Merge branch 'development' of magit1.mpie.de:damask/DAMASK into development
This commit is contained in:
commit
2a86eef778
|
@ -1423,21 +1423,21 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
nr = plastic_dislotwin_totalNtrans(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(ph)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(ph)%strainTransFraction(1_pInt:nr,of))
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||||
|
||||
!* Homogenized elasticity matrix
|
||||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
|
||||
do i=1_pInt,nt
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ state(ph)%twinFraction(i,of)*plastic_dislotwin_Ctwin66(1:6,1:6,i,instance)
|
||||
+ state(instance)%twinFraction(i,of)*plastic_dislotwin_Ctwin66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
do i=1_pInt,nr
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ (state(ph)%stressTransFraction(i,of) + state(ph)%strainTransFraction(i,of))*&
|
||||
+ (state(instance)%stressTransFraction(i,of) + state(instance)%strainTransFraction(i,of))*&
|
||||
plastic_dislotwin_Ctrans66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
|
||||
|
@ -1486,11 +1486,11 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
nr = plastic_dislotwin_totalNtrans(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(ph)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(ph)%strainTransFraction(1_pInt:nr,of))
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||||
|
||||
!* Stacking fault energy
|
||||
sfe = plastic_dislotwin_SFE_0K(instance) + &
|
||||
|
@ -1499,84 +1499,84 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
!* rescaled twin volume fraction for topology
|
||||
forall (t = 1_pInt:nt) &
|
||||
fOverStacksize(t) = &
|
||||
state(ph)%twinFraction(t,of)/plastic_dislotwin_twinsizePerTwinSystem(t,instance)
|
||||
state(instance)%twinFraction(t,of)/plastic_dislotwin_twinsizePerTwinSystem(t,instance)
|
||||
|
||||
!* rescaled trans volume fraction for topology
|
||||
forall (r = 1_pInt:nr) &
|
||||
ftransOverLamellarSize(r) = &
|
||||
(state(ph)%stressTransFraction(r,of)+state(ph)%strainTransFraction(r,of))/&
|
||||
(state(instance)%stressTransFraction(r,of)+state(instance)%strainTransFraction(r,of))/&
|
||||
plastic_dislotwin_lamellarsizePerTransSystem(r,instance)
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:ns) &
|
||||
state(ph)%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((state(ph)%rhoEdge(1_pInt:ns,of)+state(ph)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
state(instance)%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_dislotwin_forestProjectionEdge(1:ns,s,instance)))/ &
|
||||
plastic_dislotwin_CLambdaSlipPerSlipSystem(s,instance)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
state(ph)%invLambdaSlipTwin(1_pInt:ns,of) = 0.0_pReal
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = 0.0_pReal
|
||||
if (nt > 0_pInt .and. ns > 0_pInt) &
|
||||
state(ph)%invLambdaSlipTwin(1_pInt:ns,of) = &
|
||||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = &
|
||||
matmul(plastic_dislotwin_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (nt > 0_pInt) &
|
||||
state(ph)%invLambdaTwin(1_pInt:nt,of) = &
|
||||
state(instance)%invLambdaTwin(1_pInt:nt,of) = &
|
||||
matmul(plastic_dislotwin_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||||
state(ph)%invLambdaSlipTrans(1_pInt:ns,of) = 0.0_pReal
|
||||
state(instance)%invLambdaSlipTrans(1_pInt:ns,of) = 0.0_pReal
|
||||
if (nr > 0_pInt .and. ns > 0_pInt) &
|
||||
state(ph)%invLambdaSlipTrans(1_pInt:ns,of) = &
|
||||
state(instance)%invLambdaSlipTrans(1_pInt:ns,of) = &
|
||||
matmul(plastic_dislotwin_interactionMatrix_SlipTrans(1:ns,1:nr,instance),ftransOverLamellarSize(1:nr))/(1.0_pReal-sumftr)
|
||||
|
||||
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
|
||||
if (nr > 0_pInt) &
|
||||
state(ph)%invLambdaTrans(1_pInt:nr,of) = &
|
||||
state(instance)%invLambdaTrans(1_pInt:nr,of) = &
|
||||
matmul(plastic_dislotwin_interactionMatrix_TransTrans(1:nr,1:nr,instance),ftransOverLamellarSize(1:nr))/(1.0_pReal-sumftr)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,ns
|
||||
if ((nt > 0_pInt) .or. (nr > 0_pInt)) then
|
||||
state(ph)%mfp_slip(s,of) = &
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
plastic_dislotwin_GrainSize(instance)/(1.0_pReal+plastic_dislotwin_GrainSize(instance)*&
|
||||
(state(ph)%invLambdaSlip(s,of) + &
|
||||
state(ph)%invLambdaSlipTwin(s,of) + &
|
||||
state(ph)%invLambdaSlipTrans(s,of)))
|
||||
(state(instance)%invLambdaSlip(s,of) + &
|
||||
state(instance)%invLambdaSlipTwin(s,of) + &
|
||||
state(instance)%invLambdaSlipTrans(s,of)))
|
||||
else
|
||||
state(ph)%mfp_slip(s,of) = &
|
||||
state(instance)%mfp_slip(s,of) = &
|
||||
plastic_dislotwin_GrainSize(instance)/&
|
||||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*(state(ph)%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*(state(instance)%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
state(ph)%mfp_twin(t,of) = &
|
||||
state(instance)%mfp_twin(t,of) = &
|
||||
plastic_dislotwin_Cmfptwin(instance)*plastic_dislotwin_GrainSize(instance)/&
|
||||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*state(ph)%invLambdaTwin(t,of))
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing martensite
|
||||
forall (r = 1_pInt:nr) &
|
||||
state(ph)%mfp_trans(r,of) = &
|
||||
state(instance)%mfp_trans(r,of) = &
|
||||
plastic_dislotwin_Cmfptrans(instance)*plastic_dislotwin_GrainSize(instance)/&
|
||||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*state(ph)%invLambdaTrans(r,of))
|
||||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*state(instance)%invLambdaTrans(r,of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:ns) &
|
||||
state(ph)%threshold_stress_slip(s,of) = &
|
||||
state(instance)%threshold_stress_slip(s,of) = &
|
||||
lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(s,instance)*&
|
||||
sqrt(dot_product((state(ph)%rhoEdge(1_pInt:ns,of)+state(ph)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||||
plastic_dislotwin_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
state(ph)%threshold_stress_twin(t,of) = &
|
||||
state(instance)%threshold_stress_twin(t,of) = &
|
||||
plastic_dislotwin_Cthresholdtwin(instance)* &
|
||||
(sfe/(3.0_pReal*plastic_dislotwin_burgersPerTwinSystem(t,instance)) &
|
||||
+ 3.0_pReal*plastic_dislotwin_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
||||
|
@ -1585,7 +1585,7 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* threshold stress for growing martensite
|
||||
forall (r = 1_pInt:nr) &
|
||||
state(ph)%threshold_stress_trans(r,of) = &
|
||||
state(instance)%threshold_stress_trans(r,of) = &
|
||||
plastic_dislotwin_Cthresholdtrans(instance)* &
|
||||
(sfe/(3.0_pReal*plastic_dislotwin_burgersPerTransSystem(r,instance)) &
|
||||
+ 3.0_pReal*plastic_dislotwin_burgersPerTransSystem(r,instance)*lattice_mu(ph)/&
|
||||
|
@ -1596,15 +1596,15 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* final twin volume after growth
|
||||
forall (t = 1_pInt:nt) &
|
||||
state(ph)%twinVolume(t,of) = &
|
||||
state(instance)%twinVolume(t,of) = &
|
||||
(pi/4.0_pReal)*plastic_dislotwin_twinsizePerTwinSystem(t,instance)*&
|
||||
state(ph)%mfp_twin(t,of)**(2.0_pReal)
|
||||
state(instance)%mfp_twin(t,of)**(2.0_pReal)
|
||||
|
||||
!* final martensite volume after growth
|
||||
forall (r = 1_pInt:nr) &
|
||||
state(ph)%martensiteVolume(r,of) = &
|
||||
state(instance)%martensiteVolume(r,of) = &
|
||||
(pi/4.0_pReal)*plastic_dislotwin_lamellarsizePerTransSystem(r,instance)*&
|
||||
state(ph)%mfp_trans(r,of)**(2.0_pReal)
|
||||
state(instance)%mfp_trans(r,of)**(2.0_pReal)
|
||||
|
||||
!* equilibrium separation of partial dislocations (twin)
|
||||
do t = 1_pInt,nt
|
||||
|
@ -1728,9 +1728,9 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
||||
if((abs(tau_slip(j))-state(ph)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau_slip(j))-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio =((abs(tau_slip(j))- state(ph)%threshold_stress_slip(j,of))/&
|
||||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))
|
||||
StressRatio_p = stressRatio** plastic_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = stressRatio**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -1738,7 +1738,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(ph)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
|
@ -1769,11 +1769,11 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! correct Lp and dLp_dTstar3333 for twinned and transformed fraction
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(ph)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(ph)%strainTransFraction(1_pInt:nr,of))
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||||
Lp = Lp * (1.0_pReal - sumf - sumftr)
|
||||
dLp_dTstar3333 = dLp_dTstar3333 * (1.0_pReal - sumf - sumftr)
|
||||
|
||||
|
@ -1849,15 +1849,15 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
|
||||
!* Stress ratios
|
||||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (state(ph)%threshold_stress_twin(j,of)/tau_twin(j))**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin(j))**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin(j) < plastic_dislotwin_tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(ph)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(ph)%rhoEdge(s1,of)+state(ph)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_dislotwin_L0_twin(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_dislotwin_tau_r_twin(j,instance)-tau_twin(j))))
|
||||
|
@ -1869,7 +1869,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
end select
|
||||
gdot_twin(j) = &
|
||||
(1.0_pReal-sumf-sumftr)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
state(ph)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dgdot_dtautwin(j) = ((gdot_twin(j)*plastic_dislotwin_rPerTwinFamily(f,instance))/tau_twin(j))*StressRatio_r
|
||||
endif
|
||||
|
||||
|
@ -1899,15 +1899,15 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
|
||||
!* Stress ratios
|
||||
if (tau_trans(j) > tol_math_check) then
|
||||
StressRatio_s = (state(ph)%threshold_stress_trans(j,of)/tau_trans(j))**plastic_dislotwin_sPerTransFamily(f,instance)
|
||||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/tau_trans(j))**plastic_dislotwin_sPerTransFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to transformation
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_trans(j) < plastic_dislotwin_tau_r_trans(j,instance)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(ph)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(ph)%rhoEdge(s1,of)+state(ph)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_dislotwin_L0_trans(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_dislotwin_tau_r_trans(j,instance)-tau_trans(j))))
|
||||
|
@ -1919,7 +1919,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
end select
|
||||
gdot_trans(j) = &
|
||||
(1.0_pReal-sumf-sumftr)*&
|
||||
state(ph)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
state(instance)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
dgdot_dtautrans(j) = ((gdot_trans(j)*plastic_dislotwin_sPerTransFamily(f,instance))/tau_trans(j))*StressRatio_s
|
||||
endif
|
||||
|
||||
|
@ -2006,12 +2006,12 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
nr = plastic_dislotwin_totalNtrans(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
plasticState(instance)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(ph)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(ph)%strainTransFraction(1_pInt:nr,of))
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||||
|
||||
!* Dislocation density evolution
|
||||
gdot_slip = 0.0_pReal
|
||||
|
@ -2024,9 +2024,9 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
||||
if((abs(tau_slip(j))-state(ph)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau_slip(j))-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio =((abs(tau_slip(j))- state(ph)%threshold_stress_slip(j,of))/&
|
||||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))
|
||||
StressRatio_p = stressRatio** plastic_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = stressRatio**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -2043,7 +2043,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
endif
|
||||
!* Multiplication
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/&
|
||||
(plastic_dislotwin_burgersPerSlipSystem(j,instance)*state(ph)%mfp_slip(j,of))
|
||||
(plastic_dislotwin_burgersPerSlipSystem(j,instance)*state(instance)%mfp_slip(j,of))
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
plastic_dislotwin_CEdgeDipMinDistance(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance)
|
||||
|
@ -2053,22 +2053,22 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
EdgeDipDistance = &
|
||||
(3.0_pReal*lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(tau_slip(j)))
|
||||
if (EdgeDipDistance>state(ph)%mfp_slip(j,of)) EdgeDipDistance=state(ph)%mfp_slip(j,of)
|
||||
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = &
|
||||
((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
state(ph)%rhoEdge(j,of)*abs(gdot_slip(j))*plastic_dislotwin_dipoleFormationFactor(instance)
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))*plastic_dislotwin_dipoleFormationFactor(instance)
|
||||
endif
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
state(ph)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = &
|
||||
((2.0_pReal*EdgeDipMinDistance)/plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
state(ph)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = &
|
||||
|
@ -2083,21 +2083,21 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
else
|
||||
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
|
||||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(ph)%rhoEdgeDip(j,of)/ &
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of)/ &
|
||||
(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
endif
|
||||
|
||||
!* Edge dislocation density rate of change
|
||||
dotState(ph)%rhoEdge(j,of) = &
|
||||
dotState(instance)%rhoEdge(j,of) = &
|
||||
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
|
||||
!* Edge dislocation dipole density rate of change
|
||||
dotState(ph)%rhoEdgeDip(j,of) = &
|
||||
dotState(instance)%rhoEdgeDip(j,of) = &
|
||||
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
|
||||
!* Dotstate for accumulated shear due to slip
|
||||
dotState(ph)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
@ -2113,7 +2113,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (state(ph)%threshold_stress_twin(j,of)/&
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/&
|
||||
tau_twin(j))**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
|
@ -2121,8 +2121,8 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_twin(j) < plastic_dislotwin_tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(ph)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(ph)%rhoEdge(s1,of)+state(ph)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_dislotwin_L0_twin(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_dislotwin_tau_r_twin(j,instance)-tau_twin(j))))
|
||||
|
@ -2132,11 +2132,11 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
case default
|
||||
Ndot0_twin=plastic_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
dotState(ph)%twinFraction(j,of) = &
|
||||
dotState(instance)%twinFraction(j,of) = &
|
||||
(1.0_pReal-sumf-sumftr)*&
|
||||
state(ph)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
!* Dotstate for accumulated shear due to twin
|
||||
dotState(ph)%accshear_twin(j,of) = dotState(ph)%twinFraction(j,of) * &
|
||||
dotState(instance)%accshear_twin(j,of) = dotState(instance)%twinFraction(j,of) * &
|
||||
lattice_sheartwin(index_myfamily+i,ph)
|
||||
endif
|
||||
enddo
|
||||
|
@ -2154,7 +2154,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
!* Stress ratios
|
||||
if (tau_trans(j) > tol_math_check) then
|
||||
StressRatio_s = (state(ph)%threshold_stress_trans(j,of)/&
|
||||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/&
|
||||
tau_trans(j))**plastic_dislotwin_sPerTransFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to transformation
|
||||
select case(lattice_structure(ph))
|
||||
|
@ -2162,8 +2162,8 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau_trans(j) < plastic_dislotwin_tau_r_trans(j,instance)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(ph)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(ph)%rhoEdge(s1,of)+state(ph)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_dislotwin_L0_trans(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
(plastic_dislotwin_tau_r_trans(j,instance)-tau_trans(j))))
|
||||
|
@ -2173,11 +2173,11 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
case default
|
||||
Ndot0_trans=plastic_dislotwin_Ndot0PerTransSystem(j,instance)
|
||||
end select
|
||||
dotState(ph)%strainTransFraction(j,of) = &
|
||||
dotState(instance)%strainTransFraction(j,of) = &
|
||||
(1.0_pReal-sumf-sumftr)*&
|
||||
state(ph)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
state(instance)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
!* Dotstate for accumulated shear due to transformation
|
||||
!dotState(ph)%accshear_trans(j,of) = dotState(ph)%strainTransFraction(j,of) * &
|
||||
!dotState(instance)%accshear_trans(j,of) = dotState(instance)%strainTransFraction(j,of) * &
|
||||
! lattice_sheartrans(index_myfamily+i,ph)
|
||||
endif
|
||||
|
||||
|
@ -2251,7 +2251,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
nr = plastic_dislotwin_totalNtrans(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(ph)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||||
|
||||
!* Required output
|
||||
c = 0_pInt
|
||||
|
@ -2260,10 +2260,10 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
select case(plastic_dislotwin_outputID(o,instance))
|
||||
|
||||
case (edge_density_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = state(ph)%rhoEdge(1_pInt:ns,of)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdge(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (dipole_density_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = state(ph)%rhoEdgeDip(1_pInt:ns,of)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdgeDip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (shear_rate_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2275,7 +2275,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-state(ph)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||||
|
@ -2286,7 +2286,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(ph)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
|
@ -2301,11 +2301,11 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (accumulated_shear_slip_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = &
|
||||
state(ph)%accshear_slip(1_pInt:ns,of)
|
||||
state(instance)%accshear_slip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (mfp_slip_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) =&
|
||||
state(ph)%mfp_slip(1_pInt:ns,of)
|
||||
state(instance)%mfp_slip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (resolved_stress_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2319,7 +2319,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (threshold_stress_slip_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = &
|
||||
state(ph)%threshold_stress_slip(1_pInt:ns,of)
|
||||
state(instance)%threshold_stress_slip(1_pInt:ns,of)
|
||||
c = c + ns
|
||||
case (edge_dipole_distance_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2331,7 +2331,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
(3.0_pReal*lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))
|
||||
plastic_dislotwin_postResults(c+j)=min(plastic_dislotwin_postResults(c+j),&
|
||||
state(ph)%mfp_slip(j,of))
|
||||
state(instance)%mfp_slip(j,of))
|
||||
! plastic_dislotwin_postResults(c+j)=max(plastic_dislotwin_postResults(c+j),&
|
||||
! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of))
|
||||
enddo; enddo
|
||||
|
@ -2367,7 +2367,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
enddo
|
||||
c = c + 6_pInt
|
||||
case (twin_fraction_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(ph)%twinFraction(1_pInt:nt,of)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%twinFraction(1_pInt:nt,of)
|
||||
c = c + nt
|
||||
case (shear_rate_twin_ID)
|
||||
if (nt > 0_pInt) then
|
||||
|
@ -2381,13 +2381,13 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-state(ph)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**plastic_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -2395,7 +2395,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(ph)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
|
@ -2422,8 +2422,8 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
if (tau < plastic_dislotwin_tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(ph)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(ph)%rhoEdge(s1,of)+state(ph)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
(plastic_dislotwin_L0_twin(instance)*&
|
||||
plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||||
|
@ -2434,21 +2434,21 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
case default
|
||||
Ndot0_twin=plastic_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
StressRatio_r = (state(ph)%threshold_stress_twin(j,of)/tau) &
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau) &
|
||||
**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||||
plastic_dislotwin_postResults(c+j) = &
|
||||
(plastic_dislotwin_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
state(ph)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
endif
|
||||
c = c + nt
|
||||
case (accumulated_shear_twin_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(ph)%accshear_twin(1_pInt:nt,of)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%accshear_twin(1_pInt:nt,of)
|
||||
c = c + nt
|
||||
case (mfp_twin_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(ph)%mfp_twin(1_pInt:nt,of)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%mfp_twin(1_pInt:nt,of)
|
||||
c = c + nt
|
||||
case (resolved_stress_twin_ID)
|
||||
if (nt > 0_pInt) then
|
||||
|
@ -2462,7 +2462,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
endif
|
||||
c = c + nt
|
||||
case (threshold_stress_twin_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(ph)%threshold_stress_twin(1_pInt:nt,of)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%threshold_stress_twin(1_pInt:nt,of)
|
||||
c = c + nt
|
||||
case (stress_exponent_ID)
|
||||
j = 0_pInt
|
||||
|
@ -2473,13 +2473,13 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
if((abs(tau)-state(ph)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**plastic_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -2487,7 +2487,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(ph)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
|
@ -2524,19 +2524,19 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + 9_pInt
|
||||
case (stress_trans_fraction_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nr) = &
|
||||
state(ph)%stressTransFraction(1_pInt:nr,of)
|
||||
state(instance)%stressTransFraction(1_pInt:nr,of)
|
||||
c = c + nr
|
||||
case (strain_trans_fraction_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nr) = &
|
||||
state(ph)%strainTransFraction(1_pInt:nr,of)
|
||||
state(instance)%strainTransFraction(1_pInt:nr,of)
|
||||
c = c + nr
|
||||
case (trans_fraction_ID)
|
||||
plastic_dislotwin_postResults(c+1_pInt:c+nr) = &
|
||||
state(ph)%stressTransFraction(1_pInt:nr,of) + &
|
||||
state(ph)%strainTransFraction(1_pInt:nr,of)
|
||||
state(instance)%stressTransFraction(1_pInt:nr,of) + &
|
||||
state(instance)%strainTransFraction(1_pInt:nr,of)
|
||||
c = c + nr
|
||||
end select
|
||||
enddo
|
||||
end function plastic_dislotwin_postResults
|
||||
|
||||
end module plastic_dislotwin
|
||||
end module plastic_dislotwin
|
Loading…
Reference in New Issue