Fix: Tresca, von Mises, Drucker, Hill 1948 criteria.
This commit is contained in:
parent
2d568b49f2
commit
2b704b3905
|
@ -51,9 +51,15 @@ def stressInvariants(lambdas):
|
|||
Is = Is.reshape(3,np.shape(lambdas)[1])
|
||||
return Is
|
||||
|
||||
def formatOutput(n, type='%14.6f'):
|
||||
def formatOutput(n, type='%-14.6f'):
|
||||
return ''.join([type for i in xrange(n)])
|
||||
|
||||
def array2tuple(array):
|
||||
'''transform numpy.array into tuple'''
|
||||
try:
|
||||
return tuple(array2tuple(i) for i in array)
|
||||
except TypeError:
|
||||
return array
|
||||
def get_weight(ndim):
|
||||
#more to do
|
||||
return np.ones(ndim)
|
||||
|
@ -198,7 +204,7 @@ fittingCriteria = {
|
|||
'vonMises' :{'fit' :np.ones(1,'d'),'err':np.inf,
|
||||
'name' :'Huber-Mises-Hencky(von Mises)',
|
||||
'paras':'Initial yield stress:'},
|
||||
'Hill48' :{'fit' :np.ones(6,'d'),'err':np.inf,
|
||||
'Hill1948' :{'fit' :np.ones(6,'d'),'err':np.inf,
|
||||
'name' :'Hill1948',
|
||||
'paras':'Normalized [F, G, H, L, M, N]'},
|
||||
'Drucker' :{'fit' :np.ones(2,'d'),'err':np.inf,
|
||||
|
@ -283,9 +289,9 @@ class Criterion(object):
|
|||
funResidum = Drucker
|
||||
text = '\nCoefficient of Drucker criterion:\nsigma0, C_D: '+formatOutput(2)
|
||||
error='The standard deviation errors are: '+formatOutput(2,'%-14.8f')+'\n'
|
||||
elif self.name.lower() == 'hill48':
|
||||
elif self.name.lower() == 'hill1948':
|
||||
funResidum = Hill1948
|
||||
text = '\nCoefficient of Hill1948 criterion:\n[F, G, H, L, M, N]:\n'+formatOutput(6)
|
||||
text = '\nCoefficient of Hill1948 criterion:\n[F, G, H, L, M, N]:'+' '*16+formatOutput(6)
|
||||
error='The standard deviation errors are: '+formatOutput(6,'%-14.8f')+'\n'
|
||||
elif self.name.lower() == 'barlat91iso':
|
||||
funResidum = Barlat1991iso
|
||||
|
@ -301,14 +307,14 @@ class Criterion(object):
|
|||
else:
|
||||
initialguess = np.array(fitResults[-1])
|
||||
weight = get_weight(np.shape(stress)[1])
|
||||
try:
|
||||
try:
|
||||
popt, pcov = \
|
||||
curve_fit(funResidum, stress, np.zeros(np.shape(stress)[1]),
|
||||
initialguess, weight)
|
||||
perr = np.sqrt(np.diag(pcov))
|
||||
fitResults.append(popt.tolist())
|
||||
print (text%popt)
|
||||
print (error%perr)
|
||||
print (text%array2tuple(popt))
|
||||
print (error%array2tuple(perr))
|
||||
except Exception as detail:
|
||||
print detail
|
||||
pass
|
||||
|
@ -410,8 +416,9 @@ def doSim(delay,thread):
|
|||
for i in xrange(int(options.yieldValue[2])):
|
||||
stressAll[i]=np.append(yieldStress[i]/unitGPa,stressAll[i])
|
||||
myFit.fit(stressAll[i].reshape(len(stressAll[i])//9,9).transpose())
|
||||
except Exception:
|
||||
except Exception as detail:
|
||||
print('could not fit for sim %i from %s'%(me,thread))
|
||||
print detail
|
||||
s.release()
|
||||
return
|
||||
s.release()
|
||||
|
|
Loading…
Reference in New Issue