make table compare normalize data by type (scaler, vector, tensor)
This commit is contained in:
parent
d9077805e4
commit
2b3faf204c
|
@ -5,6 +5,7 @@ import os,sys,shutil
|
|||
import logging,logging.config
|
||||
import damask
|
||||
import numpy as np
|
||||
import itertools
|
||||
from collections import Iterable
|
||||
from optparse import OptionParser
|
||||
|
||||
|
@ -467,17 +468,15 @@ class Test():
|
|||
columns = [None], # list of list of column labels (per file)
|
||||
rtol = 1e-5,
|
||||
atol = 1e-8,
|
||||
preFilter = -1.0,
|
||||
postFilter = -1.0,
|
||||
debug = False):
|
||||
"""
|
||||
compare tables with np.allclose
|
||||
|
||||
threshold can be used to ignore small values (a negative number disables this feature)
|
||||
"""
|
||||
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
||||
files = [str(files)]
|
||||
|
||||
if len(files) < 2: return True # single table is always close to itself...
|
||||
|
||||
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
||||
for table in tables:
|
||||
table.head_read()
|
||||
|
@ -486,7 +485,7 @@ class Test():
|
|||
columns = columns[:len(files)] # truncate to same length as files
|
||||
|
||||
for i,column in enumerate(columns):
|
||||
if column is None: columns[i] = tables[i].labels(raw = True) # if no column is given, read all
|
||||
if column is None: columns[i] = tables[i].labels(raw = True) # if no column is given, use all
|
||||
|
||||
logging.info('comparing ASCIItables')
|
||||
for i in xrange(len(columns)):
|
||||
|
@ -496,37 +495,37 @@ class Test():
|
|||
)
|
||||
logging.info(files[i]+':'+','.join(columns[i]))
|
||||
|
||||
if len(files) < 2: return True # single table is always close to itself...
|
||||
|
||||
maximum = np.zeros(len(columns[0]),dtype='f')
|
||||
data = []
|
||||
# peek into the ASCII table to figure out real table size
|
||||
# the cryptic table header does not share the same size as real
|
||||
# table
|
||||
table.data_readArray(columns[0])
|
||||
maximum = np.zeros(table.data.shape[1], dtype='f')
|
||||
data = [] # list of feature table extracted from each file (ASCII table)
|
||||
for table, labels in zip(tables, columns):
|
||||
table.data_readArray(labels)
|
||||
data.append(np.where(np.abs(table.data)<preFilter,np.zeros_like(table.data),table.data))
|
||||
maximum += np.abs(table.data).max(axis=0)
|
||||
for label in labels:
|
||||
idx = table.label_indexrange(label)
|
||||
maximum[idx] = np.maximum(maximum[idx],
|
||||
np.amax(np.linalg.norm(table.data[:,idx],axis=1)))
|
||||
data.append(table.data)
|
||||
table.close()
|
||||
|
||||
maximum /= len(tables)
|
||||
maximum = np.where(maximum > 0.0, maximum, 1) # avoid div by zero for empty columns
|
||||
|
||||
|
||||
# normalize each table
|
||||
for i in xrange(len(data)):
|
||||
data[i] /= maximum
|
||||
|
||||
mask = np.zeros_like(table.data,dtype='bool')
|
||||
|
||||
for table in data:
|
||||
mask |= np.where(np.abs(table)<postFilter,True,False) # mask out (all) tiny values
|
||||
|
||||
if debug:
|
||||
logging.debug(str(maximum))
|
||||
allclose = np.absolute(data[0]-data[1]) <= (atol + rtol*np.absolute(data[1]))
|
||||
for ok,valA,valB in zip(allclose,data[0],data[1]):
|
||||
logging.debug('{}:\n {}\n{}\n'.format(ok,valA,valB))
|
||||
|
||||
allclose = True # start optimistic
|
||||
for i in xrange(1,len(data)):
|
||||
if debug:
|
||||
t0 = np.where(mask,0.0,data[i-1])
|
||||
t1 = np.where(mask,0.0,data[i ])
|
||||
j = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
|
||||
logging.info('{:f}'.format(np.amax(np.abs(t0-t1)/(np.abs(t1)*rtol+atol))))
|
||||
logging.info('{:f} {:f}'.format((t0*maximum).flatten()[j],(t1*maximum).flatten()[j]))
|
||||
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
|
||||
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
|
||||
allclose &= np.allclose(data[i-1],data[i],rtol,atol) # accumulate "pessimism"
|
||||
|
||||
return allclose
|
||||
|
||||
|
@ -554,14 +553,16 @@ class Test():
|
|||
|
||||
def report_Success(self,culprit):
|
||||
|
||||
ret = culprit
|
||||
|
||||
if culprit == 0:
|
||||
logging.critical(('The test' if len(self.variants) == 1 else 'All {} tests'.format(len(self.variants))) + ' passed')
|
||||
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
||||
return 0
|
||||
if culprit == -1:
|
||||
logging.warning('Warning: Could not start test')
|
||||
return 0
|
||||
msg = 'The test passed' if len(self.variants) == 1 \
|
||||
else 'All {} tests passed.'.format(len(self.variants))
|
||||
elif culprit == -1:
|
||||
msg = 'Warning: Could not start test...'
|
||||
ret = 0
|
||||
else:
|
||||
logging.critical(' ********\n * Test {} failed...\n ********'.format(culprit))
|
||||
logging.critical('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n')
|
||||
return culprit
|
||||
msg = ' * Test "{}" failed.'.format(self.variants[culprit-1])
|
||||
|
||||
logging.critical('\n'.join(['*'*40,msg,'*'*40]) + '\n')
|
||||
return ret
|
||||
|
|
Loading…
Reference in New Issue