make table compare normalize data by type (scaler, vector, tensor)

This commit is contained in:
Chen 2016-09-02 14:30:08 -04:00 committed by chen
parent d9077805e4
commit 2b3faf204c
1 changed files with 85 additions and 84 deletions

View File

@ -5,6 +5,7 @@ import os,sys,shutil
import logging,logging.config
import damask
import numpy as np
import itertools
from collections import Iterable
from optparse import OptionParser
@ -467,17 +468,15 @@ class Test():
columns = [None], # list of list of column labels (per file)
rtol = 1e-5,
atol = 1e-8,
preFilter = -1.0,
postFilter = -1.0,
debug = False):
"""
compare tables with np.allclose
threshold can be used to ignore small values (a negative number disables this feature)
"""
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
files = [str(files)]
if len(files) < 2: return True # single table is always close to itself...
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
for table in tables:
table.head_read()
@ -486,7 +485,7 @@ class Test():
columns = columns[:len(files)] # truncate to same length as files
for i,column in enumerate(columns):
if column is None: columns[i] = tables[i].labels(raw = True) # if no column is given, read all
if column is None: columns[i] = tables[i].labels(raw = True) # if no column is given, use all
logging.info('comparing ASCIItables')
for i in xrange(len(columns)):
@ -496,37 +495,37 @@ class Test():
)
logging.info(files[i]+':'+','.join(columns[i]))
if len(files) < 2: return True # single table is always close to itself...
maximum = np.zeros(len(columns[0]),dtype='f')
data = []
for table,labels in zip(tables,columns):
# peek into the ASCII table to figure out real table size
# the cryptic table header does not share the same size as real
# table
table.data_readArray(columns[0])
maximum = np.zeros(table.data.shape[1], dtype='f')
data = [] # list of feature table extracted from each file (ASCII table)
for table, labels in zip(tables, columns):
table.data_readArray(labels)
data.append(np.where(np.abs(table.data)<preFilter,np.zeros_like(table.data),table.data))
maximum += np.abs(table.data).max(axis=0)
for label in labels:
idx = table.label_indexrange(label)
maximum[idx] = np.maximum(maximum[idx],
np.amax(np.linalg.norm(table.data[:,idx],axis=1)))
data.append(table.data)
table.close()
maximum /= len(tables)
maximum = np.where(maximum >0.0, maximum, 1) # avoid div by zero for empty columns
maximum = np.where(maximum > 0.0, maximum, 1) # avoid div by zero for empty columns
# normalize each table
for i in xrange(len(data)):
data[i] /= maximum
mask = np.zeros_like(table.data,dtype='bool')
for table in data:
mask |= np.where(np.abs(table)<postFilter,True,False) # mask out (all) tiny values
if debug:
logging.debug(str(maximum))
allclose = np.absolute(data[0]-data[1]) <= (atol + rtol*np.absolute(data[1]))
for ok,valA,valB in zip(allclose,data[0],data[1]):
logging.debug('{}:\n {}\n{}\n'.format(ok,valA,valB))
allclose = True # start optimistic
for i in xrange(1,len(data)):
if debug:
t0 = np.where(mask,0.0,data[i-1])
t1 = np.where(mask,0.0,data[i ])
j = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
logging.info('{:f}'.format(np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol))))
logging.info('{:f} {:f}'.format((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
allclose &= np.allclose(data[i-1],data[i],rtol,atol) # accumulate "pessimism"
return allclose
@ -554,14 +553,16 @@ class Test():
def report_Success(self,culprit):
ret = culprit
if culprit == 0:
logging.critical(('The test' if len(self.variants) == 1 else 'All {} tests'.format(len(self.variants))) + ' passed')
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
return 0
if culprit == -1:
logging.warning('Warning: Could not start test')
return 0
msg = 'The test passed' if len(self.variants) == 1 \
else 'All {} tests passed.'.format(len(self.variants))
elif culprit == -1:
msg = 'Warning: Could not start test...'
ret = 0
else:
logging.critical(' ********\n * Test {} failed...\n ********'.format(culprit))
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
return culprit
msg = ' * Test "{}" failed.'.format(self.variants[culprit-1])
logging.critical('\n'.join(['*'*40,msg,'*'*40]) + '\n')
return ret