adapted phenopowerlaw

This commit is contained in:
Philip Eisenlohr 2023-09-15 10:50:41 -04:00
parent 4de21b5f86
commit 2a88285088
3 changed files with 88 additions and 77 deletions

@ -1 +1 @@
Subproject commit ed4e161d4302852a31c59a1d1d9b11d49f1a5427
Subproject commit b4a2af3be9551e267a10554b1692a81b935882fd

View File

@ -1395,17 +1395,26 @@ end function crystal_interaction_TwinBySlip
!--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for slip
!> details only active slip systems are considered
! Non-schmid projections for cI with up to 6 coefficients
! https://doi.org/10.1016/j.actamat.2012.03.053, eq. (17)
! https://doi.org/10.1016/j.actamat.2008.07.037, table 1
!--------------------------------------------------------------------------------------------------
function crystal_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
function crystal_SchmidMatrix_slip(Nslip,lattice,cOverA,nonSchmidCoefficients,sense) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pREAL), intent(in) :: cOverA
real(pREAL), dimension(3,3,sum(Nslip)) :: SchmidMatrix
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pREAL), intent(in) :: cOverA
real(pREAL), dimension(:,:), optional, intent(in) :: nonSchmidCoefficients !< non-Schmid coefficients for projections
integer, optional, intent(in) :: sense !< sense (-1,+1)
real(pREAL), dimension(3,3,sum(Nslip)) :: SchmidMatrix
real(pREAL), dimension(3,3,sum(Nslip)) :: coordinateSystem
real(pREAL), dimension(:,:), allocatable :: slipSystems
integer, dimension(:), allocatable :: NslipMax
integer, dimension(:), allocatable :: slipFamily
real(pREAL), dimension(3) :: direction, normal, np
real(pREAL), dimension(:), allocatable :: coeff
type(tRotation) :: R
integer :: i
select case(lattice)
@ -1431,12 +1440,37 @@ function crystal_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
if (any(Nslip < 0)) &
call IO_error(144,ext_msg='Nslip '//trim(lattice))
slipFamily = math_expand([(i, i=1,size(Nslip))],Nslip)
coordinateSystem = buildCoordinateSystem(Nslip,NslipMax,slipSystems,lattice,cOverA)
if (present(sense)) then
if (abs(sense) /= 1) error stop 'neither +1 nor -1 sense in crystal_SchmidMatrix_slip'
coordinateSystem(1:3,1,1:sum(Nslip)) = coordinateSystem(1:3,1,1:sum(Nslip)) * real(sense,pREAL)
end if
do i = 1, sum(Nslip)
SchmidMatrix(1:3,1:3,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
do i = 1,sum(Nslip)
direction = coordinateSystem(1:3,1,i)
normal = coordinateSystem(1:3,2,i)
SchmidMatrix(1:3,1:3,i) = math_outer(direction,normal)
if (abs(math_trace33(SchmidMatrix(1:3,1:3,i))) > tol_math_check) &
error stop 'dilatational Schmid matrix for slip'
if (present(nonSchmidCoefficients)) then
select case(lattice)
case('cI')
coeff = nonSchmidCoefficients(slipFamily(i),:)
call R%fromAxisAngle([direction,60.0_pREAL],degrees=.true.,P=1)
np = R%rotate(normal)
SchmidMatrix(1:3,1:3,i) = SchmidMatrix(1:3,1:3,i) &
+ coeff(1) * math_outer(direction, np) &
+ coeff(2) * math_outer(math_cross(normal, direction), normal) &
+ coeff(3) * math_outer(math_cross(np, direction), np) &
+ coeff(4) * math_outer(normal, normal) &
+ coeff(5) * math_outer(math_cross(normal, direction), &
math_cross(normal, direction)) &
+ coeff(6) * math_outer(direction, direction)
end select
end if
end do
end function crystal_SchmidMatrix_slip

View File

@ -36,8 +36,6 @@ submodule(phase:plastic) phenopowerlaw
integer :: &
sum_N_sl, & !< total number of active slip system
sum_N_tw !< total number of active twin systems
logical :: &
nonSchmidActive = .false.
character(len=pSTRLEN), allocatable, dimension(:) :: &
output
character(len=:), allocatable, dimension(:) :: &
@ -89,8 +87,9 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
real(pREAL), dimension(:), allocatable :: &
xi_0_sl, & !< initial critical shear stress for slip
xi_0_tw, & !< initial critical shear stress for twin
a, & !< non-Schmid coefficients
ones
real(pREAL), dimension(:,:), allocatable :: &
a_nS !< non-Schmid coefficients
character(len=:), allocatable :: &
refs, &
extmsg
@ -105,7 +104,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
if (count(myPlasticity) == 0) return
print'(/,1x,a)', '<<<+- phase:mechanical:plastic:phenopowerlaw init -+>>>'
print'(/,1x,a,1x,i0)', '# phases:',count(myPlasticity); flush(IO_STDOUT)
print'(/,a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT)
phases => config_material%get_dict('phase')
@ -124,7 +123,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
mech => phase%get_dict('mechanical')
pl => mech%get_dict('plastic')
print'(/,1x,a,1x,i0,a)', 'phase',ph,': '//phases%key(ph)
print'(/,1x,a,i0,a)', 'phase ',ph,': '//phases%key(ph)
refs = config_listReferences(pl,indent=3)
if (len(refs) > 0) print'(/,1x,a)', refs
@ -160,13 +159,13 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
if (phase_lattice(ph) == 'cI') then
a = pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray)
if (size(a) > 0) prm%nonSchmidActive = .true.
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
allocate(a_nS(3,size(pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray))),source=0.0_pREAL)
a_nS(1,:) = pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray)
prm%P_nS_pos = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph),nonSchmidCoefficients=a_nS,sense=+1)
prm%P_nS_neg = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph),nonSchmidCoefficients=a_nS,sense=-1)
else
prm%P_nS_pos = prm%P_sl
prm%P_nS_neg = prm%P_sl
prm%P_nS_pos = +prm%P_sl
prm%P_nS_neg = -prm%P_sl
end if
prm%systems_sl = crystal_labels_slip(N_sl,phase_lattice(ph))
@ -312,8 +311,7 @@ pure module subroutine phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en)
integer :: &
i,k,l,m,n
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
dot_gamma_sl_pos,dot_gamma_sl_neg, &
ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg
dot_gamma_sl,ddot_gamma_dtau_sl
real(pREAL), dimension(param(ph)%sum_N_tw) :: &
dot_gamma_tw,ddot_gamma_dtau_tw
@ -322,13 +320,14 @@ pure module subroutine phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en)
associate(prm => param(ph))
call kinetics_sl(Mp,ph,en,dot_gamma_sl_pos,dot_gamma_sl_neg,ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg)
call kinetics_sl(Mp,ph,en,dot_gamma_sl,ddot_gamma_dtau_sl)
slipSystems: do i = 1, prm%sum_N_sl
Lp = Lp + (dot_gamma_sl_pos(i)+dot_gamma_sl_neg(i))*prm%P_sl(1:3,1:3,i)
Lp = Lp + dot_gamma_sl(i)*prm%P_sl(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ ddot_gamma_dtau_sl_pos(i) * prm%P_sl(k,l,i) * prm%P_nS_pos(m,n,i) &
+ ddot_gamma_dtau_sl_neg(i) * prm%P_sl(k,l,i) * prm%P_nS_neg(m,n,i)
+ ddot_gamma_dtau_sl(i) * prm%P_sl(k,l,i) &
* merge(prm%P_nS_pos(m,n,i), &
prm%P_nS_neg(m,n,i), dot_gamma_sl(i)>0.0_pREAL)
end do slipSystems
call kinetics_tw(Mp,ph,en,dot_gamma_tw,ddot_gamma_dtau_tw)
@ -370,23 +369,23 @@ module function phenopowerlaw_dotState(Mp,ph,en) result(dotState)
dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)), &
dot_gamma_tw => dotState(indexDotState(ph)%gamma_tw(1):indexDotState(ph)%gamma_tw(2)))
call kinetics_sl(Mp,ph,en, dot_gamma_sl_pos,dot_gamma_sl_neg)
dot_gamma_sl = abs(dot_gamma_sl_pos+dot_gamma_sl_neg)
call kinetics_sl(Mp,ph,en, dot_gamma_sl)
call kinetics_tw(Mp,ph,en, dot_gamma_tw)
dot_gamma_sl = abs(dot_gamma_sl)
sumF = sum(stt%gamma_tw(:,en)/prm%gamma_char)
xi_sl_sat_offset = prm%f_sat_sl_tw*sqrt(sumF)
left_SlipSlip = sign(abs(1.0_pREAL-stt%xi_sl(:,en) / (prm%xi_inf_sl+xi_sl_sat_offset))**prm%a_sl, &
1.0_pREAL-stt%xi_sl(:,en) / (prm%xi_inf_sl+xi_sl_sat_offset))
left_SlipSlip = sign(abs(1.0_pREAL - stt%xi_sl(:,en) / (prm%xi_inf_sl+xi_sl_sat_offset))**prm%a_sl, &
1.0_pREAL - stt%xi_sl(:,en) / (prm%xi_inf_sl+xi_sl_sat_offset))
dot_xi_sl = prm%h_0_sl_sl * (1.0_pREAL + prm%c_1 * sumF**prm%c_2) &
* left_SlipSlip * matmul(prm%h_sl_sl,dot_gamma_sl) &
* left_SlipSlip &
* matmul(prm%h_sl_sl,dot_gamma_sl) &
+ matmul(prm%h_sl_tw,dot_gamma_tw)
dot_xi_tw = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 &
* matmul(prm%h_tw_sl,dot_gamma_sl) &
+ prm%h_0_tw_tw * sumF**prm%c_4 * matmul(prm%h_tw_tw,dot_gamma_tw)
dot_xi_tw = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 * matmul(prm%h_tw_sl,dot_gamma_sl) &
+ prm%h_0_tw_tw * sumF **prm%c_4 * matmul(prm%h_tw_tw,dot_gamma_tw)
end associate
@ -436,25 +435,23 @@ end subroutine plastic_phenopowerlaw_result
!--------------------------------------------------------------------------------------------------
!> @brief Calculate shear rates on slip systems and their derivatives with respect to resolved
! stress.
!> @details Derivatives are calculated only optionally.
! NOTE: Contrary to common convention, here the result (i.e. intent(out)) variables have to be put
! at the end since some of them are optional.
!> @details Sign of dot_gamma_sl conveys sense of shear.
! Derivatives are calculated only optionally, hence, contrary to common convention,
! here the result (i.e. intent(out)) variables have to be put at the end.
!--------------------------------------------------------------------------------------------------
pure subroutine kinetics_sl(Mp,ph,en, &
dot_gamma_sl_pos,dot_gamma_sl_neg,ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg)
dot_gamma_sl,ddot_gamma_dtau_sl)
real(pREAL), dimension(3,3), intent(in) :: &
real(pREAL), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
integer, intent(in) :: &
ph, &
en
real(pREAL), intent(out), dimension(param(ph)%sum_N_sl) :: &
dot_gamma_sl_pos, &
dot_gamma_sl_neg
real(pREAL), intent(out), optional, dimension(param(ph)%sum_N_sl) :: &
ddot_gamma_dtau_sl_pos, &
ddot_gamma_dtau_sl_neg
real(pREAL), dimension(param(ph)%sum_N_sl), intent(out) :: &
dot_gamma_sl
real(pREAL), dimension(param(ph)%sum_N_sl), optional, intent(out) :: &
ddot_gamma_dtau_sl
real(pREAL), dimension(param(ph)%sum_N_sl) :: &
tau_sl_pos, &
@ -463,38 +460,18 @@ pure subroutine kinetics_sl(Mp,ph,en, &
associate(prm => param(ph), stt => state(ph))
do i = 1, prm%sum_N_sl
tau_sl_pos(i) = math_tensordot(Mp,prm%P_nS_pos(1:3,1:3,i))
tau_sl_neg(i) = merge(math_tensordot(Mp,prm%P_nS_neg(1:3,1:3,i)), &
0.0_pREAL, prm%nonSchmidActive)
end do
tau_sl_pos = [(math_tensordot(Mp,prm%P_nS_pos(1:3,1:3,i)),i=1,prm%sum_N_sl)]
tau_sl_neg = [(math_tensordot(Mp,prm%P_nS_neg(1:3,1:3,i)),i=1,prm%sum_N_sl)]
where(dNeq0(tau_sl_pos))
dot_gamma_sl_pos = prm%dot_gamma_0_sl * merge(0.5_pREAL,1.0_pREAL, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
* sign(abs(tau_sl_pos/stt%xi_sl(:,en))**prm%n_sl, tau_sl_pos)
else where
dot_gamma_sl_pos = 0.0_pREAL
end where
dot_gamma_sl = merge(+1.0_pREAL,-1.0_pREAL, tau_sl_pos>tau_sl_neg) &
* prm%dot_gamma_0_sl &
* (merge(tau_sl_pos,tau_sl_neg, tau_sl_pos>tau_sl_neg)/stt%xi_sl(:,en))**prm%n_sl
where(dNeq0(tau_sl_neg))
dot_gamma_sl_neg = prm%dot_gamma_0_sl * 0.5_pREAL & ! only used if non-Schmid active, always 1/2
* sign(abs(tau_sl_neg/stt%xi_sl(:,en))**prm%n_sl, tau_sl_neg)
else where
dot_gamma_sl_neg = 0.0_pREAL
end where
if (present(ddot_gamma_dtau_sl_pos)) then
where(dNeq0(dot_gamma_sl_pos))
ddot_gamma_dtau_sl_pos = dot_gamma_sl_pos*prm%n_sl/tau_sl_pos
if (present(ddot_gamma_dtau_sl)) then
where(dNeq0(dot_gamma_sl))
ddot_gamma_dtau_sl = dot_gamma_sl*prm%n_sl/merge(tau_sl_pos,tau_sl_neg, tau_sl_pos>tau_sl_neg)
else where
ddot_gamma_dtau_sl_pos = 0.0_pREAL
end where
end if
if (present(ddot_gamma_dtau_sl_neg)) then
where(dNeq0(dot_gamma_sl_neg))
ddot_gamma_dtau_sl_neg = dot_gamma_sl_neg*prm%n_sl/tau_sl_neg
else where
ddot_gamma_dtau_sl_neg = 0.0_pREAL
ddot_gamma_dtau_sl = 0.0_pREAL
end where
end if
@ -504,8 +481,8 @@ end subroutine kinetics_sl
!--------------------------------------------------------------------------------------------------
!> @brief Calculate shear rates on twin systems and their derivatives with respect to resolved
! stress. Twinning is assumed to take place only in an untwinned volume.
!> @brief Calculate shear rates on twin systems and their derivatives with respect to resolved stress.
! Twinning is assumed to take place only in an untwinned volume.
!> @details Derivatives are calculated and returned if corresponding output variables are present in the argument list.
! NOTE: Contrary to common convention, here the result (i.e. intent(out)) variables have to be put
! at the end since some of them are optional.
@ -535,7 +512,7 @@ pure subroutine kinetics_tw(Mp,ph,en,&
where(tau_tw > 0.0_pREAL)
dot_gamma_tw = (1.0_pREAL-sum(stt%gamma_tw(:,en)/prm%gamma_char)) & ! only twin in untwinned volume fraction
* prm%dot_gamma_0_tw*(abs(tau_tw)/stt%xi_tw(:,en))**prm%n_tw
* prm%dot_gamma_0_tw*(tau_tw/stt%xi_tw(:,en))**prm%n_tw
else where
dot_gamma_tw = 0.0_pREAL
end where