twin = 1.0_pReal, & !< reference shear strain rate for twin
n_slip = 1.0_pReal, & !< stress exponent for slip
n_twin = 1.0_pReal, & !< stress exponent for twin
spr = 1.0_pReal, & !< push-up factor for slip saturation due to twinning
c_1 = 1.0_pReal, &
c_2 = 1.0_pReal, &
c_3 = 1.0_pReal, &
c_4 = 1.0_pReal, &
h0_SlipSlip = 1.0_pReal, & !< reference hardening slip - slip
h0_TwinSlip = 1.0_pReal, & !< reference hardening twin - slip
h0_TwinTwin = 1.0_pReal, & !< reference hardening twin - twin
a_slip = 1.0_pReal
dot_gamma_0_sl = 1.0_pReal, & !< reference shear strain rate for slip
dot_gamma_0_tw = 1.0_pReal, & !< reference shear strain rate for twin
n_sl = 1.0_pReal, & !< stress exponent for slip
n_tw = 1.0_pReal, & !< stress exponent for twin
f_sl_sat_tw = 1.0_pReal, & !< push-up factor for slip saturation due to twinning
c_1 = 1.0_pReal, &
c_2 = 1.0_pReal, &
c_3 = 1.0_pReal, &
c_4 = 1.0_pReal, &
h_0_sl_sl = 1.0_pReal, & !< reference hardening slip - slip
h_0_tw_sl = 1.0_pReal, & !< reference hardening twin - slip
h_0_tw_tw = 1.0_pReal, & !< reference hardening twin - twin
a_sl = 1.0_pReal
real(pReal), allocatable, dimension(:) :: &
xi_slip_sat, & !< maximum critical shear stress for slip
H_int, & !< per family hardening activity (optional)
gamma_twin_char !< characteristic shear for twins
xi_inf_sl, & !< maximum critical shear stress for slip
h_int, & !< per family hardening activity (optional)
gamma_tw_char !< characteristic shear for twins
real(pReal), allocatable, dimension(:,:) :: &
interaction_SlipSlip, & !< slip resistance from slip activity
interaction_SlipTwin, & !< slip resistance from twin activity
interaction_TwinSlip, & !< twin resistance from slip activity
interaction_TwinTwin !< twin resistance from twin activity
h_sl_sl, & !< slip resistance from slip activity
h_sl_tw, & !< slip resistance from twin activity
h_tw_sl, & !< twin resistance from slip activity
h_tw_tw !< twin resistance from twin activity
real(pReal), allocatable, dimension(:,:,:) :: &
P_sl, &
P_tw, &
@ -78,8 +78,8 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
integer, dimension(:), allocatable :: &
N_sl, N_tw
real(pReal), dimension(:), allocatable :: &
xi_slip_0, & !< initial critical shear stress for slip
xi_twin_0, & !< initial critical shear stress for twin
xi_0_sl, & !< initial critical shear stress for slip
xi_0_tw, & !< initial critical shear stress for twin
a !< non-Schmid coefficients
character(len=pStringLen) :: &
extmsg = ''
@ -120,7 +120,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
if(phase%get_asString('lattice') == 'bcc') then
a = pl%get_asFloats('nonSchmid_coefficients',defaultVal=emptyRealArray)
a = pl%get_asFloats('a_nonSchmid',defaultVal=emptyRealArray)
if(size(a) > 0) prm%nonSchmidActive = .true.
prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1)
prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1)
@ -128,36 +128,36 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
prm%nonSchmid_pos = prm%P_sl
prm%nonSchmid_neg = prm%P_sl
endif
prm%interaction_SlipSlip = lattice_interaction_SlipBySlip(N_sl, &
pl%get_asFloats('h_sl_sl'), &
phase%get_asString('lattice'))
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl, &
pl%get_asFloats('h_sl_sl'), &
phase%get_asString('lattice'))
xi_slip_0 = pl%get_asFloats('xi_0_sl', requiredSize=size(N_sl))
prm%xi_slip_sat = pl%get_asFloats('xi_inf_sl', requiredSize=size(N_sl))
prm%H_int = pl%get_asFloats('h_int', requiredSize=size(N_sl), &
defaultVal=[(0.0_pReal,i=1,size(N_sl))])
xi_0_sl = pl%get_asFloats('xi_0_sl', requiredSize=size(N_sl))
prm%xi_inf_sl = pl%get_asFloats('xi_inf_sl', requiredSize=size(N_sl))
prm%h_int = pl%get_asFloats('h_int', requiredSize=size(N_sl), &
defaultVal=[(0.0_pReal,i=1,size(N_sl))])
prm%gdot0_slip = pl%get_asFloat('dot_gamma_0_sl')
prm%n_slip = pl%get_asFloat('n_sl')
prm%a_slip = pl%get_asFloat('a_sl')
prm%h0_SlipSlip = pl%get_asFloat('h_0_sl_sl')
prm%dot_gamma_0_sl = pl%get_asFloat('dot_gamma_0_sl')
prm%n_sl = pl%get_asFloat('n_sl')
prm%a_sl = pl%get_asFloat('a_sl')
prm%h_0_sl_sl = pl%get_asFloat('h_0_sl_sl')
! expand: family => system
xi_slip_0 = math_expand(xi_slip_0, N_sl)
prm%xi_slip_sat = math_expand(prm%xi_slip_sat,N_sl)
prm%H_int = math_expand(prm%H_int, N_sl)
xi_0_sl = math_expand(xi_0_sl, N_sl)
prm%xi_inf_sl = math_expand(prm%xi_inf_sl,N_sl)
prm%h_int = math_expand(prm%h_int, N_sl)
! sanity checks
if ( prm%gdot0_slip <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_sl'
if ( prm%a_slip <= 0.0_pReal) extmsg = trim(extmsg)//' a_sl'
if ( prm%n_slip <= 0.0_pReal) extmsg = trim(extmsg)//' n_sl'
if (any(xi_slip_0 <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0_sl'
if (any(prm%xi_slip_sat <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_sl'
if ( prm%dot_gamma_0_sl <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_sl'
if ( prm%a_sl <= 0.0_pReal) extmsg = trim(extmsg)//' a_sl'
if ( prm%n_sl <= 0.0_pReal) extmsg = trim(extmsg)//' n_sl'
if (any(xi_0_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0_sl'
if (any(prm%xi_inf_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_sl'
else slipActive
xi_slip_0 = emptyRealArray
allocate(prm%xi_slip_sat,prm%H_int,source=emptyRealArray)
allocate(prm%interaction_SlipSlip(0,0))
xi_0_sl = emptyRealArray
allocate(prm%xi_inf_sl,prm%h_int,source=emptyRealArray)
allocate(prm%h_sl_sl(0,0))
endif slipActive
!--------------------------------------------------------------------------------------------------
@ -165,52 +165,52 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
N_tw = pl%get_asInts('N_tw', defaultVal=emptyIntArray)
prm%sum_N_tw = sum(abs(N_tw))
twinActive: if (prm%sum_N_tw > 0) then
prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
prm%interaction_TwinTwin = lattice_interaction_TwinByTwin(N_tw,&
pl%get_asFloats('h_tw_tw'), &
phase%get_asString('lattice'))
prm%gamma_twin_char = lattice_characteristicShear_twin(N_tw,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
prm%h_tw_tw = lattice_interaction_TwinByTwin(N_tw,&
pl%get_asFloats('h_tw_tw'), &
phase%get_asString('lattice'))
prm%gamma_tw_char = lattice_characteristicShear_twin(N_tw,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
xi_twin_0 = pl%get_asFloats('xi_0_tw',requiredSize=size(N_tw))
xi_0_tw = pl%get_asFloats('xi_0_tw',requiredSize=size(N_tw))
prm%c_1 = pl%get_asFloat('c_1',defaultVal=0.0_pReal)
prm%c_2 = pl%get_asFloat('c_2',defaultVal=1.0_pReal)
prm%c_3 = pl%get_asFloat('c_3',defaultVal=0.0_pReal)
prm%c_4 = pl%get_asFloat('c_4',defaultVal=0.0_pReal)
prm%gdot0_twin = pl%get_asFloat('dot_gamma_0_tw')
prm%n_twin = pl%get_asFloat('n_tw')
prm%spr = pl%get_asFloat('f_sl_sat_tw')
prm%h0_TwinTwin = pl%get_asFloat('h_0_tw_tw')
prm%c_1 = pl%get_asFloat('c_1',defaultVal=0.0_pReal)
prm%c_2 = pl%get_asFloat('c_2',defaultVal=1.0_pReal)
prm%c_3 = pl%get_asFloat('c_3',defaultVal=0.0_pReal)
prm%c_4 = pl%get_asFloat('c_4',defaultVal=0.0_pReal)
prm%dot_gamma_0_tw = pl%get_asFloat('dot_gamma_0_tw')
prm%n_tw = pl%get_asFloat('n_tw')
prm%f_sl_sat_tw = pl%get_asFloat('f_sl_sat_tw')
prm%h_0_tw_tw = pl%get_asFloat('h_0_tw_tw')
! expand: family => system
xi_twin_0 = math_expand(xi_twin_0,N_tw)
xi_0_tw = math_expand(xi_0_tw,N_tw)
! sanity checks
if (prm%gdot0_twin <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_tw'
if (prm%n_twin <= 0.0_pReal) extmsg = trim(extmsg)//' n_tw'
if (prm%dot_gamma_0_tw <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_tw'
if (prm%n_tw <= 0.0_pReal) extmsg = trim(extmsg)//' n_tw'
else twinActive
xi_twin_0 = emptyRealArray
allocate(prm%gamma_twin_char,source=emptyRealArray)
allocate(prm%interaction_TwinTwin(0,0))
xi_0_tw = emptyRealArray
allocate(prm%gamma_tw_char,source=emptyRealArray)
allocate(prm%h_tw_tw(0,0))
endif twinActive
!--------------------------------------------------------------------------------------------------
! slip-twin related parameters
slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then
prm%h0_TwinSlip = pl%get_asFloat('h_0_tw_sl')
prm%interaction_SlipTwin = lattice_interaction_SlipByTwin(N_sl,N_tw,&
pl%get_asFloats('h_sl_tw'), &
phase%get_asString('lattice'))
prm%interaction_TwinSlip = lattice_interaction_TwinBySlip(N_tw,N_sl,&
pl%get_asFloats('h_tw_sl'), &
phase%get_asString('lattice'))
prm%h_0_tw_sl = pl%get_asFloat('h_0_tw_sl')
prm%h_sl_tw = lattice_interaction_SlipByTwin(N_sl,N_tw,&
pl%get_asFloats('h_sl_tw'), &
phase%get_asString('lattice'))
prm%h_tw_sl = lattice_interaction_TwinBySlip(N_tw,N_sl,&
pl%get_asFloats('h_tw_sl'), &
phase%get_asString('lattice'))
else slipAndTwinActive
allocate(prm%interaction_SlipTwin(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0
allocate(prm%interaction_TwinSlip(prm%sum_N_tw,prm%sum_N_sl)) ! at least one dimension is 0
prm%h0_TwinSlip = 0.0_pReal
allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0
allocate(prm%h_tw_sl(prm%sum_N_tw,prm%sum_N_sl)) ! at least one dimension is 0
prm%h_0_tw_sl = 0.0_pReal
endif slipAndTwinActive
!--------------------------------------------------------------------------------------------------
@ -237,7 +237,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
startIndex = 1
endIndex = prm%sum_N_sl
stt%xi_slip => plasticState(p)%state (startIndex:endIndex,:)
stt%xi_slip = spread(xi_slip_0, 2, NipcMyPhase)
stt%xi_slip = spread(xi_0_sl, 2, NipcMyPhase)
dot%xi_slip => plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
@ -245,7 +245,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_tw
stt%xi_twin => plasticState(p)%state (startIndex:endIndex,:)
stt%xi_twin = spread(xi_twin_0, 2, NipcMyPhase)
stt%xi_twin = spread(xi_0_tw, 2, NipcMyPhase)
dot%xi_twin => plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
@ -354,20 +354,20 @@ module subroutine plastic_phenopowerlaw_dotState(Mp,instance,of)
associate(prm => param(instance), stt => state(instance), dot => dotState(instance))
sumGamma = sum(stt%gamma_slip(:,of))
sumF = sum(stt%gamma_twin(:,of)/prm%gamma_twin_char)
sumF = sum(stt%gamma_twin(:,of)/prm%gamma_tw_char)
!--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
c_SlipSlip = prm%h0_slipslip * (1.0_pReal + prm%c_1*sumF** prm%c_2)
c_TwinSlip = prm%h0_TwinSlip * sumGamma**prm%c_3
c_TwinTwin = prm%h0_TwinTwin * sumF**prm%c_4
c_SlipSlip = prm%h_0_sl_sl * (1.0_pReal + prm%c_1*sumF** prm%c_2)
c_TwinSlip = prm%h_0_tw_sl * sumGamma**prm%c_3
c_TwinTwin = prm%h_0_tw_tw * sumF**prm%c_4
!--------------------------------------------------------------------------------------------------
! calculate left and right vectors
left_SlipSlip = 1.0_pReal + prm%H_int
xi_slip_sat_offset = prm%spr*sqrt(sumF)
right_SlipSlip = abs(1.0_pReal-stt%xi_slip(:,of) / (prm%xi_slip_sat+xi_slip_sat_offset)) **prm%a_slip &
* sign(1.0_pReal,1.0_pReal-stt%xi_slip(:,of) / (prm%xi_slip_sat+xi_slip_sat_offset))
left_SlipSlip = 1.0_pReal + prm%h_int
xi_slip_sat_offset = prm%f_sl_sat_tw*sqrt(sumF)
right_SlipSlip = abs(1.0_pReal-stt%xi_slip(:,of) / (prm%xi_inf_sl+xi_slip_sat_offset)) **prm%a_sl &
* sign(1.0_pReal,1.0_pReal-stt%xi_slip(:,of) / (prm%xi_inf_sl+xi_slip_sat_offset))
!--------------------------------------------------------------------------------------------------
! shear rates
@ -378,11 +378,11 @@ module subroutine plastic_phenopowerlaw_dotState(Mp,instance,of)
!--------------------------------------------------------------------------------------------------
! hardening
dot%xi_slip(:,of) = c_SlipSlip * left_SlipSlip * &
matmul(prm%interaction_SlipSlip,dot%gamma_slip(:,of)*right_SlipSlip) &
+ matmul(prm%interaction_SlipTwin,dot%gamma_twin(:,of))
matmul(prm%h_sl_sl,dot%gamma_slip(:,of)*right_SlipSlip) &
+ matmul(prm%h_sl_tw,dot%gamma_twin(:,of))
dot%xi_twin(:,of) = c_TwinSlip * matmul(prm%interaction_TwinSlip,dot%gamma_slip(:,of)) &
+ c_TwinTwin * matmul(prm%interaction_TwinTwin,dot%gamma_twin(:,of))
dot%xi_twin(:,of) = c_TwinSlip * matmul(prm%h_tw_sl,dot%gamma_slip(:,of)) &
+ c_TwinTwin * matmul(prm%h_tw_tw,dot%gamma_twin(:,of))
end associate
end subroutine plastic_phenopowerlaw_dotState
@ -460,29 +460,29 @@ pure subroutine kinetics_slip(Mp,instance,of, &
enddo
where(dNeq0(tau_slip_pos))
gdot_slip_pos = prm%gdot0_slip * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
* sign(abs(tau_slip_pos/stt%xi_slip(:,of))**prm%n_slip, tau_slip_pos)
gdot_slip_pos = prm%dot_gamma_0_sl * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
* sign(abs(tau_slip_pos/stt%xi_slip(:,of))**prm%n_sl, tau_slip_pos)
else where
gdot_slip_pos = 0.0_pReal
end where
where(dNeq0(tau_slip_neg))
gdot_slip_neg = prm%gdot0_slip * 0.5_pReal & ! only used if non-Schmid active, always 1/2
* sign(abs(tau_slip_neg/stt%xi_slip(:,of))**prm%n_slip, tau_slip_neg)
gdot_slip_neg = prm%dot_gamma_0_sl * 0.5_pReal & ! only used if non-Schmid active, always 1/2
* sign(abs(tau_slip_neg/stt%xi_slip(:,of))**prm%n_sl, tau_slip_neg)
else where
gdot_slip_neg = 0.0_pReal
end where
if (present(dgdot_dtau_slip_pos)) then
where(dNeq0(gdot_slip_pos))
dgdot_dtau_slip_pos = gdot_slip_pos*prm%n_slip/tau_slip_pos
dgdot_dtau_slip_pos = gdot_slip_pos*prm%n_sl/tau_slip_pos
else where
dgdot_dtau_slip_pos = 0.0_pReal
end where
endif
if (present(dgdot_dtau_slip_neg)) then
where(dNeq0(gdot_slip_neg))
dgdot_dtau_slip_neg = gdot_slip_neg*prm%n_slip/tau_slip_neg
dgdot_dtau_slip_neg = gdot_slip_neg*prm%n_sl/tau_slip_neg
else where
dgdot_dtau_slip_neg = 0.0_pReal
end where
@ -524,15 +524,15 @@ pure subroutine kinetics_twin(Mp,instance,of,&
enddo
where(tau_twin > 0.0_pReal)
gdot_twin = (1.0_pReal-sum(stt%gamma_twin(:,of)/prm%gamma_twin_char)) & ! only twin in untwinned volume fraction
* prm%gdot0_twin*(abs(tau_twin)/stt%xi_twin(:,of))**prm%n_twin
gdot_twin = (1.0_pReal-sum(stt%gamma_twin(:,of)/prm%gamma_tw_char)) & ! only twin in untwinned volume fraction
* prm%dot_gamma_0_tw*(abs(tau_twin)/stt%xi_twin(:,of))**prm%n_tw
else where
gdot_twin = 0.0_pReal
end where
if (present(dgdot_dtau_twin)) then
where(dNeq0(gdot_twin))
dgdot_dtau_twin = gdot_twin*prm%n_twin/tau_twin
dgdot_dtau_twin = gdot_twin*prm%n_tw/tau_twin
else where
dgdot_dtau_twin = 0.0_pReal
end where

File diff suppressed because it is too large Load Diff

View File

@ -134,7 +134,7 @@ function damage_nonlocal_getDiffusion(ip,el)
damage_nonlocal_getDiffusion = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
damage_nonlocal_getDiffusion = damage_nonlocal_getDiffusion + &
crystallite_push33ToRef(grain,ip,el,lattice_DamageDiffusion(1:3,1:3,material_phaseAt(grain,el)))
crystallite_push33ToRef(grain,ip,el,lattice_D(1:3,1:3,material_phaseAt(grain,el)))
enddo
damage_nonlocal_getDiffusion = &
@ -157,7 +157,7 @@ real(pReal) function damage_nonlocal_getMobility(ip,el)
damage_nonlocal_getMobility = 0.0_pReal
do ipc = 1, homogenization_Ngrains(material_homogenizationAt(el))
damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_DamageMobility(material_phaseAt(ipc,el))
damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_M(material_phaseAt(ipc,el))
enddo
damage_nonlocal_getMobility = damage_nonlocal_getMobility/&

View File

@ -15,7 +15,7 @@ module discretization
discretization_nElem
integer, public, protected, dimension(:), allocatable :: &
discretization_microstructureAt
discretization_materialAt
real(pReal), public, protected, dimension(:,:), allocatable :: &
discretization_IPcoords0, &
@ -37,12 +37,12 @@ contains
!--------------------------------------------------------------------------------------------------
!> @brief stores the relevant information in globally accesible variables
!--------------------------------------------------------------------------------------------------
subroutine discretization_init(microstructureAt,&
subroutine discretization_init(materialAt,&
IPcoords0,NodeCoords0,&
sharedNodesBegin)
integer, dimension(:), intent(in) :: &
microstructureAt
materialAt
real(pReal), dimension(:,:), intent(in) :: &
IPcoords0, &
NodeCoords0
@ -51,10 +51,10 @@ subroutine discretization_init(microstructureAt,&
print'(/,a)', ' <<<+- discretization init -+>>>'; flush(6)
discretization_nElem = size(microstructureAt,1)
discretization_nElem = size(materialAt,1)
discretization_nIP = size(IPcoords0,2)/discretization_nElem
discretization_microstructureAt = microstructureAt
discretization_materialAt = materialAt
discretization_IPcoords0 = IPcoords0
discretization_IPcoords = IPcoords0

View File

@ -181,7 +181,7 @@ program DAMASK_grid
if ((N_def /= N_n) .or. (N_n /= N_t) .or. N_n < 1) & ! sanity check
call IO_error(error_ID=837,el=currentLoadCase,ext_msg = trim(interface_loadFile)) ! error message for incomplete loadcase
newLoadCase%stress%myType='stress'
newLoadCase%stress%myType='p'
field = 1
newLoadCase%ID(field) = FIELD_MECH_ID ! mechanical active by default
thermalActive: if (any(thermal_type == THERMAL_conduction_ID)) then
@ -210,18 +210,16 @@ program DAMASK_grid
temp_maskVector(j) = IO_stringValue(line,chunkPos,i+j) /= '*' ! true if not a *
if (temp_maskVector(j)) temp_valueVector(j) = IO_floatValue(line,chunkPos,i+j) ! read value where applicable
enddo
newLoadCase%deformation%maskLogical = transpose(reshape(temp_maskVector,[ 3,3])) ! logical mask in 3x3 notation
newLoadCase%deformation%maskFloat = merge(ones,zeros,newLoadCase%deformation%maskLogical) ! float (1.0/0.0) mask in 3x3 notation
newLoadCase%deformation%values = math_9to33(temp_valueVector) ! values in 3x3 notation
newLoadCase%deformation%mask = transpose(reshape(temp_maskVector,[ 3,3])) ! mask in 3x3 notation
newLoadCase%deformation%values = math_9to33(temp_valueVector) ! values in 3x3 notation
case('p','stress', 's')
temp_valueVector = 0.0_pReal
do j = 1, 9
temp_maskVector(j) = IO_stringValue(line,chunkPos,i+j) /= '*' ! true if not an asterisk
if (temp_maskVector(j)) temp_valueVector(j) = IO_floatValue(line,chunkPos,i+j) ! read value where applicable
enddo
newLoadCase%stress%maskLogical = transpose(reshape(temp_maskVector,[ 3,3]))
newLoadCase%stress%maskFloat = merge(ones,zeros,newLoadCase%stress%maskLogical)
newLoadCase%stress%values = math_9to33(temp_valueVector)
newLoadCase%stress%mask = transpose(reshape(temp_maskVector,[ 3,3]))
newLoadCase%stress%values = math_9to33(temp_valueVector)
case('t','time','delta') ! increment time
newLoadCase%time = IO_floatValue(line,chunkPos,i+1)
case('n','incs','increments') ! number of increments
@ -268,8 +266,8 @@ program DAMASK_grid
print*, ' drop guessing along trajectory'
if (newLoadCase%deformation%myType == 'l') then
do j = 1, 3
if (any(newLoadCase%deformation%maskLogical(j,1:3) .eqv. .true.) .and. &
any(newLoadCase%deformation%maskLogical(j,1:3) .eqv. .false.)) errorID = 832 ! each row should be either fully or not at all defined
if (any(newLoadCase%deformation%mask(j,1:3) .eqv. .true.) .and. &
any(newLoadCase%deformation%mask(j,1:3) .eqv. .false.)) errorID = 832 ! each row should be either fully or not at all defined
enddo
print*, ' velocity gradient:'
else if (newLoadCase%deformation%myType == 'f') then
@ -278,20 +276,19 @@ program DAMASK_grid
print*, ' deformation gradient rate:'
endif
do i = 1, 3; do j = 1, 3
if(newLoadCase%deformation%maskLogical(i,j)) then
if(newLoadCase%deformation%mask(i,j)) then
write(IO_STDOUT,'(2x,f12.7)',advance='no') newLoadCase%deformation%values(i,j)
else
write(IO_STDOUT,'(2x,12a)',advance='no') ' * '
endif
enddo; write(IO_STDOUT,'(/)',advance='no')
enddo
if (any(newLoadCase%stress%maskLogical .eqv. &
newLoadCase%deformation%maskLogical)) errorID = 831 ! exclusive or masking only
if (any(newLoadCase%stress%maskLogical .and. transpose(newLoadCase%stress%maskLogical) &
.and. (math_I3<1))) errorID = 838 ! no rotation is allowed by stress BC
if (any(newLoadCase%stress%mask .eqv. newLoadCase%deformation%mask)) errorID = 831 ! exclusive or masking only
if (any(newLoadCase%stress%mask .and. transpose(newLoadCase%stress%mask) .and. (math_I3<1))) &
errorID = 838 ! no rotation is allowed by stress BC
print*, ' stress / GPa:'
do i = 1, 3; do j = 1, 3
if(newLoadCase%stress%maskLogical(i,j)) then
if(newLoadCase%stress%mask(i,j)) then
write(IO_STDOUT,'(2x,f12.7)',advance='no') newLoadCase%stress%values(i,j)*1e-9_pReal
else
write(IO_STDOUT,'(2x,12a)',advance='no') ' * '
@ -368,11 +365,7 @@ program DAMASK_grid
timeinc = loadCases(currentLoadCase)%time/real(loadCases(currentLoadCase)%incs,pReal)
else
if (currentLoadCase == 1) then ! 1st load case of logarithmic scale
if (inc == 1) then ! 1st inc of 1st load case of logarithmic scale
timeinc = loadCases(1)%time*(2.0_pReal**real( 1-loadCases(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
else ! not-1st inc of 1st load case of logarithmic scale
timeinc = loadCases(1)%time*(2.0_pReal**real(inc-1-loadCases(1)%incs ,pReal))
endif
timeinc = loadCases(1)%time*(2.0_pReal**real(max(inc-1,1)-loadCases(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
else ! not-1st load case of logarithmic scale
timeinc = time0 * &
( (1.0_pReal + loadCases(currentLoadCase)%time/time0 )**(real( inc ,pReal)/&
@ -432,17 +425,11 @@ program DAMASK_grid
do field = 1, nActiveFields
select case(loadCases(currentLoadCase)%ID(field))
case(FIELD_MECH_ID)
solres(field) = mech_solution (&
incInfo,timeinc,timeIncOld, &
stress_BC = loadCases(currentLoadCase)%stress, &
rotation_BC = loadCases(currentLoadCase)%rot)
solres(field) = mech_solution(incInfo)
case(FIELD_THERMAL_ID)
solres(field) = grid_thermal_spectral_solution(timeinc,timeIncOld)
solres(field) = grid_thermal_spectral_solution(timeinc)
case(FIELD_DAMAGE_ID)
solres(field) = grid_damage_spectral_solution(timeinc,timeIncOld)
solres(field) = grid_damage_spectral_solution(timeinc)
end select
if (.not. solres(field)%converged) exit ! no solution found

View File

@ -56,7 +56,7 @@ subroutine discretization_grid_init(restart)
myGrid !< domain grid of this process
integer, dimension(:), allocatable :: &
microstructureAt
materialAt
integer :: &
j, &
@ -68,9 +68,9 @@ subroutine discretization_grid_init(restart)
print'(/,a)', ' <<<+- discretization_grid init -+>>>'; flush(IO_STDOUT)
if(index(interface_geomFile,'.vtr') /= 0) then
call readVTR(grid,geomSize,origin,microstructureAt)
call readVTR(grid,geomSize,origin,materialAt)
else
call readGeom(grid,geomSize,origin,microstructureAt)
call readGeom(grid,geomSize,origin,materialAt)
endif
print'(/,a,3(i12 ))', ' grid a b c: ', grid
@ -102,15 +102,14 @@ subroutine discretization_grid_init(restart)
!--------------------------------------------------------------------------------------------------
! general discretization
microstructureAt = microstructureAt(product(grid(1:2))*grid3Offset+1: &
product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI
materialAt = materialAt(product(grid(1:2))*grid3Offset+1:product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI
call discretization_init(microstructureAt, &
call discretization_init(materialAt, &
IPcoordinates0(myGrid,mySize,grid3Offset), &
Nodes0(myGrid,mySize,grid3Offset),&
merge((grid(1)+1) * (grid(2)+1) * (grid3+1),& ! write bottom layer
(grid(1)+1) * (grid(2)+1) * grid3,& ! do not write bottom layer (is top of rank-1)
worldrank<1))
merge((grid(1)+1) * (grid(2)+1) * (grid3+1),& ! write top layer...
(grid(1)+1) * (grid(2)+1) * grid3,& ! ...unless not last process
worldrank+1==worldsize))
FEsolving_execElem = [1,product(myGrid)] ! parallel loop bounds set to comprise all elements
FEsolving_execIP = [1,1] ! parallel loop bounds set to comprise the only IP
@ -147,7 +146,7 @@ end subroutine discretization_grid_init
!> @details important variables have an implicit "save" attribute. Therefore, this function is
! supposed to be called only once!
!--------------------------------------------------------------------------------------------------
subroutine readGeom(grid,geomSize,origin,microstructure)
subroutine readGeom(grid,geomSize,origin,material)
integer, dimension(3), intent(out) :: &
grid ! grid (across all processes!)
@ -155,7 +154,7 @@ subroutine readGeom(grid,geomSize,origin,microstructure)
geomSize, & ! size (across all processes!)
origin ! origin (across all processes!)
integer, dimension(:), intent(out), allocatable :: &
microstructure
material
character(len=:), allocatable :: rawData
character(len=65536) :: line
@ -167,7 +166,7 @@ subroutine readGeom(grid,geomSize,origin,microstructure)
startPos, endPos, &
myStat, &
l, & !< line counter
c, & !< counter for # microstructures in line
c, & !< counter for # materials in line
o, & !< order of "to" packing
e, & !< "element", i.e. spectral collocation point
i, j
@ -266,7 +265,7 @@ subroutine readGeom(grid,geomSize,origin,microstructure)
if(any(geomSize < 0.0_pReal)) &
call IO_error(error_ID = 842, ext_msg='size (readGeom)')
allocate(microstructure(product(grid)), source = -1) ! too large in case of MPI (shrink later, not very elegant)
allocate(material(product(grid)), source = -1) ! too large in case of MPI (shrink later, not very elegant)
!--------------------------------------------------------------------------------------------------
! read and interpret content
@ -281,18 +280,18 @@ subroutine readGeom(grid,geomSize,origin,microstructure)
noCompression: if (chunkPos(1) /= 3) then
c = chunkPos(1)
microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)]
material(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)]
else noCompression
compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then
c = IO_intValue(line,chunkPos,1)
microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,3),i = 1,IO_intValue(line,chunkPos,1))]
material(e:e+c-1) = [(IO_intValue(line,chunkPos,3),i = 1,IO_intValue(line,chunkPos,1))]
else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression
c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1
o = merge(+1, -1, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1))
microstructure(e:e+c-1) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
material(e:e+c-1) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
else compression
c = chunkPos(1)
microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)]
material(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)]
endif compression
endif noCompression
@ -308,7 +307,7 @@ end subroutine readGeom
!> @brief Parse vtk rectilinear grid (.vtr)
!> @details https://vtk.org/Wiki/VTK_XML_Formats
!--------------------------------------------------------------------------------------------------
subroutine readVTR(grid,geomSize,origin,microstructure)
subroutine readVTR(grid,geomSize,origin,material)
integer, dimension(3), intent(out) :: &
grid ! grid (across all processes!)
@ -316,7 +315,7 @@ subroutine readVTR(grid,geomSize,origin,microstructure)
geomSize, & ! size (across all processes!)
origin ! origin (across all processes!)
integer, dimension(:), intent(out), allocatable :: &
microstructure
material
character(len=:), allocatable :: fileContent, dataType, headerType
logical :: inFile,inGrid,gotCoordinates,gotCellData,compressed
@ -364,11 +363,9 @@ subroutine readVTR(grid,geomSize,origin,microstructure)
else
if(index(fileContent(startPos:endPos),'<CellData>',kind=pI64) /= 0_pI64) then
gotCellData = .true.
startPos = endPos + 2_pI64
do while (index(fileContent(startPos:endPos),'</CellData>',kind=pI64) == 0_pI64)
endPos = startPos + index(fileContent(startPos:),IO_EOL,kind=pI64) - 2_pI64
if(index(fileContent(startPos:endPos),'<DataArray',kind=pI64) /= 0_pI64 .and. &
getXMLValue(fileContent(startPos:endPos),'Name') == 'materialpoint' ) then
getXMLValue(fileContent(startPos:endPos),'Name') == 'material' ) then
if(getXMLValue(fileContent(startPos:endPos),'format') /= 'binary') &
call IO_error(error_ID = 844, ext_msg='format (materialpoint)')
@ -377,10 +374,11 @@ subroutine readVTR(grid,geomSize,origin,microstructure)
startPos = endPos + 2_pI64
endPos = startPos + index(fileContent(startPos:),IO_EOL,kind=pI64) - 2_pI64
s = startPos + verify(fileContent(startPos:endPos),IO_WHITESPACE,kind=pI64) -1_pI64 ! start (no leading whitespace)
microstructure = as_Int(fileContent(s:endPos),headerType,compressed,dataType)
material = as_Int(fileContent(s:endPos),headerType,compressed,dataType)
exit
endif
startPos = endPos + 2_pI64
endPos = startPos + index(fileContent(startPos:),IO_EOL,kind=pI64) - 2_pI64
enddo
elseif(index(fileContent(startPos:endPos),'<Coordinates>',kind=pI64) /= 0_pI64) then
gotCoordinates = .true.
@ -415,10 +413,10 @@ subroutine readVTR(grid,geomSize,origin,microstructure)
end do
if(.not. allocated(microstructure)) call IO_error(error_ID = 844, ext_msg='materialpoint not found')
if(size(microstructure) /= product(grid)) call IO_error(error_ID = 844, ext_msg='size(materialpoint)')
if(any(geomSize<=0)) call IO_error(error_ID = 844, ext_msg='size')
if(any(grid<1)) call IO_error(error_ID = 844, ext_msg='grid')
if(.not. allocated(material)) call IO_error(error_ID = 844, ext_msg='material data not found')
if(size(material) /= product(grid)) call IO_error(error_ID = 844, ext_msg='size(material)')
if(any(geomSize<=0)) call IO_error(error_ID = 844, ext_msg='size')
if(any(grid<1)) call IO_error(error_ID = 844, ext_msg='grid')
contains

View File

@ -156,11 +156,10 @@ end subroutine grid_damage_spectral_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the spectral damage scheme with internal iterations
!--------------------------------------------------------------------------------------------------
function grid_damage_spectral_solution(timeinc,timeinc_old) result(solution)
function grid_damage_spectral_solution(timeinc) result(solution)
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old !< increment in time of last increment
timeinc !< increment in time for current solution
integer :: i, j, k, cell
type(tSolutionState) :: solution
PetscInt :: devNull
@ -174,7 +173,6 @@ function grid_damage_spectral_solution(timeinc,timeinc_old) result(solution)
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(damage_snes,PETSC_NULL_VEC,solution_vec,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(damage_snes,reason,ierr); CHKERRQ(ierr)

View File

@ -25,63 +25,56 @@ module grid_mech_FEM
implicit none
private
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
type(tSolutionParams) :: params
type, private :: tNumerics
type :: tNumerics
integer :: &
itmin, & !< minimum number of iterations
itmax !< maximum number of iterations
real(pReal) :: &
err_div, &
divTol, &
BCTol, &
eps_div_atol, & !< absolute tolerance for equilibrium
eps_div_rtol, & !< relative tolerance for equilibrium
eps_stress_atol, & !< absolute tolerance for fullfillment of stress BC
eps_stress_rtol !< relative tolerance for fullfillment of stress BC
end type tNumerics
type(tNumerics), private :: num
logical, private:: &
debugRotation
type(tNumerics) :: num ! numerics parameters. Better name?
logical :: debugRotation
!--------------------------------------------------------------------------------------------------
! PETSc data
DM, private :: mech_grid
SNES, private :: mech_snes
Vec, private :: solution_current, solution_lastInc, solution_rate
DM :: mech_grid
SNES :: mech_snes
Vec :: solution_current, solution_lastInc, solution_rate
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), private, dimension(:,:,:,:,:), allocatable :: F, P_current, F_lastInc
real(pReal), private :: detJ
real(pReal), private, dimension(3) :: delta
real(pReal), private, dimension(3,8) :: BMat
real(pReal), private, dimension(8,8) :: HGMat
PetscInt, private :: xstart,ystart,zstart,xend,yend,zend
real(pReal), dimension(:,:,:,:,:), allocatable :: F, P_current, F_lastInc
real(pReal) :: detJ
real(pReal), dimension(3) :: delta
real(pReal), dimension(3,8) :: BMat
real(pReal), dimension(8,8) :: HGMat
PetscInt :: xstart,ystart,zstart,xend,yend,zend
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), private, dimension(3,3) :: &
real(pReal), dimension(3,3) :: &
F_aimDot = 0.0_pReal, & !< assumed rate of average deformation gradient
F_aim = math_I3, & !< current prescribed deformation gradient
F_aim_lastIter = math_I3, &
F_aim_lastInc = math_I3, & !< previous average deformation gradient
P_av = 0.0_pReal !< average 1st Piola--Kirchhoff stress
character(len=:), allocatable, private :: incInfo !< time and increment information
real(pReal), private, dimension(3,3,3,3) :: &
P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress
P_aim = 0.0_pReal
character(len=:), allocatable :: incInfo !< time and increment information
real(pReal), dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
S = 0.0_pReal !< current compliance (filled up with zeros)
real(pReal), private :: &
real(pReal) :: &
err_BC !< deviation from stress BC
integer, private :: &
integer :: &
totalIter = 0 !< total iteration in current increment
public :: &
@ -99,7 +92,6 @@ contains
subroutine grid_mech_FEM_init
real(pReal) :: HGCoeff = 0.0e-2_pReal
PetscInt, dimension(0:worldsize-1) :: localK
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
real(pReal), dimension(4,8) :: &
@ -111,33 +103,34 @@ subroutine grid_mech_FEM_init
-1.0_pReal, 1.0_pReal,-1.0_pReal,-1.0_pReal, &
1.0_pReal,-1.0_pReal,-1.0_pReal,-1.0_pReal, &
1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal], [4,8])
real(pReal), dimension(3,3,3,3) :: devNull
PetscErrorCode :: ierr
PetscScalar, pointer, dimension(:,:,:,:) :: &
u_current,u_lastInc
PetscInt, dimension(0:worldsize-1) :: localK
integer(HID_T) :: fileHandle, groupHandle
character(len=pStringLen) :: &
fileName
class(tNode), pointer :: &
num_grid, &
debug_grid
real(pReal), dimension(3,3,3,3) :: devNull
PetscScalar, pointer, dimension(:,:,:,:) :: &
u_current,u_lastInc
print'(/,a)', ' <<<+- grid_mech_FEM init -+>>>'; flush(IO_STDOUT)
!-----------------------------------------------------------------------------------------------
!-------------------------------------------------------------------------------------------------
! debugging options
debug_grid => config_debug%get('grid', defaultVal=emptyList)
debugRotation = debug_grid%contains('rotation')
!-------------------------------------------------------------------------------------------------
! read numerical parameters and do sanity checks
num_grid => config_numerics%get('grid',defaultVal=emptyDict)
num%eps_div_atol = num_grid%get_asFloat ('eps_div_atol', defaultVal=1.0e-4_pReal)
num%eps_div_rtol = num_grid%get_asFloat ('eps_div_rtol', defaultVal=5.0e-4_pReal)
num%eps_stress_atol = num_grid%get_asFloat ('eps_stress_atol', defaultVal=1.0e3_pReal)
num%eps_stress_rtol = num_grid%get_asFloat ('eps_stress_rtol', defaultVal=0.01_pReal)
num%itmin = num_grid%get_asInt ('itmin',defaultVal=1)
num%itmax = num_grid%get_asInt ('itmax',defaultVal=250)
num%eps_div_atol = num_grid%get_asFloat('eps_div_atol', defaultVal=1.0e-4_pReal)
num%eps_div_rtol = num_grid%get_asFloat('eps_div_rtol', defaultVal=5.0e-4_pReal)
num%eps_stress_atol = num_grid%get_asFloat('eps_stress_atol',defaultVal=1.0e3_pReal)
num%eps_stress_rtol = num_grid%get_asFloat('eps_stress_rtol',defaultVal=1.0e-3_pReal)
num%itmin = num_grid%get_asInt ('itmin', defaultVal=1)
num%itmax = num_grid%get_asInt ('itmax', defaultVal=250)
if (num%eps_div_atol <= 0.0_pReal) call IO_error(301,ext_msg='eps_div_atol')
if (num%eps_div_rtol < 0.0_pReal) call IO_error(301,ext_msg='eps_div_rtol')
@ -242,6 +235,7 @@ subroutine grid_mech_FEM_init
F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity
F = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3)
endif restartRead
materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
call utilities_updateCoords(F)
call utilities_constitutiveResponse(P_current,temp33_Real,C_volAvg,devNull, & ! stress field, stress avg, global average of stiffness and (min+max)/2
@ -268,19 +262,12 @@ end subroutine grid_mech_FEM_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the FEM scheme with internal iterations
!--------------------------------------------------------------------------------------------------
function grid_mech_FEM_solution(incInfoIn,timeinc,timeinc_old,stress_BC,rotation_BC) result(solution)
function grid_mech_FEM_solution(incInfoIn) result(solution)
!--------------------------------------------------------------------------------------------------
! input data for solution
character(len=*), intent(in) :: &
incInfoIn
real(pReal), intent(in) :: &
timeinc, & !< time increment of current solution
timeinc_old !< time increment of last successful increment
type(tBoundaryCondition), intent(in) :: &
stress_BC
type(rotation), intent(in) :: &
rotation_BC
type(tSolutionState) :: &
solution
!--------------------------------------------------------------------------------------------------
@ -292,14 +279,7 @@ function grid_mech_FEM_solution(incInfoIn,timeinc,timeinc_old,stress_BC,rotation
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = utilities_maskedCompliance(rotation_BC,stress_BC%maskLogical,C_volAvg)
!--------------------------------------------------------------------------------------------------
! set module wide available data
params%stress_mask = stress_BC%maskFloat
params%stress_BC = stress_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
S = utilities_maskedCompliance(params%rotation_BC,params%stress_mask,C_volAvg)
!--------------------------------------------------------------------------------------------------
! solve BVP
@ -341,6 +321,14 @@ subroutine grid_mech_FEM_forward(cutBack,guess,timeinc,timeinc_old,loadCaseTime,
PetscScalar, pointer, dimension(:,:,:,:) :: &
u_current,u_lastInc
!--------------------------------------------------------------------------------------------------
! set module wide available data
params%stress_mask = stress_BC%mask
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
call DMDAVecGetArrayF90(mech_grid,solution_current,u_current,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(mech_grid,solution_lastInc,u_lastInc,ierr); CHKERRQ(ierr)
@ -349,20 +337,20 @@ subroutine grid_mech_FEM_forward(cutBack,guess,timeinc,timeinc_old,loadCaseTime,
else
C_volAvgLastInc = C_volAvg
F_aimDot = merge(stress_BC%maskFloat*(F_aim-F_aim_lastInc)/timeinc_old, 0.0_pReal, guess)
F_aimDot = merge(merge((F_aim-F_aim_lastInc)/timeinc_old,0.0_pReal,stress_BC%mask), 0.0_pReal, guess)
F_aim_lastInc = F_aim
!-----------------------------------------------------------------------------------------------
! calculate rate for aim
if (deformation_BC%myType=='l') then ! calculate F_aimDot from given L and current F
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * matmul(deformation_BC%values, F_aim_lastInc)
F_aimDot = F_aimDot &
+ merge(matmul(deformation_BC%values, F_aim_lastInc),.0_pReal,deformation_BC%mask)
elseif(deformation_BC%myType=='fdot') then ! F_aimDot is prescribed
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * deformation_BC%values
F_aimDot = F_aimDot &
+ merge(deformation_BC%values,.0_pReal,deformation_BC%mask)
elseif (deformation_BC%myType=='f') then ! aim at end of load case is prescribed
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * (deformation_BC%values - F_aim_lastInc)/loadCaseTime
F_aimDot = F_aimDot &
+ merge((deformation_BC%values - F_aim_lastInc)/loadCaseTime,.0_pReal,deformation_BC%mask)
endif
if (guess) then
@ -382,6 +370,12 @@ subroutine grid_mech_FEM_forward(cutBack,guess,timeinc,timeinc_old,loadCaseTime,
!--------------------------------------------------------------------------------------------------
! update average and local deformation gradients
F_aim = F_aim_lastInc + F_aimDot * timeinc
if (stress_BC%myType=='p') then
P_aim = P_aim + merge((stress_BC%values - P_aim)/loadCaseTime*timeinc,.0_pReal,stress_BC%mask)
elseif (stress_BC%myType=='pdot') then !UNTESTED
P_aim = P_aim + merge(stress_BC%values*timeinc,.0_pReal,stress_BC%mask)
endif
call VecAXPY(solution_current,timeinc,solution_rate,ierr); CHKERRQ(ierr)
call DMDAVecRestoreArrayF90(mech_grid,solution_current,u_current,ierr);CHKERRQ(ierr)
@ -497,8 +491,6 @@ subroutine formResidual(da_local,x_local, &
PetscScalar, pointer,dimension(:,:,:,:) :: x_scal, f_scal
PetscScalar, dimension(8,3) :: x_elem, f_elem
PetscInt :: i, ii, j, jj, k, kk, ctr, ele
real(pReal), dimension(3,3) :: &
deltaF_aim
PetscInt :: &
PETScIter, &
nfuncs
@ -547,10 +539,8 @@ subroutine formResidual(da_local,x_local, &
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim_lastIter = F_aim
deltaF_aim = math_mul3333xx33(S, P_av - params%stress_BC)
F_aim = F_aim - deltaF_aim
err_BC = maxval(abs(params%stress_mask * (P_av - params%stress_BC))) ! mask = 0.0 when no stress bc
F_aim = F_aim - math_mul3333xx33(S, P_av - P_aim) ! S = 0.0 for no bc
err_BC = maxval(abs(merge(P_av - P_aim,.0_pReal,params%stress_mask)))
!--------------------------------------------------------------------------------------------------
! constructing residual

View File

@ -24,11 +24,9 @@ module grid_mech_spectral_basic
implicit none
private
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams) :: params
type, private :: tNumerics
type :: tNumerics
logical :: update_gamma !< update gamma operator with current stiffness
integer :: &
itmin, & !< minimum number of iterations
@ -42,7 +40,7 @@ module grid_mech_spectral_basic
type(tNumerics) :: num ! numerics parameters. Better name?
logical, private :: debugRotation
logical :: debugRotation
!--------------------------------------------------------------------------------------------------
! PETSc data
@ -62,10 +60,10 @@ module grid_mech_spectral_basic
F_aimDot = 0.0_pReal, & !< assumed rate of average deformation gradient
F_aim = math_I3, & !< current prescribed deformation gradient
F_aim_lastInc = math_I3, & !< previous average deformation gradient
P_av = 0.0_pReal !< average 1st Piola--Kirchhoff stress
P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress
P_aim = 0.0_pReal
character(len=:), allocatable :: incInfo !< time and increment information
real(pReal), private, dimension(3,3,3,3) :: &
real(pReal), dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness
@ -96,18 +94,17 @@ subroutine grid_mech_spectral_basic_init
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
class (tNode), pointer :: &
num_grid, &
debug_grid
PetscErrorCode :: ierr
PetscScalar, pointer, dimension(:,:,:,:) :: &
F ! pointer to solution data
PetscInt, dimension(worldsize) :: localK
PetscInt, dimension(0:worldsize-1) :: localK
integer(HID_T) :: fileHandle, groupHandle
integer :: fileUnit
character(len=pStringLen) :: &
fileName
class (tNode), pointer :: &
num_grid, &
debug_grid
print'(/,a)', ' <<<+- grid_mech_spectral_basic init -+>>>'; flush(IO_STDOUT)
@ -126,13 +123,13 @@ subroutine grid_mech_spectral_basic_init
! read numerical parameters and do sanity checks
num_grid => config_numerics%get('grid',defaultVal=emptyDict)
num%update_gamma = num_grid%get_asBool ('update_gamma', defaultVal=.false.)
num%eps_div_atol = num_grid%get_asFloat ('eps_div_atol', defaultVal=1.0e-4_pReal)
num%eps_div_rtol = num_grid%get_asFloat ('eps_div_rtol', defaultVal=5.0e-4_pReal)
num%eps_stress_atol = num_grid%get_asFloat ('eps_stress_atol',defaultVal=1.0e3_pReal)
num%eps_stress_rtol = num_grid%get_asFloat ('eps_stress_rtol',defaultVal=0.01_pReal)
num%itmin = num_grid%get_asInt ('itmin',defaultVal=1)
num%itmax = num_grid%get_asInt ('itmax',defaultVal=250)
num%update_gamma = num_grid%get_asBool ('update_gamma', defaultVal=.false.)
num%eps_div_atol = num_grid%get_asFloat ('eps_div_atol', defaultVal=1.0e-4_pReal)
num%eps_div_rtol = num_grid%get_asFloat ('eps_div_rtol', defaultVal=5.0e-4_pReal)
num%eps_stress_atol = num_grid%get_asFloat ('eps_stress_atol',defaultVal=1.0e3_pReal)
num%eps_stress_rtol = num_grid%get_asFloat ('eps_stress_rtol',defaultVal=1.0e-3_pReal)
num%itmin = num_grid%get_asInt ('itmin',defaultVal=1)
num%itmax = num_grid%get_asInt ('itmax',defaultVal=250)
if (num%eps_div_atol <= 0.0_pReal) call IO_error(301,ext_msg='eps_div_atol')
if (num%eps_div_rtol < 0.0_pReal) call IO_error(301,ext_msg='eps_div_rtol')
@ -158,7 +155,7 @@ subroutine grid_mech_spectral_basic_init
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr)
localK = 0
localK(worldrank+1) = grid3
localK(worldrank) = grid3
call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,PETSC_COMM_WORLD,ierr)
call DMDACreate3d(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
@ -202,8 +199,8 @@ subroutine grid_mech_spectral_basic_init
endif restartRead
materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
call Utilities_updateCoords(reshape(F,shape(F_lastInc)))
call Utilities_constitutiveResponse(P,temp33_Real,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2
call utilities_updateCoords(reshape(F,shape(F_lastInc)))
call utilities_constitutiveResponse(P,temp33_Real,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2
reshape(F,shape(F_lastInc)), & ! target F
0.0_pReal) ! time increment
call DMDAVecRestoreArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr) ! deassociate pointer
@ -231,19 +228,12 @@ end subroutine grid_mech_spectral_basic_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the basic scheme with internal iterations
!--------------------------------------------------------------------------------------------------
function grid_mech_spectral_basic_solution(incInfoIn,timeinc,timeinc_old,stress_BC,rotation_BC) result(solution)
function grid_mech_spectral_basic_solution(incInfoIn) result(solution)
!--------------------------------------------------------------------------------------------------
! input data for solution
character(len=*), intent(in) :: &
incInfoIn
real(pReal), intent(in) :: &
timeinc, & !< time increment of current solution
timeinc_old !< time increment of last successful increment
type(tBoundaryCondition), intent(in) :: &
stress_BC
type(rotation), intent(in) :: &
rotation_BC
type(tSolutionState) :: &
solution
!--------------------------------------------------------------------------------------------------
@ -255,17 +245,9 @@ function grid_mech_spectral_basic_solution(incInfoIn,timeinc,timeinc_old,stress_
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = utilities_maskedCompliance(rotation_BC,stress_BC%maskLogical,C_volAvg)
S = utilities_maskedCompliance(params%rotation_BC,params%stress_mask,C_volAvg)
if(num%update_gamma) call utilities_updateGamma(C_minMaxAvg)
!--------------------------------------------------------------------------------------------------
! set module wide available data
params%stress_mask = stress_BC%maskFloat
params%stress_BC = stress_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
!--------------------------------------------------------------------------------------------------
! solve BVP
call SNESsolve(snes,PETSC_NULL_VEC,solution_vec,ierr); CHKERRQ(ierr)
@ -303,7 +285,14 @@ subroutine grid_mech_spectral_basic_forward(cutBack,guess,timeinc,timeinc_old,lo
type(rotation), intent(in) :: &
rotation_BC
PetscErrorCode :: ierr
PetscScalar, dimension(:,:,:,:), pointer :: F
PetscScalar, pointer, dimension(:,:,:,:) :: F
!--------------------------------------------------------------------------------------------------
! set module wide available data
params%stress_mask = stress_BC%mask
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
call DMDAVecGetArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr)
@ -314,20 +303,20 @@ subroutine grid_mech_spectral_basic_forward(cutBack,guess,timeinc,timeinc_old,lo
C_volAvgLastInc = C_volAvg
C_minMaxAvgLastInc = C_minMaxAvg
F_aimDot = merge(stress_BC%maskFloat*(F_aim-F_aim_lastInc)/timeinc_old, 0.0_pReal, guess)
F_aimDot = merge(merge((F_aim-F_aim_lastInc)/timeinc_old,0.0_pReal,stress_BC%mask), 0.0_pReal, guess)
F_aim_lastInc = F_aim
!-----------------------------------------------------------------------------------------------
! calculate rate for aim
if (deformation_BC%myType=='l') then ! calculate F_aimDot from given L and current F
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * matmul(deformation_BC%values, F_aim_lastInc)
F_aimDot = F_aimDot &
+ merge(matmul(deformation_BC%values, F_aim_lastInc),.0_pReal,deformation_BC%mask)
elseif(deformation_BC%myType=='fdot') then ! F_aimDot is prescribed
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * deformation_BC%values
F_aimDot = F_aimDot &
+ merge(deformation_BC%values,.0_pReal,deformation_BC%mask)
elseif (deformation_BC%myType=='f') then ! aim at end of load case is prescribed
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * (deformation_BC%values - F_aim_lastInc)/loadCaseTime
F_aimDot = F_aimDot &
+ merge((deformation_BC%values - F_aim_lastInc)/loadCaseTime,.0_pReal,deformation_BC%mask)
endif
Fdot = utilities_calculateRate(guess, &
@ -341,7 +330,13 @@ subroutine grid_mech_spectral_basic_forward(cutBack,guess,timeinc,timeinc_old,lo
!--------------------------------------------------------------------------------------------------
! update average and local deformation gradients
F_aim = F_aim_lastInc + F_aimDot * timeinc
F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot, & ! estimate of F at end of time+timeinc that matches rotated F_aim on average
if (stress_BC%myType=='p') then
P_aim = P_aim + merge((stress_BC%values - P_aim)/loadCaseTime*timeinc,.0_pReal,stress_BC%mask)
elseif (stress_BC%myType=='pdot') then !UNTESTED
P_aim = P_aim + merge(stress_BC%values*timeinc,.0_pReal,stress_BC%mask)
endif
F = reshape(utilities_forwardField(timeinc,F_lastInc,Fdot, & ! estimate of F at end of time+timeinc that matches rotated F_aim on average
rotation_BC%rotate(F_aim,active=.true.)),[9,grid(1),grid(2),grid3])
call DMDAVecRestoreArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr)
@ -375,7 +370,7 @@ subroutine grid_mech_spectral_basic_restartWrite
call DMDAVecGetArrayF90(da,solution_vec,F,ierr); CHKERRQ(ierr)
print'(a)', ' writing solver data required for restart to file'; flush(IO_STDOUT)
print*, 'writing solver data required for restart to file'; flush(IO_STDOUT)
write(fileName,'(a,a,i0,a)') trim(getSolverJobName()),'_',worldrank,'.hdf5'
fileHandle = HDF5_openFile(fileName,'w')
@ -469,6 +464,7 @@ subroutine formResidual(in, F, &
call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr)
if (nfuncs == 0 .and. PETScIter == 0) totalIter = -1 ! new increment
!--------------------------------------------------------------------------------------------------
! begin of new iteration
newIteration: if (totalIter <= PETScIter) then
@ -491,16 +487,16 @@ subroutine formResidual(in, F, &
!--------------------------------------------------------------------------------------------------
! stress BC handling
deltaF_aim = math_mul3333xx33(S, P_av - params%stress_BC)
deltaF_aim = math_mul3333xx33(S, P_av - P_aim) ! S = 0.0 for no bc
F_aim = F_aim - deltaF_aim
err_BC = maxval(abs(params%stress_mask * (P_av - params%stress_BC))) ! mask = 0.0 when no stress bc
err_BC = maxval(abs(merge(P_av - P_aim,.0_pReal,params%stress_mask)))
!--------------------------------------------------------------------------------------------------
! updated deformation gradient using fix point algorithm of basic scheme
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = residuum ! store fPK field for subsequent FFT forward transform
call utilities_FFTtensorForward ! FFT forward of global "tensorField_real"
err_div = Utilities_divergenceRMS() ! divRMS of tensorField_fourier for later use
err_div = utilities_divergenceRMS() ! divRMS of tensorField_fourier for later use
call utilities_fourierGammaConvolution(params%rotation_BC%rotate(deltaF_aim,active=.true.)) ! convolution of Gamma and tensorField_fourier
call utilities_FFTtensorBackward ! FFT backward of global tensorField_fourier

View File

@ -15,7 +15,6 @@ module grid_mech_spectral_polarisation
use DAMASK_interface
use HDF5_utilities
use math
use rotations
use spectral_utilities
use FEsolving
use config
@ -25,8 +24,6 @@ module grid_mech_spectral_polarisation
implicit none
private
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams) :: params
type :: tNumerics
@ -48,7 +45,7 @@ module grid_mech_spectral_polarisation
type(tNumerics) :: num ! numerics parameters. Better name?
logical, private :: debugRotation
logical :: debugRotation
!--------------------------------------------------------------------------------------------------
! PETSc data
@ -71,8 +68,8 @@ module grid_mech_spectral_polarisation
F_aim = math_I3, & !< current prescribed deformation gradient
F_aim_lastInc = math_I3, & !< previous average deformation gradient
F_av = 0.0_pReal, & !< average incompatible def grad field
P_av = 0.0_pReal !< average 1st Piola--Kirchhoff stress
P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress
P_aim = 0.0_pReal
character(len=:), allocatable :: incInfo !< time and increment information
real(pReal), dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
@ -108,10 +105,6 @@ subroutine grid_mech_spectral_polarisation_init
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
class (tNode), pointer :: &
num_grid, &
debug_grid
PetscErrorCode :: ierr
PetscScalar, pointer, dimension(:,:,:,:) :: &
FandF_tau, & ! overall pointer to solution data
@ -122,13 +115,16 @@ subroutine grid_mech_spectral_polarisation_init
integer :: fileUnit
character(len=pStringLen) :: &
fileName
class (tNode), pointer :: &
num_grid, &
debug_grid
print'(/,a)', ' <<<+- grid_mech_spectral_polarisation init -+>>>'; flush(IO_STDOUT)
print*, 'Shanthraj et al., International Journal of Plasticity 66:3145, 2015'
print*, 'https://doi.org/10.1016/j.ijplas.2014.02.006'
!------------------------------------------------------------------------------------------------
!-------------------------------------------------------------------------------------------------
! debugging options
debug_grid => config_debug%get('grid',defaultVal=emptyList)
debugRotation = debug_grid%contains('rotation')
@ -136,17 +132,18 @@ subroutine grid_mech_spectral_polarisation_init
!-------------------------------------------------------------------------------------------------
! read numerical parameters and do sanity checks
num_grid => config_numerics%get('grid',defaultVal=emptyDict)
num%update_gamma = num_grid%get_asBool ('update_gamma', defaultVal=.false.)
num%eps_div_atol = num_grid%get_asFloat ('eps_div_atol', defaultVal=1.0e-4_pReal)
num%eps_div_rtol = num_grid%get_asFloat ('eps_div_rtol', defaultVal=5.0e-4_pReal)
num%eps_curl_atol = num_grid%get_asFloat ('eps_curl_atol', defaultVal=1.0e-10_pReal)
num%eps_curl_rtol = num_grid%get_asFloat ('eps_curl_rtol', defaultVal=5.0e-4_pReal)
num%eps_stress_atol = num_grid%get_asFloat ('eps_stress_atol', defaultVal=1.0e3_pReal)
num%eps_stress_rtol = num_grid%get_asFloat ('eps_stress_rtol', defaultVal=0.01_pReal)
num%itmin = num_grid%get_asInt ('itmin', defaultVal=1)
num%itmax = num_grid%get_asInt ('itmax', defaultVal=250)
num%alpha = num_grid%get_asFloat ('alpha', defaultVal=1.0_pReal)
num%beta = num_grid%get_asFloat ('beta', defaultVal=1.0_pReal)
num%update_gamma = num_grid%get_asBool ('update_gamma', defaultVal=.false.)
num%eps_div_atol = num_grid%get_asFloat('eps_div_atol', defaultVal=1.0e-4_pReal)
num%eps_div_rtol = num_grid%get_asFloat('eps_div_rtol', defaultVal=5.0e-4_pReal)
num%eps_curl_atol = num_grid%get_asFloat('eps_curl_atol', defaultVal=1.0e-10_pReal)
num%eps_curl_rtol = num_grid%get_asFloat('eps_curl_rtol', defaultVal=5.0e-4_pReal)
num%eps_stress_atol = num_grid%get_asFloat('eps_stress_atol',defaultVal=1.0e3_pReal)
num%eps_stress_rtol = num_grid%get_asFloat('eps_stress_rtol',defaultVal=1.0e-3_pReal)
num%itmin = num_grid%get_asInt ('itmin', defaultVal=1)
num%itmax = num_grid%get_asInt ('itmax', defaultVal=250)
num%alpha = num_grid%get_asFloat('alpha', defaultVal=1.0_pReal)
num%beta = num_grid%get_asFloat('beta', defaultVal=1.0_pReal)
if (num%eps_div_atol <= 0.0_pReal) call IO_error(301,ext_msg='eps_div_atol')
if (num%eps_div_rtol < 0.0_pReal) call IO_error(301,ext_msg='eps_div_rtol')
@ -228,8 +225,8 @@ subroutine grid_mech_spectral_polarisation_init
endif restartRead
materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent
call Utilities_updateCoords(reshape(F,shape(F_lastInc)))
call Utilities_constitutiveResponse(P,temp33_Real,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2
call utilities_updateCoords(reshape(F,shape(F_lastInc)))
call utilities_constitutiveResponse(P,temp33_Real,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2
reshape(F,shape(F_lastInc)), & ! target F
0.0_pReal) ! time increment
call DMDAVecRestoreArrayF90(da,solution_vec,FandF_tau,ierr); CHKERRQ(ierr) ! deassociate pointer
@ -259,19 +256,12 @@ end subroutine grid_mech_spectral_polarisation_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the Polarisation scheme with internal iterations
!--------------------------------------------------------------------------------------------------
function grid_mech_spectral_polarisation_solution(incInfoIn,timeinc,timeinc_old,stress_BC,rotation_BC) result(solution)
function grid_mech_spectral_polarisation_solution(incInfoIn) result(solution)
!--------------------------------------------------------------------------------------------------
! input data for solution
character(len=*), intent(in) :: &
incInfoIn
real(pReal), intent(in) :: &
timeinc, & !< time increment of current solution
timeinc_old !< time increment of last successful increment
type(tBoundaryCondition), intent(in) :: &
stress_BC
type(rotation), intent(in) :: &
rotation_BC
type(tSolutionState) :: &
solution
!--------------------------------------------------------------------------------------------------
@ -283,21 +273,13 @@ function grid_mech_spectral_polarisation_solution(incInfoIn,timeinc,timeinc_old,
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = utilities_maskedCompliance(rotation_BC,stress_BC%maskLogical,C_volAvg)
if (num%update_gamma) then
S = utilities_maskedCompliance(params%rotation_BC,params%stress_mask,C_volAvg)
if(num%update_gamma) then
call utilities_updateGamma(C_minMaxAvg)
C_scale = C_minMaxAvg
S_scale = math_invSym3333(C_minMaxAvg)
endif
!--------------------------------------------------------------------------------------------------
! set module wide available data
params%stress_mask = stress_BC%maskFloat
params%stress_BC = stress_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
!--------------------------------------------------------------------------------------------------
! solve BVP
call SNESsolve(snes,PETSC_NULL_VEC,solution_vec,ierr); CHKERRQ(ierr)
@ -335,10 +317,17 @@ subroutine grid_mech_spectral_polarisation_forward(cutBack,guess,timeinc,timeinc
type(rotation), intent(in) :: &
rotation_BC
PetscErrorCode :: ierr
PetscScalar, dimension(:,:,:,:), pointer :: FandF_tau, F, F_tau
PetscScalar, pointer, dimension(:,:,:,:) :: FandF_tau, F, F_tau
integer :: i, j, k
real(pReal), dimension(3,3) :: F_lambda33
!--------------------------------------------------------------------------------------------------
! set module wide available data
params%stress_mask = stress_BC%mask
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
call DMDAVecGetArrayF90(da,solution_vec,FandF_tau,ierr); CHKERRQ(ierr)
F => FandF_tau(0: 8,:,:,:)
F_tau => FandF_tau(9:17,:,:,:)
@ -350,20 +339,20 @@ subroutine grid_mech_spectral_polarisation_forward(cutBack,guess,timeinc,timeinc
C_volAvgLastInc = C_volAvg
C_minMaxAvgLastInc = C_minMaxAvg
F_aimDot = merge(stress_BC%maskFloat*(F_aim-F_aim_lastInc)/timeinc_old, 0.0_pReal, guess)
F_aimDot = merge(merge((F_aim-F_aim_lastInc)/timeinc_old,0.0_pReal,stress_BC%mask), 0.0_pReal, guess)
F_aim_lastInc = F_aim
!-----------------------------------------------------------------------------------------------
! calculate rate for aim
if (deformation_BC%myType=='l') then ! calculate F_aimDot from given L and current F
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * matmul(deformation_BC%values, F_aim_lastInc)
F_aimDot = F_aimDot &
+ merge(matmul(deformation_BC%values, F_aim_lastInc),.0_pReal,deformation_BC%mask)
elseif(deformation_BC%myType=='fdot') then ! F_aimDot is prescribed
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * deformation_BC%values
F_aimDot = F_aimDot &
+ merge(deformation_BC%values,.0_pReal,deformation_BC%mask)
elseif (deformation_BC%myType=='f') then ! aim at end of load case is prescribed
F_aimDot = &
F_aimDot + deformation_BC%maskFloat * (deformation_BC%values - F_aim_lastInc)/loadCaseTime
F_aimDot = F_aimDot &
+ merge((deformation_BC%values - F_aim_lastInc)/loadCaseTime,.0_pReal,deformation_BC%mask)
endif
Fdot = utilities_calculateRate(guess, &
@ -381,6 +370,12 @@ subroutine grid_mech_spectral_polarisation_forward(cutBack,guess,timeinc,timeinc
!--------------------------------------------------------------------------------------------------
! update average and local deformation gradients
F_aim = F_aim_lastInc + F_aimDot * timeinc
if (stress_BC%myType=='p') then
P_aim = P_aim + merge((stress_BC%values - P_aim)/loadCaseTime*timeinc,.0_pReal,stress_BC%mask)
elseif (stress_BC%myType=='pdot') then !UNTESTED
P_aim = P_aim + merge(stress_BC%values*timeinc,.0_pReal,stress_BC%mask)
endif
F = reshape(utilities_forwardField(timeinc,F_lastInc,Fdot, & ! estimate of F at end of time+timeinc that matches rotated F_aim on average
rotation_BC%rotate(F_aim,active=.true.)),&
[9,grid(1),grid(2),grid3])
@ -595,15 +590,15 @@ subroutine formResidual(in, FandF_tau, &
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%stress_BC))) ! S = 0.0 for no bc
err_BC = maxval(abs((1.0_pReal-params%stress_mask) * math_mul3333xx33(C_scale,F_aim &
-params%rotation_BC%rotate(F_av)) + &
params%stress_mask * (P_av-params%stress_BC))) ! mask = 0.0 for no bc
F_aim = F_aim - math_mul3333xx33(S, P_av - P_aim) ! S = 0.0 for no bc
err_BC = maxval(abs(merge(P_av-P_aim, &
math_mul3333xx33(C_scale,F_aim-params%rotation_BC%rotate(F_av)),&
params%stress_mask)))
! calculate divergence
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = residual_F !< stress field in disguise
call utilities_FFTtensorForward
err_div = Utilities_divergenceRMS() !< root mean squared error in divergence of stress
err_div = utilities_divergenceRMS() !< root mean squared error in divergence of stress
!--------------------------------------------------------------------------------------------------
! constructing residual
@ -622,7 +617,7 @@ subroutine formResidual(in, FandF_tau, &
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F
call utilities_FFTtensorForward
err_curl = Utilities_curlRMS()
err_curl = utilities_curlRMS()
end subroutine formResidual

View File

@ -148,11 +148,10 @@ end subroutine grid_thermal_spectral_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the spectral thermal scheme with internal iterations
!--------------------------------------------------------------------------------------------------
function grid_thermal_spectral_solution(timeinc,timeinc_old) result(solution)
function grid_thermal_spectral_solution(timeinc) result(solution)
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old !< increment in time of last increment
timeinc !< increment in time for current solution
integer :: i, j, k, cell
type(tSolutionState) :: solution
PetscInt :: devNull
@ -166,7 +165,6 @@ function grid_thermal_spectral_solution(timeinc,timeinc_old) result(solution)
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(thermal_snes,PETSC_NULL_VEC,solution_vec,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(thermal_snes,reason,ierr); CHKERRQ(ierr)

View File

@ -47,15 +47,15 @@ module spectral_utilities
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:), pointer :: vectorField_fourier !< vector field fourier representation for fftw
real(C_DOUBLE), public, dimension(:,:,:), pointer :: scalarField_real !< scalar field real representation for fftw
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:), pointer :: scalarField_fourier !< scalar field fourier representation for fftw
complex(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method
complex(pReal), private, dimension(:,:,:,:), allocatable :: xi1st !< wave vector field for first derivatives
complex(pReal), private, dimension(:,:,:,:), allocatable :: xi2nd !< wave vector field for second derivatives
real(pReal), private, dimension(3,3,3,3) :: C_ref !< mechanic reference stiffness
complex(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method
complex(pReal), dimension(:,:,:,:), allocatable :: xi1st !< wave vector field for first derivatives
complex(pReal), dimension(:,:,:,:), allocatable :: xi2nd !< wave vector field for second derivatives
real(pReal), dimension(3,3,3,3) :: C_ref !< mechanic reference stiffness
!--------------------------------------------------------------------------------------------------
! plans for FFTW
type(C_PTR), private :: &
type(C_PTR) :: &
planTensorForth, & !< FFTW MPI plan P(x) to P(k)
planTensorBack, & !< FFTW MPI plan F(k) to F(x)
planVectorForth, & !< FFTW MPI plan v(x) to v(k)
@ -65,7 +65,7 @@ module spectral_utilities
!--------------------------------------------------------------------------------------------------
! variables controlling debugging
logical, private :: &
logical :: &
debugGeneral, & !< general debugging of spectral solver
debugRotation, & !< also printing out results in lab frame
debugPETSc !< use some in debug defined options for more verbose PETSc solution
@ -82,10 +82,9 @@ module spectral_utilities
end type tSolutionState
type, public :: tBoundaryCondition !< set of parameters defining a boundary condition
real(pReal), dimension(3,3) :: values = 0.0_pReal, &
maskFloat = 0.0_pReal
logical, dimension(3,3) :: maskLogical = .false.
character(len=pStringLen) :: myType = 'None'
real(pReal), dimension(3,3) :: values = 0.0_pReal
logical, dimension(3,3) :: mask = .false.
character(len=pStringLen) :: myType = 'None'
end type tBoundaryCondition
type, public :: tLoadCase
@ -101,21 +100,21 @@ module spectral_utilities
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
end type tLoadCase
type, public :: tSolutionParams !< @todo use here the type definition for a full loadcase
real(pReal), dimension(3,3) :: stress_mask, stress_BC
type, public :: tSolutionParams
real(pReal), dimension(3,3) :: stress_BC
logical, dimension(3,3) :: stress_mask
type(rotation) :: rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: timeinc, timeincOld
end type tSolutionParams
type, private :: tNumerics
type :: tNumerics
integer :: &
divergence_correction !< scale divergence/curl calculation: [0: no correction, 1: size scaled to 1, 2: size scaled to Npoints]
logical :: &
memory_efficient !< calculate gamma operator on the fly
end type tNumerics
type(tNumerics), private :: num ! numerics parameters. Better name?
type(tNumerics) :: num ! numerics parameters. Better name?
enum, bind(c); enumerator :: &
DERIVATIVE_CONTINUOUS_ID, &
@ -827,7 +826,7 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field
call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field
call materialpoint_stressAndItsTangent(timeinc) ! calculate P field
P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3])
P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P

View File

@ -204,17 +204,14 @@ end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
subroutine materialpoint_stressAndItsTangent(dt)
real(pReal), intent(in) :: dt !< time increment
logical, intent(in) :: updateJaco !< initiating Jacobian update
integer :: &
NiterationHomog, &
NiterationMPstate, &
g, & !< grain number
i, & !< integration point number
e, & !< element number
mySource, &
myNgrains
real(pReal), dimension(discretization_nIP,discretization_nElem) :: &
subFrac, &
@ -225,40 +222,13 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
logical, dimension(2,discretization_nIP,discretization_nElem) :: &
doneAndHappy
#ifdef DEBUG
if (debugHomog%basic) then
print'(/a,i5,1x,i2)', ' << HOMOG >> Material Point start at el ip ', debugHomog%element, debugHomog%ip
print'(a,/,3(12x,3(f14.9,1x)/))', ' << HOMOG >> F0', &
transpose(materialpoint_F0(1:3,1:3,debugHomog%ip,debugHomog%element))
print'(a,/,3(12x,3(f14.9,1x)/))', ' << HOMOG >> F', &
transpose(materialpoint_F(1:3,1:3,debugHomog%ip,debugHomog%element))
endif
#endif
!--------------------------------------------------------------------------------------------------
! initialize restoration points
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1),FEsolving_execIP(2);
do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%state0( :,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%state0( :,material_phasememberAt(g,i,e))
enddo
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e)
crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e)
crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e)
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e)
crystallite_partionedS0(1:3,1:3,g,i,e) = crystallite_S0(1:3,1:3,g,i,e)
enddo
call crystallite_initializeRestorationPoints(i,e)
subFrac(i,e) = 0.0_pReal
converged(i,e) = .false. ! pretend failed step ...
@ -285,44 +255,19 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
any(subStep(FEsolving_execIP(1):FEsolving_execIP(2),&
FEsolving_execElem(1):FEsolving_execElem(2)) > num%subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(myNgrains)
!$OMP PARALLEL DO
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (converged(i,e)) then
#ifdef DEBUG
if (debugHomog%extensive .and. ((e == debugHomog%element .and. i == debugHomog%ip) &
.or. .not. debugHomog%selective)) then
print'(a,f12.8,a,f12.8,a,i8,1x,i2/)', ' << HOMOG >> winding forward from ', &
subFrac(i,e), ' to current subFrac ', &
subFrac(i,e)+subStep(i,e),' in materialpoint_stressAndItsTangent at el ip ',e,i
endif
#endif
!---------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac
subFrac(i,e) = subFrac(i,e) + subStep(i,e)
subStep(i,e) = min(1.0_pReal-subFrac(i,e),num%stepIncreaseHomog*subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (subStep(i,e) > num%subStepMinHomog) then
! wind forward grain starting point
crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fi (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Li (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = crystallite_S (1:3,1:3,1:myNgrains,i,e)
do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%state (:,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%state (:,material_phasememberAt(g,i,e))
enddo
enddo
call crystallite_windForward(i,e)
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
@ -347,32 +292,8 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
else ! cutback makes sense
subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
#ifdef DEBUG
if (debugHomog%extensive .and. ((e == debugHomog%element .and. i == debugHomog%ip) &
.or. .not. debugHomog%selective)) then
print'(a,f12.8,a,i8,1x,i2/)', &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new subStep: ',&
subStep(i,e),' at el ip',e,i
endif
#endif
call crystallite_restore(i,e,subStep(i,e) < 1.0_pReal)
!--------------------------------------------------------------------------------------------------
! restore
if (subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e)
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e)
endif ! maybe protecting everything from overwriting (not only L) makes even more sense
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e)
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e)
crystallite_S (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e)
do g = 1, myNgrains
plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%state( :,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e))
enddo
enddo
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
@ -453,8 +374,6 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
enddo cutBackLooping
if(updateJaco) call crystallite_stressTangent
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
@ -516,11 +435,16 @@ function updateState(subdt,subF,ip,el)
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer :: c
logical, dimension(2) :: updateState
real(pReal) :: dPdFs(3,3,3,3,homogenization_Ngrains(material_homogenizationAt(el)))
updateState = .true.
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do c=1,homogenization_Ngrains(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
enddo
updateState = &
updateState .and. &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
@ -528,7 +452,7 @@ function updateState(subdt,subF,ip,el)
crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),&
subF,&
subdt, &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
dPdFs, &
ip, &
el)
end select chosenHomogenization
@ -562,26 +486,35 @@ subroutine averageStressAndItsTangent(ip,el)
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer :: c
real(pReal) :: dPdFs(3,3,3,3,homogenization_Ngrains(material_homogenizationAt(el)))
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_stressTangent(1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
do c = 1, homogenization_Ngrains(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
enddo
call mech_isostrain_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do c = 1, homogenization_Ngrains(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
enddo
call mech_RGC_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
dPdFs, &
homogenization_typeInstance(material_homogenizationAt(el)))
end select chosenHomogenization

View File

@ -4,20 +4,20 @@
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Relaxed grain cluster (RGC) homogenization scheme
!> Nconstituents is defined as p x q x r (cluster)
!> N_constituents is defined as p x q x r (cluster)
!--------------------------------------------------------------------------------------------------
submodule(homogenization) homogenization_mech_RGC
use rotations
type :: tParameters
integer, dimension(:), allocatable :: &
Nconstituents
N_constituents
real(pReal) :: &
xiAlpha, &
ciAlpha
xi_alpha, &
c_Alpha
real(pReal), dimension(:), allocatable :: &
dAlpha, &
angles
D_alpha, &
a_g
integer :: &
of_debug = 0
character(len=pStringLen), allocatable, dimension(:) :: &
@ -163,20 +163,20 @@ module subroutine mech_RGC_init(num_homogMech)
prm%output = homogMech%get_asStrings('output',defaultVal=emptyStringArray)
#endif
prm%Nconstituents = homogMech%get_asInts('cluster_size',requiredSize=3)
if (homogenization_Ngrains(h) /= product(prm%Nconstituents)) &
prm%N_constituents = homogMech%get_asInts('cluster_size',requiredSize=3)
if (homogenization_Ngrains(h) /= product(prm%N_constituents)) &
call IO_error(211,ext_msg='clustersize (mech_rgc)')
prm%xiAlpha = homogMech%get_asFloat('xi_alpha')
prm%ciAlpha = homogMech%get_asFloat('c_alpha')
prm%xi_alpha = homogMech%get_asFloat('xi_alpha')
prm%c_alpha = homogMech%get_asFloat('c_alpha')
prm%dAlpha = homogMech%get_asFloats('D_alpha', requiredSize=3)
prm%angles = homogMech%get_asFloats('a_g', requiredSize=3)
prm%D_alpha = homogMech%get_asFloats('D_alpha', requiredSize=3)
prm%a_g = homogMech%get_asFloats('a_g', requiredSize=3)
NofMyHomog = count(material_homogenizationAt == h)
nIntFaceTot = 3*( (prm%Nconstituents(1)-1)*prm%Nconstituents(2)*prm%Nconstituents(3) &
+ prm%Nconstituents(1)*(prm%Nconstituents(2)-1)*prm%Nconstituents(3) &
+ prm%Nconstituents(1)*prm%Nconstituents(2)*(prm%Nconstituents(3)-1))
nIntFaceTot = 3*( (prm%N_constituents(1)-1)*prm%N_constituents(2)*prm%N_constituents(3) &
+ prm%N_constituents(1)*(prm%N_constituents(2)-1)*prm%N_constituents(3) &
+ prm%N_constituents(1)*prm%N_constituents(2)*(prm%N_constituents(3)-1))
sizeState = nIntFaceTot &
+ size(['avg constitutive work ','average penalty energy'])
@ -197,8 +197,8 @@ module subroutine mech_RGC_init(num_homogMech)
!--------------------------------------------------------------------------------------------------
! assigning cluster orientations
dependentState(homogenization_typeInstance(h))%orientation = spread(eu2om(prm%angles*inRad),3,NofMyHomog)
!dst%orientation = spread(eu2om(prm%angles*inRad),3,NofMyHomog) ifort version 18.0.1 crashes (for whatever reason)
dependentState(homogenization_typeInstance(h))%orientation = spread(eu2om(prm%a_g*inRad),3,NofMyHomog)
!dst%orientation = spread(eu2om(prm%a_g*inRad),3,NofMyHomog) ifort version 18.0.1 crashes (for whatever reason)
end associate
@ -229,8 +229,8 @@ module subroutine mech_RGC_partitionDeformation(F,avgF,instance,of)
!--------------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
F = 0.0_pReal
do iGrain = 1,product(prm%Nconstituents)
iGrain3 = grain1to3(iGrain,prm%Nconstituents)
do iGrain = 1,product(prm%N_constituents)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! identifying 6 interfaces of each grain
aVect = relaxationVector(intFace,instance,of) ! get the relaxation vectors for each interface from global relaxation vector array
@ -290,7 +290,7 @@ module procedure mech_RGC_updateState
!--------------------------------------------------------------------------------------------------
! get the dimension of the cluster (grains and interfaces)
nGDim = prm%Nconstituents
nGDim = prm%N_constituents
nGrain = product(nGDim)
nIntFaceTot = (nGDim(1)-1)*nGDim(2)*nGDim(3) &
+ nGDim(1)*(nGDim(2)-1)*nGDim(3) &
@ -324,12 +324,12 @@ module procedure mech_RGC_updateState
!------------------------------------------------------------------------------------------------
! computing the residual stress from the balance of traction at all (interior) interfaces
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%Nconstituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
faceID = interface1to4(iNum,param(instance)%N_constituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N)
normN = interfaceNormal(intFaceN,instance,of)
@ -337,7 +337,7 @@ module procedure mech_RGC_updateState
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P)
normP = interfaceNormal(intFaceP,instance,of)
@ -393,7 +393,7 @@ module procedure mech_RGC_updateState
!--------------------------------------------------------------------------------------------------
! compute/update the state for postResult, i.e., all energy densities computed by time-integration
do iGrain = 1,product(prm%Nconstituents)
do iGrain = 1,product(prm%N_constituents)
do i = 1,3;do j = 1,3
stt%work(of) = stt%work(of) &
+ P(i,j,iGrain)*(F(i,j,iGrain) - F0(i,j,iGrain))/real(nGrain,pReal)
@ -450,18 +450,18 @@ module procedure mech_RGC_updateState
! ... of the constitutive stress tangent, assembled from dPdF or material constitutive model "smatrix"
allocate(smatrix(3*nIntFaceTot,3*nIntFaceTot), source=0.0_pReal)
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%Nconstituents) ! assembling of local dPdF into global Jacobian matrix
faceID = interface1to4(iNum,param(instance)%N_constituents) ! assembling of local dPdF into global Jacobian matrix
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate sytem
iGrN = grain3to1(iGr3N,param(instance)%Nconstituents) ! translate into global grain ID
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate into global grain ID
intFaceN = getInterface(2*faceID(1),iGr3N) ! identifying the connecting interface in local coordinate system
normN = interfaceNormal(intFaceN,instance,of)
do iFace = 1,6
intFaceN = getInterface(iFace,iGr3N) ! identifying all interfaces that influence relaxation of the above interface
mornN = interfaceNormal(intFaceN,instance,of)
iMun = interface4to1(intFaceN,param(instance)%Nconstituents) ! translate the interfaces ID into local 4-dimensional index
iMun = interface4to1(intFaceN,param(instance)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) &
@ -476,13 +476,13 @@ module procedure mech_RGC_updateState
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate sytem
iGrP = grain3to1(iGr3P,param(instance)%Nconstituents) ! translate into global grain ID
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate into global grain ID
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identifying the connecting interface in local coordinate system
normP = interfaceNormal(intFaceP,instance,of)
do iFace = 1,6
intFaceP = getInterface(iFace,iGr3P) ! identifying all interfaces that influence relaxation of the above interface
mornP = interfaceNormal(intFaceP,instance,of)
iMun = interface4to1(intFaceP,param(instance)%Nconstituents) ! translate the interfaces ID into local 4-dimensional index
iMun = interface4to1(intFaceP,param(instance)%N_constituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) &
@ -522,12 +522,12 @@ module procedure mech_RGC_updateState
! computing the global stress residual array from the perturbed state
p_resid = 0.0_pReal
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%Nconstituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
faceID = interface1to4(iNum,param(instance)%N_constituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identify the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N) ! identify the interface ID of the grain
normN = interfaceNormal(intFaceN,instance,of)
@ -535,7 +535,7 @@ module procedure mech_RGC_updateState
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identify the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%N_constituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identify the interface ID of the grain
normP = interfaceNormal(intFaceP,instance,of)
@ -664,7 +664,7 @@ module procedure mech_RGC_updateState
real(pReal) :: muGrain,muGNghb,nDefNorm,bgGrain,bgGNghb
real(pReal), parameter :: nDefToler = 1.0e-10_pReal
nGDim = param(instance)%Nconstituents
nGDim = param(instance)%N_constituents
rPen = 0.0_pReal
nMis = 0.0_pReal
@ -685,11 +685,11 @@ module procedure mech_RGC_updateState
!-----------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains
grainLoop: do iGrain = 1,product(prm%Nconstituents)
grainLoop: do iGrain = 1,product(prm%N_constituents)
Gmoduli = equivalentModuli(iGrain,ip,el)
muGrain = Gmoduli(1) ! collecting the equivalent shear modulus of grain
bgGrain = Gmoduli(2) ! and the lengthh of Burgers vector
iGrain3 = grain1to3(iGrain,prm%Nconstituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position
iGrain3 = grain1to3(iGrain,prm%N_constituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position
interfaceLoop: do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! get the 4-dimensional index of the interface in local numbering system of the grain
@ -699,7 +699,7 @@ module procedure mech_RGC_updateState
+ int(real(intFace(1),pReal)/real(abs(intFace(1)),pReal))
where(iGNghb3 < 1) iGNghb3 = nGDim
where(iGNghb3 >nGDim) iGNghb3 = 1
iGNghb = grain3to1(iGNghb3,prm%Nconstituents) ! get the ID of the neighboring grain
iGNghb = grain3to1(iGNghb3,prm%N_constituents) ! get the ID of the neighboring grain
Gmoduli = equivalentModuli(iGNghb,ip,el) ! collect the shear modulus and Burgers vector of the neighbor
muGNghb = Gmoduli(1)
bgGNghb = Gmoduli(2)
@ -728,9 +728,9 @@ module procedure mech_RGC_updateState
!-------------------------------------------------------------------------------------------
! compute the stress penalty of all interfaces
do i = 1,3; do j = 1,3; do k = 1,3; do l = 1,3
rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*bgGrain + muGNghb*bgGNghb)*prm%xiAlpha &
*surfCorr(abs(intFace(1)))/prm%dAlpha(abs(intFace(1))) &
*cosh(prm%ciAlpha*nDefNorm) &
rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*bgGrain + muGNghb*bgGNghb)*prm%xi_alpha &
*surfCorr(abs(intFace(1)))/prm%D_alpha(abs(intFace(1))) &
*cosh(prm%c_alpha*nDefNorm) &
*0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_LeviCivita(k,l,j) &
*tanh(nDefNorm/num%xSmoo)
enddo; enddo;enddo; enddo
@ -885,8 +885,8 @@ module procedure mech_RGC_updateState
associate(prm => param(instance))
F = 0.0_pReal
do iGrain = 1,product(prm%Nconstituents)
iGrain3 = grain1to3(iGrain,prm%Nconstituents)
do iGrain = 1,product(prm%N_constituents)
iGrain3 = grain1to3(iGrain,prm%N_constituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3)
aVect = relaxationVector(intFace,instance,of)
@ -916,8 +916,8 @@ module subroutine mech_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,ins
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
avgP = sum(P,3) /real(product(param(instance)%Nconstituents),pReal)
dAvgPdAvgF = sum(dPdF,5)/real(product(param(instance)%Nconstituents),pReal)
avgP = sum(P,3) /real(product(param(instance)%N_constituents),pReal)
dAvgPdAvgF = sum(dPdF,5)/real(product(param(instance)%N_constituents),pReal)
end subroutine mech_RGC_averageStressAndItsTangent
@ -975,7 +975,7 @@ pure function relaxationVector(intFace,instance,of)
!--------------------------------------------------------------------------------------------------
! collect the interface relaxation vector from the global state array
iNum = interface4to1(intFace,param(instance)%Nconstituents) ! identify the position of the interface in global state array
iNum = interface4to1(intFace,param(instance)%N_constituents) ! identify the position of the interface in global state array
if (iNum > 0) then
relaxationVector = state(instance)%relaxationVector((3*iNum-2):(3*iNum),of)
else

View File

@ -13,7 +13,7 @@ submodule(homogenization) homogenization_mech_isostrain
type :: tParameters !< container type for internal constitutive parameters
integer :: &
Nconstituents
N_constituents
integer(kind(average_ID)) :: &
mapping
end type
@ -51,7 +51,7 @@ module subroutine mech_isostrain_init
homogMech => homog%get('mech')
associate(prm => param(homogenization_typeInstance(h)))
prm%Nconstituents = homogMech%get_asInt('N_constituents')
prm%N_constituents = homogMech%get_asInt('N_constituents')
select case(homogMech%get_asString('mapping',defaultVal = 'sum'))
case ('sum')
prm%mapping = parallel_ID
@ -107,8 +107,8 @@ module subroutine mech_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dP
avgP = sum(P,3)
dAvgPdAvgF = sum(dPdF,5)
case (average_ID)
avgP = sum(P,3) /real(prm%Nconstituents,pReal)
dAvgPdAvgF = sum(dPdF,5)/real(prm%Nconstituents,pReal)
avgP = sum(P,3) /real(prm%N_constituents,pReal)
dAvgPdAvgF = sum(dPdF,5)/real(prm%N_constituents,pReal)
end select
end associate

View File

@ -12,10 +12,10 @@ submodule(constitutive:constitutive_damage) kinematics_cleavage_opening
integer :: &
sum_N_cl !< total number of cleavage planes
real(pReal) :: &
sdot0, & !< opening rate of cleavage planes
n !< damage rate sensitivity
dot_o, & !< opening rate of cleavage planes
q !< damage rate sensitivity
real(pReal), dimension(:), allocatable :: &
critLoad
g_crit
real(pReal), dimension(:,:,:,:), allocatable :: &
cleavage_systems
end type tParameters
@ -70,21 +70,21 @@ module function kinematics_cleavage_opening_init(kinematics_length) result(myKin
N_cl = kinematic_type%get_asInts('N_cl')
prm%sum_N_cl = sum(abs(N_cl))
prm%n = kinematic_type%get_asFloat('q')
prm%sdot0 = kinematic_type%get_asFloat('dot_o')
prm%q = kinematic_type%get_asFloat('q')
prm%dot_o = kinematic_type%get_asFloat('dot_o')
prm%critLoad = kinematic_type%get_asFloats('g_crit',requiredSize=size(N_cl))
prm%g_crit = kinematic_type%get_asFloats('g_crit',requiredSize=size(N_cl))
prm%cleavage_systems = lattice_SchmidMatrix_cleavage(N_cl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
! expand: family => system
prm%critLoad = math_expand(prm%critLoad,N_cl)
prm%g_crit = math_expand(prm%g_crit,N_cl)
! sanity checks
if (prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%sdot0 <= 0.0_pReal) extmsg = trim(extmsg)//' dot_o'
if (any(prm%critLoad < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%dot_o <= 0.0_pReal) extmsg = trim(extmsg)//' dot_o'
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
!--------------------------------------------------------------------------------------------------
! exit if any parameter is out of range
@ -128,13 +128,13 @@ module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S,
dLd_dTstar = 0.0_pReal
associate(prm => param(kinematics_cleavage_opening_instance(material_phaseAt(ipc,el))))
do i = 1,prm%sum_N_cl
traction_crit = prm%critLoad(i)* damage(homog)%p(damageOffset)**2.0_pReal
traction_crit = prm%g_crit(i)* damage(homog)%p(damageOffset)**2.0_pReal
traction_d = math_tensordot(S,prm%cleavage_systems(1:3,1:3,1,i))
if (abs(traction_d) > traction_crit + tol_math_check) then
udotd = sign(1.0_pReal,traction_d)* prm%sdot0 * ((abs(traction_d) - traction_crit)/traction_crit)**prm%n
udotd = sign(1.0_pReal,traction_d)* prm%dot_o * ((abs(traction_d) - traction_crit)/traction_crit)**prm%q
Ld = Ld + udotd*prm%cleavage_systems(1:3,1:3,1,i)
dudotd_dt = sign(1.0_pReal,traction_d)*udotd*prm%n / (abs(traction_d) - traction_crit)
dudotd_dt = sign(1.0_pReal,traction_d)*udotd*prm%q / (abs(traction_d) - traction_crit)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) &
+ dudotd_dt*prm%cleavage_systems(k,l,1,i) * prm%cleavage_systems(m,n,1,i)
@ -142,9 +142,9 @@ module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S,
traction_t = math_tensordot(S,prm%cleavage_systems(1:3,1:3,2,i))
if (abs(traction_t) > traction_crit + tol_math_check) then
udott = sign(1.0_pReal,traction_t)* prm%sdot0 * ((abs(traction_t) - traction_crit)/traction_crit)**prm%n
udott = sign(1.0_pReal,traction_t)* prm%dot_o * ((abs(traction_t) - traction_crit)/traction_crit)**prm%q
Ld = Ld + udott*prm%cleavage_systems(1:3,1:3,2,i)
dudott_dt = sign(1.0_pReal,traction_t)*udott*prm%n / (abs(traction_t) - traction_crit)
dudott_dt = sign(1.0_pReal,traction_t)*udott*prm%q / (abs(traction_t) - traction_crit)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) &
+ dudott_dt*prm%cleavage_systems(k,l,2,i) * prm%cleavage_systems(m,n,2,i)
@ -152,9 +152,9 @@ module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S,
traction_n = math_tensordot(S,prm%cleavage_systems(1:3,1:3,3,i))
if (abs(traction_n) > traction_crit + tol_math_check) then
udotn = sign(1.0_pReal,traction_n)* prm%sdot0 * ((abs(traction_n) - traction_crit)/traction_crit)**prm%n
udotn = sign(1.0_pReal,traction_n)* prm%dot_o * ((abs(traction_n) - traction_crit)/traction_crit)**prm%q
Ld = Ld + udotn*prm%cleavage_systems(1:3,1:3,3,i)
dudotn_dt = sign(1.0_pReal,traction_n)*udotn*prm%n / (abs(traction_n) - traction_crit)
dudotn_dt = sign(1.0_pReal,traction_n)*udotn*prm%q / (abs(traction_n) - traction_crit)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) &
+ dudotn_dt*prm%cleavage_systems(k,l,3,i) * prm%cleavage_systems(m,n,3,i)

View File

@ -12,10 +12,10 @@ submodule(constitutive:constitutive_damage) kinematics_slipplane_opening
integer :: &
sum_N_sl !< total number of cleavage planes
real(pReal) :: &
sdot0, & !< opening rate of cleavage planes
n !< damage rate sensitivity
dot_o, & !< opening rate of cleavage planes
q !< damage rate sensitivity
real(pReal), dimension(:), allocatable :: &
critLoad
g_crit
real(pReal), dimension(:,:,:), allocatable :: &
P_d, &
P_t, &
@ -70,8 +70,8 @@ module function kinematics_slipplane_opening_init(kinematics_length) result(myKi
associate(prm => param(kinematics_slipplane_opening_instance(p)))
kinematic_type => kinematics%get(k)
prm%sdot0 = kinematic_type%get_asFloat('dot_o')
prm%n = kinematic_type%get_asFloat('q')
prm%dot_o = kinematic_type%get_asFloat('dot_o')
prm%q = kinematic_type%get_asFloat('q')
N_sl = pl%get_asInts('N_sl')
prm%sum_N_sl = sum(abs(N_sl))
@ -89,15 +89,15 @@ module function kinematics_slipplane_opening_init(kinematics_length) result(myKi
prm%P_n(1:3,1:3,i) = math_outer(n(1:3,i), n(1:3,i))
enddo
prm%critLoad = kinematic_type%get_asFloats('g_crit',requiredSize=size(N_sl))
prm%g_crit = kinematic_type%get_asFloats('g_crit',requiredSize=size(N_sl))
! expand: family => system
prm%critLoad = math_expand(prm%critLoad,N_sl)
prm%g_crit = math_expand(prm%g_crit,N_sl)
! sanity checks
if (prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_n'
if (prm%sdot0 <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_sdot0'
if (any(prm%critLoad < 0.0_pReal)) extmsg = trim(extmsg)//' anisoDuctile_critLoad'
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_n'
if (prm%dot_o <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_sdot0'
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' anisoDuctile_critLoad'
!--------------------------------------------------------------------------------------------------
! exit if any parameter is out of range
@ -150,27 +150,27 @@ module subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar, S
traction_t = math_tensordot(S,prm%P_t(1:3,1:3,i))
traction_n = math_tensordot(S,prm%P_n(1:3,1:3,i))
traction_crit = prm%critLoad(i)* damage(homog)%p(damageOffset) ! degrading critical load carrying capacity by damage
traction_crit = prm%g_crit(i)* damage(homog)%p(damageOffset) ! degrading critical load carrying capacity by damage
udotd = sign(1.0_pReal,traction_d)* prm%sdot0* ( abs(traction_d)/traction_crit &
- abs(traction_d)/prm%critLoad(i))**prm%n
udott = sign(1.0_pReal,traction_t)* prm%sdot0* ( abs(traction_t)/traction_crit &
- abs(traction_t)/prm%critLoad(i))**prm%n
udotn = prm%sdot0* ( max(0.0_pReal,traction_n)/traction_crit &
- max(0.0_pReal,traction_n)/prm%critLoad(i))**prm%n
udotd = sign(1.0_pReal,traction_d)* prm%dot_o* ( abs(traction_d)/traction_crit &
- abs(traction_d)/prm%g_crit(i))**prm%q
udott = sign(1.0_pReal,traction_t)* prm%dot_o* ( abs(traction_t)/traction_crit &
- abs(traction_t)/prm%g_crit(i))**prm%q
udotn = prm%dot_o* ( max(0.0_pReal,traction_n)/traction_crit &
- max(0.0_pReal,traction_n)/prm%g_crit(i))**prm%q
if (dNeq0(traction_d)) then
dudotd_dt = udotd*prm%n/traction_d
dudotd_dt = udotd*prm%q/traction_d
else
dudotd_dt = 0.0_pReal
endif
if (dNeq0(traction_t)) then
dudott_dt = udott*prm%n/traction_t
dudott_dt = udott*prm%q/traction_t
else
dudott_dt = 0.0_pReal
endif
if (dNeq0(traction_n)) then
dudotn_dt = udotn*prm%n/traction_n
dudotn_dt = udotn*prm%q/traction_n
else
dudotn_dt = 0.0_pReal
endif

View File

@ -11,7 +11,7 @@ submodule(constitutive:constitutive_thermal) kinematics_thermal_expansion
real(pReal) :: &
T_ref
real(pReal), dimension(3,3,3) :: &
expansion = 0.0_pReal
A = 0.0_pReal
end type tParameters
type(tParameters), dimension(:), allocatable :: param
@ -64,13 +64,13 @@ module function kinematics_thermal_expansion_init(kinematics_length) result(myKi
! read up to three parameters (constant, linear, quadratic with T)
temp = kinematic_type%get_asFloats('A_11')
prm%expansion(1,1,1:size(temp)) = temp
prm%A(1,1,1:size(temp)) = temp
temp = kinematic_type%get_asFloats('A_22',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp))
prm%expansion(2,2,1:size(temp)) = temp
prm%A(2,2,1:size(temp)) = temp
temp = kinematic_type%get_asFloats('A_33',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp))
prm%expansion(3,3,1:size(temp)) = temp
do i=1, size(prm%expansion,3)
prm%expansion(1:3,1:3,i) = lattice_applyLatticeSymmetry33(prm%expansion(1:3,1:3,i),&
prm%A(3,3,1:size(temp)) = temp
do i=1, size(prm%A,3)
prm%A(1:3,1:3,i) = lattice_applyLatticeSymmetry33(prm%A(1:3,1:3,i),&
phase%get_asString('lattice'))
enddo
@ -94,13 +94,13 @@ pure module function kinematics_thermal_expansion_initialStrain(homog,phase,offs
offset
real(pReal), dimension(3,3) :: &
initialStrain !< initial thermal strain (should be small strain, though)
initialStrain !< initial thermal strain (should be small strain, though)
associate(prm => param(kinematics_thermal_expansion_instance(phase)))
initialStrain = &
(temperature(homog)%p(offset) - prm%T_ref)**1 / 1. * prm%expansion(1:3,1:3,1) + & ! constant coefficient
(temperature(homog)%p(offset) - prm%T_ref)**2 / 2. * prm%expansion(1:3,1:3,2) + & ! linear coefficient
(temperature(homog)%p(offset) - prm%T_ref)**3 / 3. * prm%expansion(1:3,1:3,3) ! quadratic coefficient
(temperature(homog)%p(offset) - prm%T_ref)**1 / 1. * prm%A(1:3,1:3,1) + & ! constant coefficient
(temperature(homog)%p(offset) - prm%T_ref)**2 / 2. * prm%A(1:3,1:3,2) + & ! linear coefficient
(temperature(homog)%p(offset) - prm%T_ref)**3 / 3. * prm%A(1:3,1:3,3) ! quadratic coefficient
end associate
end function kinematics_thermal_expansion_initialStrain
@ -133,14 +133,14 @@ module subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, i
associate(prm => param(kinematics_thermal_expansion_instance(phase)))
Li = TDot * ( &
prm%expansion(1:3,1:3,1)*(T - prm%T_ref)**0 & ! constant coefficient
+ prm%expansion(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient
+ prm%expansion(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient
prm%A(1:3,1:3,1)*(T - prm%T_ref)**0 & ! constant coefficient
+ prm%A(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient
+ prm%A(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient
) / &
(1.0_pReal &
+ prm%expansion(1:3,1:3,1)*(T - prm%T_ref)**1 / 1. &
+ prm%expansion(1:3,1:3,2)*(T - prm%T_ref)**2 / 2. &
+ prm%expansion(1:3,1:3,3)*(T - prm%T_ref)**3 / 3. &
+ prm%A(1:3,1:3,1)*(T - prm%T_ref)**1 / 1. &
+ prm%A(1:3,1:3,2)*(T - prm%T_ref)**2 / 2. &
+ prm%A(1:3,1:3,3)*(T - prm%T_ref)**3 / 3. &
)
end associate
dLi_dTstar = 0.0_pReal

View File

@ -394,13 +394,13 @@ module lattice
! SHOULD NOT BE PART OF LATTICE BEGIN
real(pReal), dimension(:), allocatable, public, protected :: &
lattice_mu, lattice_nu, &
lattice_damageMobility, &
lattice_massDensity, &
lattice_specificHeat
lattice_M, &
lattice_rho, &
lattice_c_p
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
lattice_C66, &
lattice_thermalConductivity, &
lattice_damageDiffusion
lattice_K, &
lattice_D
integer(kind(lattice_UNDEFINED_ID)), dimension(:), allocatable, public, protected :: &
lattice_structure
! SHOULD NOT BE PART OF LATTICE END
@ -465,11 +465,11 @@ subroutine lattice_init
allocate(lattice_structure(Nphases),source = lattice_UNDEFINED_ID)
allocate(lattice_C66(6,6,Nphases), source=0.0_pReal)
allocate(lattice_thermalConductivity (3,3,Nphases), source=0.0_pReal)
allocate(lattice_damageDiffusion (3,3,Nphases), source=0.0_pReal)
allocate(lattice_K (3,3,Nphases), source=0.0_pReal)
allocate(lattice_D (3,3,Nphases), source=0.0_pReal)
allocate(lattice_damageMobility,&
lattice_massDensity,lattice_specificHeat, &
allocate(lattice_M,&
lattice_rho,lattice_c_p, &
lattice_mu, lattice_nu,&
source=[(0.0_pReal,i=1,Nphases)])
@ -517,22 +517,22 @@ subroutine lattice_init
! SHOULD NOT BE PART OF LATTICE BEGIN
lattice_thermalConductivity(1,1,p) = phase%get_asFloat('K_11',defaultVal=0.0_pReal)
lattice_thermalConductivity(2,2,p) = phase%get_asFloat('K_22',defaultVal=0.0_pReal)
lattice_thermalConductivity(3,3,p) = phase%get_asFloat('K_33',defaultVal=0.0_pReal)
lattice_thermalConductivity(1:3,1:3,p) = lattice_applyLatticeSymmetry33(lattice_thermalConductivity(1:3,1:3,p), &
phase%get_asString('lattice'))
lattice_K(1,1,p) = phase%get_asFloat('K_11',defaultVal=0.0_pReal)
lattice_K(2,2,p) = phase%get_asFloat('K_22',defaultVal=0.0_pReal)
lattice_K(3,3,p) = phase%get_asFloat('K_33',defaultVal=0.0_pReal)
lattice_K(1:3,1:3,p) = lattice_applyLatticeSymmetry33(lattice_K(1:3,1:3,p), &
phase%get_asString('lattice'))
lattice_specificHeat(p) = phase%get_asFloat('c_p',defaultVal=0.0_pReal)
lattice_massDensity(p) = phase%get_asFloat('rho', defaultVal=0.0_pReal)
lattice_c_p(p) = phase%get_asFloat('c_p', defaultVal=0.0_pReal)
lattice_rho(p) = phase%get_asFloat('rho', defaultVal=0.0_pReal)
lattice_DamageDiffusion(1,1,p) = phase%get_asFloat('D_11',defaultVal=0.0_pReal)
lattice_DamageDiffusion(2,2,p) = phase%get_asFloat('D_22',defaultVal=0.0_pReal)
lattice_DamageDiffusion(3,3,p) = phase%get_asFloat('D_33',defaultVal=0.0_pReal)
lattice_DamageDiffusion(1:3,1:3,p) = lattice_applyLatticeSymmetry33(lattice_DamageDiffusion(1:3,1:3,p), &
phase%get_asString('lattice'))
lattice_D(1,1,p) = phase%get_asFloat('D_11',defaultVal=0.0_pReal)
lattice_D(2,2,p) = phase%get_asFloat('D_22',defaultVal=0.0_pReal)
lattice_D(3,3,p) = phase%get_asFloat('D_33',defaultVal=0.0_pReal)
lattice_D(1:3,1:3,p) = lattice_applyLatticeSymmetry33(lattice_D(1:3,1:3,p), &
phase%get_asString('lattice'))
lattice_DamageMobility(p) = phase%get_asFloat('M',defaultVal=0.0_pReal)
lattice_M(p) = phase%get_asFloat('M',defaultVal=0.0_pReal)
! SHOULD NOT BE PART OF LATTICE END
call selfTest

View File

@ -52,7 +52,7 @@ subroutine discretization_marc_init
type(tElement) :: elem
integer, dimension(:), allocatable :: &
microstructureAt
materialAt
integer:: &
Nnodes, & !< total number of nodes in the mesh
Nelems, & !< total number of elements in the mesh
@ -83,7 +83,7 @@ subroutine discretization_marc_init
mesh_unitlength = num_commercialFEM%get_asFloat('unitlength',defaultVal=1.0_pReal) ! set physical extent of a length unit in mesh
if (mesh_unitlength <= 0.0_pReal) call IO_error(301,ext_msg='unitlength')
call inputRead(elem,node0_elem,connectivity_elem,microstructureAt)
call inputRead(elem,node0_elem,connectivity_elem,materialAt)
nElems = size(connectivity_elem,2)
if (debug_e < 1 .or. debug_e > nElems) call IO_error(602,ext_msg='element')
@ -103,7 +103,7 @@ subroutine discretization_marc_init
call buildIPcoordinates(IP_reshaped,reshape(connectivity_cell,[elem%NcellNodesPerCell,&
elem%nIPs*nElems]),node0_cell)
call discretization_init(microstructureAt,&
call discretization_init(materialAt,&
IP_reshaped,&
node0_cell)
@ -172,7 +172,7 @@ end subroutine writeGeometry
!--------------------------------------------------------------------------------------------------
!> @brief Read mesh from marc input file
!--------------------------------------------------------------------------------------------------
subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt)
subroutine inputRead(elem,node0_elem,connectivity_elem,materialAt)
type(tElement), intent(out) :: elem
real(pReal), dimension(:,:), allocatable, intent(out) :: &
@ -180,7 +180,7 @@ subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt)
integer, dimension(:,:), allocatable, intent(out) :: &
connectivity_elem
integer, dimension(:), allocatable, intent(out) :: &
microstructureAt
materialAt
integer :: &
fileFormatVersion, &
@ -226,9 +226,9 @@ subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt)
connectivity_elem = inputRead_connectivityElem(nElems,elem%nNodes,inputFile)
call inputRead_microstructure(microstructureAt, &
nElems,elem%nNodes,nameElemSet,mapElemSet,&
initialcondTableStyle,inputFile)
call inputRead_material(materialAt, &
nElems,elem%nNodes,nameElemSet,mapElemSet,&
initialcondTableStyle,inputFile)
end subroutine inputRead
@ -675,13 +675,13 @@ end function inputRead_connectivityElem
!--------------------------------------------------------------------------------------------------
!> @brief Store microstructure ID
!> @brief Store material ID
!--------------------------------------------------------------------------------------------------
subroutine inputRead_microstructure(microstructureAt,&
nElem,nNodes,nameElemSet,mapElemSet,initialcondTableStyle,fileContent)
subroutine inputRead_material(materialAt,&
nElem,nNodes,nameElemSet,mapElemSet,initialcondTableStyle,fileContent)
integer, dimension(:), allocatable, intent(out) :: &
microstructureAt
materialAt
integer, intent(in) :: &
nElem, &
nNodes, & !< number of nodes per element
@ -696,7 +696,7 @@ subroutine inputRead_microstructure(microstructureAt,&
integer :: i,j,t,sv,myVal,e,nNodesAlreadyRead,l,k,m
allocate(microstructureAt(nElem),source=0)
allocate(materialAt(nElem),source=0)
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
@ -715,7 +715,7 @@ subroutine inputRead_microstructure(microstructureAt,&
contInts = continuousIntValues(fileContent(l+k+m+1:),nElem,nameElemSet,mapElemSet,size(nameElemSet)) ! get affected elements
do i = 1,contInts(1)
e = mesh_FEM2DAMASK_elem(contInts(1+i))
microstructureAt(e) = myVal
materialAt(e) = myVal
enddo
if (initialcondTableStyle == 0) m = m + 1
enddo
@ -723,9 +723,9 @@ subroutine inputRead_microstructure(microstructureAt,&
endif
enddo
if(any(microstructureAt < 1)) call IO_error(180)
if(any(materialAt < 1)) call IO_error(180)
end subroutine inputRead_microstructure
end subroutine inputRead_material
!--------------------------------------------------------------------------------------------------

View File

@ -2,7 +2,7 @@
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Parses material config file, either solverJobName.materialConfig or material.config
!> @brief Defines phase and homogenization
!--------------------------------------------------------------------------------------------------
module material
use prec
@ -97,7 +97,7 @@ module material
material_orientation0 !< initial orientation of each grain,IP,element
integer, dimension(:), allocatable, private :: &
microstructure_Nconstituents !< number of constituents in each microstructure
material_Nconstituents !< number of constituents in each material
@ -180,8 +180,8 @@ subroutine material_init(restart)
material_name_homogenization(myHomog) = trim(adjustl(sectionName))//material_homogenization%getKey(myHomog)
enddo
call material_parseMicrostructure
print*, 'Microstructure parsed'
call material_parseMaterial
print*, 'Material parsed'
call material_parseHomogenization
print*, 'Homogenization parsed'
@ -317,16 +317,16 @@ end subroutine material_parseHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief parses the microstructure part in the material configuration file
!> @brief parses the material part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseMicrostructure
subroutine material_parseMaterial
class(tNode), pointer :: microstructures, & !> list of microstructures
microstructure, & !> microstructure definition
class(tNode), pointer :: materials, & !> list of materials
material, & !> material definition
constituents, & !> list of constituents
constituent, & !> constituent definition
phases, &
homogenization
homogenizations
integer, dimension(:), allocatable :: &
counterPhase, &
@ -341,17 +341,17 @@ subroutine material_parseMicrostructure
c, &
maxNconstituents
microstructures => config_material%get('microstructure')
if(any(discretization_microstructureAt > microstructures%length)) &
call IO_error(155,ext_msg='More microstructures requested than found in material.yaml')
materials => config_material%get('material')
if(any(discretization_materialAt > materials%length)) &
call IO_error(155,ext_msg='More materials requested than found in material.yaml')
allocate(microstructure_Nconstituents(microstructures%length),source=0)
do m = 1, microstructures%length
microstructure => microstructures%get(m)
constituents => microstructure%get('constituents')
microstructure_Nconstituents(m) = constituents%length
allocate(material_Nconstituents(materials%length),source=0)
do m = 1, materials%length
material => materials%get(m)
constituents => material%get('constituents')
material_Nconstituents(m) = constituents%length
enddo
maxNconstituents = maxval(microstructure_Nconstituents)
maxNconstituents = maxval(material_Nconstituents)
allocate(material_homogenizationAt(discretization_nElem),source=0)
allocate(material_homogenizationMemberAt(discretization_nIP,discretization_nElem),source=0)
@ -362,14 +362,14 @@ subroutine material_parseMicrostructure
phases => config_material%get('phase')
allocate(counterPhase(phases%length),source=0)
homogenization => config_material%get('homogenization')
allocate(counterHomogenization(homogenization%length),source=0)
homogenizations => config_material%get('homogenization')
allocate(counterHomogenization(homogenizations%length),source=0)
do e = 1, discretization_nElem
microstructure => microstructures%get(discretization_microstructureAt(e))
constituents => microstructure%get('constituents')
material => materials%get(discretization_materialAt(e))
constituents => material%get('constituents')
material_homogenizationAt(e) = homogenization%getIndex(microstructure%get_asString('homogenization'))
material_homogenizationAt(e) = homogenizations%getIndex(material%get_asString('homogenization'))
do i = 1, discretization_nIP
counterHomogenization(material_homogenizationAt(e)) = counterHomogenization(material_homogenizationAt(e)) + 1
material_homogenizationMemberAt(i,e) = counterHomogenization(material_homogenizationAt(e))
@ -385,7 +385,7 @@ subroutine material_parseMicrostructure
counterPhase(material_phaseAt(c,e)) = counterPhase(material_phaseAt(c,e)) + 1
material_phaseMemberAt(c,i,e) = counterPhase(material_phaseAt(c,e))
call material_orientation0(c,i,e)%fromQuaternion(constituent%get_asFloats('orientation',requiredSize=4))
call material_orientation0(c,i,e)%fromQuaternion(constituent%get_asFloats('O',requiredSize=4))
enddo
enddo
@ -393,7 +393,7 @@ subroutine material_parseMicrostructure
enddo
end subroutine material_parseMicrostructure
end subroutine material_parseMaterial
end module material

View File

@ -160,7 +160,7 @@ subroutine utilities_constitutiveResponse(timeinc,P_av,forwardData)
print'(/,a)', ' ... evaluating constitutive response ......................................'
call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field
call materialpoint_stressAndItsTangent(timeinc) ! calculate P field
cutBack = .false. ! reset cutBack status

View File

@ -78,7 +78,7 @@ subroutine discretization_mesh_init(restart)
IS :: faceSetIS
PetscErrorCode :: ierr
integer, dimension(:), allocatable :: &
microstructureAt
materialAt
class(tNode), pointer :: &
num_mesh
integer :: integrationOrder !< order of quadrature rule required
@ -164,9 +164,9 @@ subroutine discretization_mesh_init(restart)
call mesh_FEM_build_ipCoordinates(dimPlex,FEM_quadrature_points(dimPlex,integrationOrder)%p)
call mesh_FEM_build_ipVolumes(dimPlex)
allocate(microstructureAt(mesh_NcpElems))
allocate(materialAt(mesh_NcpElems))
do j = 1, mesh_NcpElems
call DMGetLabelValue(geomMesh,'material',j-1,microstructureAt(j),ierr)
call DMGetLabelValue(geomMesh,'material',j-1,materialAt(j),ierr)
CHKERRQ(ierr)
end do
@ -178,7 +178,7 @@ subroutine discretization_mesh_init(restart)
allocate(mesh_node0(3,mesh_Nnodes),source=0.0_pReal)
call discretization_init(microstructureAt,&
call discretization_init(materialAt,&
reshape(mesh_ipCoordinates,[3,mesh_maxNips*mesh_NcpElems]), &
mesh_node0)

View File

@ -46,21 +46,21 @@ subroutine parallelization_init
! If openMP is enabled, check if the MPI libary supports it and initialize accordingly.
! Otherwise, the first call to PETSc will do the initialization.
call MPI_Init_Thread(MPI_THREAD_FUNNELED,threadLevel,err)
if (err /= 0) error stop 'MPI init failed'
if (threadLevel<MPI_THREAD_FUNNELED) error stop 'MPI library does not support OpenMP'
if (err /= 0) error stop 'MPI init failed'
if (threadLevel<MPI_THREAD_FUNNELED) error stop 'MPI library does not support OpenMP'
#endif
call PETScInitializeNoArguments(petsc_err) ! first line in the code according to PETSc manual
CHKERRQ(petsc_err)
call MPI_Comm_rank(PETSC_COMM_WORLD,worldrank,err)
if (err /= 0) error stop 'Could not determine worldrank'
if (err /= 0) error stop 'Could not determine worldrank'
if (worldrank == 0) print'(/,a)', ' <<<+- parallelization init -+>>>'
if (worldrank == 0) print'(a,i3)', ' MPI processes: ',worldsize
call MPI_Comm_size(PETSC_COMM_WORLD,worldsize,err)
if (err /= 0) error stop 'Could not determine worldsize'
if (err /= 0) error stop 'Could not determine worldsize'
if (worldrank == 0) print'(a,i3)', ' MPI processes: ',worldsize
call MPI_Type_size(MPI_INTEGER,typeSize,err)
if (err /= 0) error stop 'Could not determine MPI integer size'

View File

@ -1452,7 +1452,7 @@ subroutine selfTest
contains
function quaternion_equal(qu1,qu2) result(ok)
pure recursive function quaternion_equal(qu1,qu2) result(ok)
real(pReal), intent(in), dimension(4) :: qu1,qu2
logical :: ok

View File

@ -12,11 +12,11 @@ submodule (constitutive:constitutive_damage) source_damage_anisoBrittle
type :: tParameters !< container type for internal constitutive parameters
real(pReal) :: &
sdot_0, & !< opening rate of cleavage planes
n !< damage rate sensitivity
dot_o, & !< opening rate of cleavage planes
q !< damage rate sensitivity
real(pReal), dimension(:), allocatable :: &
critDisp, & !< critical displacement
critLoad !< critical load
s_crit, & !< critical displacement
g_crit !< critical load
real(pReal), dimension(:,:,:,:), allocatable :: &
cleavage_systems
integer :: &
@ -75,18 +75,18 @@ module function source_damage_anisoBrittle_init(source_length) result(mySources)
N_cl = src%get_asInts('N_cl',defaultVal=emptyIntArray)
prm%sum_N_cl = sum(abs(N_cl))
prm%n = src%get_asFloat('q')
prm%sdot_0 = src%get_asFloat('dot_o')
prm%q = src%get_asFloat('q')
prm%dot_o = src%get_asFloat('dot_o')
prm%critDisp = src%get_asFloats('s_crit', requiredSize=size(N_cl))
prm%critLoad = src%get_asFloats('g_crit', requiredSize=size(N_cl))
prm%s_crit = src%get_asFloats('s_crit', requiredSize=size(N_cl))
prm%g_crit = src%get_asFloats('g_crit', requiredSize=size(N_cl))
prm%cleavage_systems = lattice_SchmidMatrix_cleavage(N_cl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
! expand: family => system
prm%critDisp = math_expand(prm%critDisp,N_cl)
prm%critLoad = math_expand(prm%critLoad,N_cl)
prm%s_crit = math_expand(prm%s_crit,N_cl)
prm%g_crit = math_expand(prm%g_crit,N_cl)
#if defined (__GFORTRAN__)
prm%output = output_asStrings(src)
@ -95,10 +95,10 @@ module function source_damage_anisoBrittle_init(source_length) result(mySources)
#endif
! sanity checks
if (prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%sdot_0 <= 0.0_pReal) extmsg = trim(extmsg)//' dot_o'
if (any(prm%critLoad < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
if (any(prm%critDisp < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit'
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%dot_o <= 0.0_pReal) extmsg = trim(extmsg)//' dot_o'
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit'
if (any(prm%s_crit < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit'
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call constitutive_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
@ -152,14 +152,14 @@ module subroutine source_damage_anisoBrittle_dotState(S, ipc, ip, el)
traction_t = math_tensordot(S,prm%cleavage_systems(1:3,1:3,2,i))
traction_n = math_tensordot(S,prm%cleavage_systems(1:3,1:3,3,i))
traction_crit = prm%critLoad(i)*damage(homog)%p(damageOffset)**2.0_pReal
traction_crit = prm%g_crit(i)*damage(homog)%p(damageOffset)**2.0_pReal
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) &
= sourceState(phase)%p(sourceOffset)%dotState(1,constituent) &
+ prm%sdot_0 / prm%critDisp(i) &
* ((max(0.0_pReal, abs(traction_d) - traction_crit)/traction_crit)**prm%n + &
(max(0.0_pReal, abs(traction_t) - traction_crit)/traction_crit)**prm%n + &
(max(0.0_pReal, abs(traction_n) - traction_crit)/traction_crit)**prm%n)
+ prm%dot_o / prm%s_crit(i) &
* ((max(0.0_pReal, abs(traction_d) - traction_crit)/traction_crit)**prm%q + &
(max(0.0_pReal, abs(traction_t) - traction_crit)/traction_crit)**prm%q + &
(max(0.0_pReal, abs(traction_n) - traction_crit)/traction_crit)**prm%q)
enddo
end associate

View File

@ -12,9 +12,9 @@ submodule(constitutive:constitutive_damage) source_damage_anisoDuctile
type :: tParameters !< container type for internal constitutive parameters
real(pReal) :: &
n !< damage rate sensitivity
q !< damage rate sensitivity
real(pReal), dimension(:), allocatable :: &
critPlasticStrain !< critical plastic strain per slip system
gamma_crit !< critical plastic strain per slip system
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
@ -67,12 +67,12 @@ module function source_damage_anisoDuctile_init(source_length) result(mySources)
associate(prm => param(source_damage_anisoDuctile_instance(p)))
src => sources%get(sourceOffset)
N_sl = pl%get_asInts('N_sl',defaultVal=emptyIntArray)
prm%n = src%get_asFloat('q')
prm%critPlasticStrain = src%get_asFloats('gamma_crit',requiredSize=size(N_sl))
N_sl = pl%get_asInts('N_sl',defaultVal=emptyIntArray)
prm%q = src%get_asFloat('q')
prm%gamma_crit = src%get_asFloats('gamma_crit',requiredSize=size(N_sl))
! expand: family => system
prm%critPlasticStrain = math_expand(prm%critPlasticStrain,N_sl)
prm%gamma_crit = math_expand(prm%gamma_crit,N_sl)
#if defined (__GFORTRAN__)
prm%output = output_asStrings(src)
@ -81,8 +81,8 @@ module function source_damage_anisoDuctile_init(source_length) result(mySources)
#endif
! sanity checks
if (prm%n <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (any(prm%critPlasticStrain < 0.0_pReal)) extmsg = trim(extmsg)//' gamma_crit'
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (any(prm%gamma_crit < 0.0_pReal)) extmsg = trim(extmsg)//' gamma_crit'
NipcMyPhase=count(material_phaseAt==p) * discretization_nIP
call constitutive_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
@ -127,7 +127,7 @@ module subroutine source_damage_anisoDuctile_dotState(ipc, ip, el)
associate(prm => param(source_damage_anisoDuctile_instance(phase)))
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) &
= sum(plasticState(phase)%slipRate(:,constituent)/(damage(homog)%p(damageOffset)**prm%n)/prm%critPlasticStrain)
= sum(plasticState(phase)%slipRate(:,constituent)/(damage(homog)%p(damageOffset)**prm%q)/prm%gamma_crit)
end associate
end subroutine source_damage_anisoDuctile_dotState

View File

@ -12,8 +12,8 @@ submodule (constitutive:constitutive_damage) source_damage_isoDuctile
type:: tParameters !< container type for internal constitutive parameters
real(pReal) :: &
critPlasticStrain, & !< critical plastic strain
N
gamma_crit, & !< critical plastic strain
q
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
@ -64,8 +64,8 @@ module function source_damage_isoDuctile_init(source_length) result(mySources)
associate(prm => param(source_damage_isoDuctile_instance(p)))
src => sources%get(sourceOffset)
prm%N = src%get_asFloat('q')
prm%critPlasticStrain = src%get_asFloat('gamma_crit')
prm%q = src%get_asFloat('q')
prm%gamma_crit = src%get_asFloat('gamma_crit')
#if defined (__GFORTRAN__)
prm%output = output_asStrings(src)
@ -74,8 +74,8 @@ module function source_damage_isoDuctile_init(source_length) result(mySources)
#endif
! sanity checks
if (prm%N <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%critPlasticStrain <= 0.0_pReal) extmsg = trim(extmsg)//' gamma_crit'
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q'
if (prm%gamma_crit <= 0.0_pReal) extmsg = trim(extmsg)//' gamma_crit'
NipcMyPhase=count(material_phaseAt==p) * discretization_nIP
call constitutive_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
@ -120,7 +120,7 @@ module subroutine source_damage_isoDuctile_dotState(ipc, ip, el)
associate(prm => param(source_damage_isoDuctile_instance(phase)))
sourceState(phase)%p(sourceOffset)%dotState(1,constituent) = &
sum(plasticState(phase)%slipRate(:,constituent))/(damage(homog)%p(damageOffset)**prm%N)/prm%critPlasticStrain
sum(plasticState(phase)%slipRate(:,constituent))/(damage(homog)%p(damageOffset)**prm%q)/prm%gamma_crit
end associate
end subroutine source_damage_isoDuctile_dotState

View File

@ -13,8 +13,8 @@ submodule(constitutive:constitutive_thermal) source_thermal_externalheat
type :: tParameters !< container type for internal constitutive parameters
real(pReal), dimension(:), allocatable :: &
time, &
heat_rate
t_n, &
f_T
integer :: &
nIntervals
end type tParameters
@ -64,10 +64,10 @@ module function source_thermal_externalheat_init(source_length) result(mySources
associate(prm => param(source_thermal_externalheat_instance(p)))
src => sources%get(sourceOffset)
prm%time = src%get_asFloats('t_n')
prm%nIntervals = size(prm%time) - 1
prm%t_n = src%get_asFloats('t_n')
prm%nIntervals = size(prm%t_n) - 1
prm%heat_rate = src%get_asFloats('f_T',requiredSize = size(prm%time))
prm%f_T = src%get_asFloats('f_T',requiredSize = size(prm%t_n))
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call constitutive_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
@ -121,13 +121,13 @@ module subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_d
associate(prm => param(source_thermal_externalheat_instance(phase)))
do interval = 1, prm%nIntervals ! scan through all rate segments
frac_time = (sourceState(phase)%p(sourceOffset)%state(1,of) - prm%time(interval)) &
/ (prm%time(interval+1) - prm%time(interval)) ! fractional time within segment
frac_time = (sourceState(phase)%p(sourceOffset)%state(1,of) - prm%t_n(interval)) &
/ (prm%t_n(interval+1) - prm%t_n(interval)) ! fractional time within segment
if ( (frac_time < 0.0_pReal .and. interval == 1) &
.or. (frac_time >= 1.0_pReal .and. interval == prm%nIntervals) &
.or. (frac_time >= 0.0_pReal .and. frac_time < 1.0_pReal) ) &
TDot = prm%heat_rate(interval ) * (1.0_pReal - frac_time) + &
prm%heat_rate(interval+1) * frac_time ! interpolate heat rate between segment boundaries...
TDot = prm%f_T(interval ) * (1.0_pReal - frac_time) + &
prm%f_T(interval+1) * frac_time ! interpolate heat rate between segment boundaries...
! ...or extrapolate if outside of bounds
enddo
dTDot_dT = 0.0

View File

@ -169,7 +169,7 @@ function thermal_adiabatic_getSpecificHeat(ip,el)
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat &
+ lattice_specificHeat(material_phaseAt(grain,el))
+ lattice_c_p(material_phaseAt(grain,el))
enddo
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat &
@ -195,7 +195,7 @@ function thermal_adiabatic_getMassDensity(ip,el)
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity &
+ lattice_massDensity(material_phaseAt(grain,el))
+ lattice_rho(material_phaseAt(grain,el))
enddo
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity &

View File

@ -127,7 +127,7 @@ function thermal_conduction_getConductivity(ip,el)
thermal_conduction_getConductivity = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getConductivity = thermal_conduction_getConductivity + &
crystallite_push33ToRef(grain,ip,el,lattice_thermalConductivity(:,:,material_phaseAt(grain,el)))
crystallite_push33ToRef(grain,ip,el,lattice_K(:,:,material_phaseAt(grain,el)))
enddo
thermal_conduction_getConductivity = thermal_conduction_getConductivity &
@ -153,7 +153,7 @@ function thermal_conduction_getSpecificHeat(ip,el)
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
+ lattice_specificHeat(material_phaseAt(grain,el))
+ lattice_c_p(material_phaseAt(grain,el))
enddo
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
@ -180,7 +180,7 @@ function thermal_conduction_getMassDensity(ip,el)
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
+ lattice_massDensity(material_phaseAt(grain,el))
+ lattice_rho(material_phaseAt(grain,el))
enddo
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &