not needed
This commit is contained in:
parent
53de95798a
commit
2a1badb548
|
@ -962,39 +962,24 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
|
||||||
|
|
||||||
integer :: &
|
integer :: &
|
||||||
ph, &
|
ph, &
|
||||||
neighbor_instance, & !< instance of my neighbor's plasticity
|
|
||||||
ns, & !< short notation for the total number of active slip systems
|
ns, & !< short notation for the total number of active slip systems
|
||||||
c, & !< character of dislocation
|
c, & !< character of dislocation
|
||||||
n, & !< index of my current neighbor
|
|
||||||
neighbor_el, & !< element number of my neighbor
|
|
||||||
neighbor_ip, & !< integration point of my neighbor
|
|
||||||
neighbor_n, & !< neighbor index pointing to me when looking from my neighbor
|
|
||||||
opposite_neighbor, & !< index of my opposite neighbor
|
|
||||||
opposite_ip, & !< ip of my opposite neighbor
|
|
||||||
opposite_el, & !< element index of my opposite neighbor
|
|
||||||
opposite_n, & !< neighbor index pointing to me when looking from my opposite neighbor
|
|
||||||
t, & !< type of dislocation
|
t, & !< type of dislocation
|
||||||
no,& !< neighbor offset shortcut
|
|
||||||
np,& !< neighbor phase shortcut
|
|
||||||
topp, & !< type of dislocation with opposite sign to t
|
|
||||||
s !< index of my current slip system
|
s !< index of my current slip system
|
||||||
real(pReal), dimension(param(instance)%sum_N_sl,10) :: &
|
real(pReal), dimension(param(instance)%sum_N_sl,10) :: &
|
||||||
rho, &
|
rho, &
|
||||||
rho0, & !< dislocation density at beginning of time step
|
rho0, & !< dislocation density at beginning of time step
|
||||||
rhoDot, & !< density evolution
|
rhoDot, & !< density evolution
|
||||||
rhoDotMultiplication, & !< density evolution by multiplication
|
rhoDotMultiplication, & !< density evolution by multiplication
|
||||||
rhoDotFlux, & !< density evolution by flux
|
|
||||||
rhoDotSingle2DipoleGlide, & !< density evolution by dipole formation (by glide)
|
rhoDotSingle2DipoleGlide, & !< density evolution by dipole formation (by glide)
|
||||||
rhoDotAthermalAnnihilation, & !< density evolution by athermal annihilation
|
rhoDotAthermalAnnihilation, & !< density evolution by athermal annihilation
|
||||||
rhoDotThermalAnnihilation !< density evolution by thermal annihilation
|
rhoDotThermalAnnihilation !< density evolution by thermal annihilation
|
||||||
real(pReal), dimension(param(instance)%sum_N_sl,8) :: &
|
real(pReal), dimension(param(instance)%sum_N_sl,8) :: &
|
||||||
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
|
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
|
||||||
neighbor_rhoSgl0, & !< current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
|
|
||||||
my_rhoSgl0 !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
|
my_rhoSgl0 !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
|
||||||
real(pReal), dimension(param(instance)%sum_N_sl,4) :: &
|
real(pReal), dimension(param(instance)%sum_N_sl,4) :: &
|
||||||
v, & !< current dislocation glide velocity
|
v, & !< current dislocation glide velocity
|
||||||
v0, &
|
v0, &
|
||||||
neighbor_v0, & !< dislocation glide velocity of enighboring ip
|
|
||||||
gdot !< shear rates
|
gdot !< shear rates
|
||||||
real(pReal), dimension(param(instance)%sum_N_sl) :: &
|
real(pReal), dimension(param(instance)%sum_N_sl) :: &
|
||||||
tau, & !< current resolved shear stress
|
tau, & !< current resolved shear stress
|
||||||
|
@ -1003,23 +988,7 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
|
||||||
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
|
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
|
||||||
dLower, & !< minimum stable dipole distance for edges and screws
|
dLower, & !< minimum stable dipole distance for edges and screws
|
||||||
dUpper !< current maximum stable dipole distance for edges and screws
|
dUpper !< current maximum stable dipole distance for edges and screws
|
||||||
real(pReal), dimension(3,param(instance)%sum_N_sl,4) :: &
|
|
||||||
m !< direction of dislocation motion
|
|
||||||
real(pReal), dimension(3,3) :: &
|
|
||||||
my_F, & !< my total deformation gradient
|
|
||||||
neighbor_F, & !< total deformation gradient of my neighbor
|
|
||||||
my_Fe, & !< my elastic deformation gradient
|
|
||||||
neighbor_Fe, & !< elastic deformation gradient of my neighbor
|
|
||||||
Favg !< average total deformation gradient of me and my neighbor
|
|
||||||
real(pReal), dimension(3) :: &
|
|
||||||
normal_neighbor2me, & !< interface normal pointing from my neighbor to me in neighbor's lattice configuration
|
|
||||||
normal_neighbor2me_defConf, & !< interface normal pointing from my neighbor to me in shared deformed configuration
|
|
||||||
normal_me2neighbor, & !< interface normal pointing from me to my neighbor in my lattice configuration
|
|
||||||
normal_me2neighbor_defConf !< interface normal pointing from me to my neighbor in shared deformed configuration
|
|
||||||
real(pReal) :: &
|
real(pReal) :: &
|
||||||
area, & !< area of the current interface
|
|
||||||
transmissivity, & !< overall transmissivity of dislocation flux to neighboring material point
|
|
||||||
lineLength, & !< dislocation line length leaving the current interface
|
|
||||||
selfDiffusion !< self diffusion
|
selfDiffusion !< self diffusion
|
||||||
|
|
||||||
ph = material_phaseAt(1,el)
|
ph = material_phaseAt(1,el)
|
||||||
|
@ -1094,153 +1063,6 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature,timestep, &
|
||||||
|
|
||||||
forall (s = 1:ns, t = 1:4) v0(s,t) = plasticState(ph)%state0(iV(s,t,instance),of)
|
forall (s = 1:ns, t = 1:4) v0(s,t) = plasticState(ph)%state0(iV(s,t,instance),of)
|
||||||
|
|
||||||
!****************************************************************************
|
|
||||||
!*** calculate dislocation fluxes (only for nonlocal plasticity)
|
|
||||||
rhoDotFlux = 0.0_pReal
|
|
||||||
if (.not. phase_localPlasticity(material_phaseAt(1,el))) then
|
|
||||||
|
|
||||||
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
|
|
||||||
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
|
|
||||||
.and. prm%CFLfactor * abs(v0) * timestep &
|
|
||||||
> IPvolume(ip,el) / maxval(IParea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
|
|
||||||
#ifdef DEBUG
|
|
||||||
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0) then
|
|
||||||
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
|
|
||||||
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
|
|
||||||
maxval(abs(v0), abs(gdot) > 0.0_pReal &
|
|
||||||
.and. prm%CFLfactor * abs(v0) * timestep &
|
|
||||||
> IPvolume(ip,el) / maxval(IParea(:,ip,el))), &
|
|
||||||
' at a timestep of ',timestep
|
|
||||||
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
|
|
||||||
endif
|
|
||||||
#endif
|
|
||||||
plasticState(ph)%dotState = IEEE_value(1.0_pReal,IEEE_quiet_NaN) ! -> return NaN and, hence, enforce cutback
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
!*** be aware of the definition of slip_transverse = slip_direction x slip_normal !!!
|
|
||||||
!*** opposite sign to our t vector in the (s,t,n) triplet !!!
|
|
||||||
|
|
||||||
m(1:3,:,1) = prm%slip_direction
|
|
||||||
m(1:3,:,2) = -prm%slip_direction
|
|
||||||
m(1:3,:,3) = -prm%slip_transverse
|
|
||||||
m(1:3,:,4) = prm%slip_transverse
|
|
||||||
|
|
||||||
my_F = F(1:3,1:3,1,ip,el)
|
|
||||||
my_Fe = matmul(my_F, math_inv33(Fp(1:3,1:3,1,ip,el)))
|
|
||||||
|
|
||||||
neighbors: do n = 1,nIPneighbors
|
|
||||||
|
|
||||||
neighbor_el = IPneighborhood(1,n,ip,el)
|
|
||||||
neighbor_ip = IPneighborhood(2,n,ip,el)
|
|
||||||
neighbor_n = IPneighborhood(3,n,ip,el)
|
|
||||||
np = material_phaseAt(1,neighbor_el)
|
|
||||||
no = material_phasememberAt(1,neighbor_ip,neighbor_el)
|
|
||||||
|
|
||||||
opposite_neighbor = n + mod(n,2) - mod(n+1,2)
|
|
||||||
opposite_el = IPneighborhood(1,opposite_neighbor,ip,el)
|
|
||||||
opposite_ip = IPneighborhood(2,opposite_neighbor,ip,el)
|
|
||||||
opposite_n = IPneighborhood(3,opposite_neighbor,ip,el)
|
|
||||||
|
|
||||||
if (neighbor_n > 0) then ! if neighbor exists, average deformation gradient
|
|
||||||
neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el))
|
|
||||||
neighbor_F = F(1:3,1:3,1,neighbor_ip,neighbor_el)
|
|
||||||
neighbor_Fe = matmul(neighbor_F, math_inv33(Fp(1:3,1:3,1,neighbor_ip,neighbor_el)))
|
|
||||||
Favg = 0.5_pReal * (my_F + neighbor_F)
|
|
||||||
else ! if no neighbor, take my value as average
|
|
||||||
Favg = my_F
|
|
||||||
endif
|
|
||||||
|
|
||||||
neighbor_v0 = 0.0_pReal ! needed for check of sign change in flux density below
|
|
||||||
|
|
||||||
!* FLUX FROM MY NEIGHBOR TO ME
|
|
||||||
!* This is only considered, if I have a neighbor of nonlocal plasticity
|
|
||||||
!* (also nonlocal constitutive law with local properties) that is at least a little bit
|
|
||||||
!* compatible.
|
|
||||||
!* If it's not at all compatible, no flux is arriving, because everything is dammed in front of
|
|
||||||
!* my neighbor's interface.
|
|
||||||
!* The entering flux from my neighbor will be distributed on my slip systems according to the
|
|
||||||
!* compatibility
|
|
||||||
if (neighbor_n > 0) then
|
|
||||||
if (phase_plasticity(material_phaseAt(1,neighbor_el)) == PLASTICITY_NONLOCAL_ID .and. &
|
|
||||||
any(compatibility(:,:,:,n,ip,el) > 0.0_pReal)) then
|
|
||||||
|
|
||||||
forall (s = 1:ns, t = 1:4)
|
|
||||||
neighbor_v0(s,t) = plasticState(np)%state0(iV (s,t,neighbor_instance),no)
|
|
||||||
neighbor_rhoSgl0(s,t) = max(plasticState(np)%state0(iRhoU(s,t,neighbor_instance),no),0.0_pReal)
|
|
||||||
endforall
|
|
||||||
|
|
||||||
where (neighbor_rhoSgl0 * IPvolume(neighbor_ip,neighbor_el) ** 0.667_pReal < prm%significantN &
|
|
||||||
.or. neighbor_rhoSgl0 < prm%significantRho) &
|
|
||||||
neighbor_rhoSgl0 = 0.0_pReal
|
|
||||||
normal_neighbor2me_defConf = math_det33(Favg) * matmul(math_inv33(transpose(Favg)), &
|
|
||||||
IPareaNormal(1:3,neighbor_n,neighbor_ip,neighbor_el)) ! normal of the interface in (average) deformed configuration (pointing neighbor => me)
|
|
||||||
normal_neighbor2me = matmul(transpose(neighbor_Fe), normal_neighbor2me_defConf) &
|
|
||||||
/ math_det33(neighbor_Fe) ! interface normal in the lattice configuration of my neighbor
|
|
||||||
area = IParea(neighbor_n,neighbor_ip,neighbor_el) * norm2(normal_neighbor2me)
|
|
||||||
normal_neighbor2me = normal_neighbor2me / norm2(normal_neighbor2me) ! normalize the surface normal to unit length
|
|
||||||
do s = 1,ns
|
|
||||||
do t = 1,4
|
|
||||||
c = (t + 1) / 2
|
|
||||||
topp = t + mod(t,2) - mod(t+1,2)
|
|
||||||
if (neighbor_v0(s,t) * math_inner(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
|
|
||||||
.and. v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal ) then ! ... only if no sign change in flux density
|
|
||||||
lineLength = neighbor_rhoSgl0(s,t) * neighbor_v0(s,t) &
|
|
||||||
* math_inner(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
|
|
||||||
where (compatibility(c,:,s,n,ip,el) > 0.0_pReal) &
|
|
||||||
rhoDotFlux(:,t) = rhoDotFlux(1:ns,t) &
|
|
||||||
+ lineLength/IPvolume(ip,el)*compatibility(c,:,s,n,ip,el)**2.0_pReal ! transferring to equally signed mobile dislocation type
|
|
||||||
where (compatibility(c,:,s,n,ip,el) < 0.0_pReal) &
|
|
||||||
rhoDotFlux(:,topp) = rhoDotFlux(:,topp) &
|
|
||||||
+ lineLength/IPvolume(ip,el)*compatibility(c,:,s,n,ip,el)**2.0_pReal ! transferring to opposite signed mobile dislocation type
|
|
||||||
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
endif; endif
|
|
||||||
|
|
||||||
|
|
||||||
!* FLUX FROM ME TO MY NEIGHBOR
|
|
||||||
!* This is not considered, if my opposite neighbor has a different constitutive law than nonlocal (still considered for nonlocal law with local properties).
|
|
||||||
!* Then, we assume, that the opposite(!) neighbor sends an equal amount of dislocations to me.
|
|
||||||
!* So the net flux in the direction of my neighbor is equal to zero:
|
|
||||||
!* leaving flux to neighbor == entering flux from opposite neighbor
|
|
||||||
!* In case of reduced transmissivity, part of the leaving flux is stored as dead dislocation density.
|
|
||||||
!* That means for an interface of zero transmissivity the leaving flux is fully converted to dead dislocations.
|
|
||||||
if (opposite_n > 0) then
|
|
||||||
if (phase_plasticity(material_phaseAt(1,opposite_el)) == PLASTICITY_NONLOCAL_ID) then
|
|
||||||
|
|
||||||
normal_me2neighbor_defConf = math_det33(Favg) &
|
|
||||||
* matmul(math_inv33(transpose(Favg)),IPareaNormal(1:3,n,ip,el)) ! normal of the interface in (average) deformed configuration (pointing me => neighbor)
|
|
||||||
normal_me2neighbor = matmul(transpose(my_Fe), normal_me2neighbor_defConf) &
|
|
||||||
/ math_det33(my_Fe) ! interface normal in my lattice configuration
|
|
||||||
area = IParea(n,ip,el) * norm2(normal_me2neighbor)
|
|
||||||
normal_me2neighbor = normal_me2neighbor / norm2(normal_me2neighbor) ! normalize the surface normal to unit length
|
|
||||||
do s = 1,ns
|
|
||||||
do t = 1,4
|
|
||||||
c = (t + 1) / 2
|
|
||||||
if (v0(s,t) * math_inner(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
|
|
||||||
if (v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal) then ! no sign change in flux density
|
|
||||||
transmissivity = sum(compatibility(c,:,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
|
|
||||||
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
|
|
||||||
transmissivity = 0.0_pReal
|
|
||||||
endif
|
|
||||||
lineLength = my_rhoSgl0(s,t) * v0(s,t) &
|
|
||||||
* math_inner(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
|
|
||||||
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / IPvolume(ip,el) ! subtract dislocation flux from current type
|
|
||||||
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) &
|
|
||||||
+ lineLength / IPvolume(ip,el) * (1.0_pReal - transmissivity) &
|
|
||||||
* sign(1.0_pReal, v0(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
endif; endif
|
|
||||||
|
|
||||||
enddo neighbors
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
!****************************************************************************
|
!****************************************************************************
|
||||||
!*** calculate dipole formation and annihilation
|
!*** calculate dipole formation and annihilation
|
||||||
|
@ -1454,7 +1276,7 @@ function plastic_nonlocal_dotState2(F,Fp,timestep, instance,of,ip,el) result(rh
|
||||||
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
|
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
|
||||||
endif
|
endif
|
||||||
#endif
|
#endif
|
||||||
plasticState(ph)%dotState = IEEE_value(1.0_pReal,IEEE_quiet_NaN) ! -> return NaN and, hence, enforce cutback
|
rhoDotFlux = IEEE_value(1.0_pReal,IEEE_quiet_NaN) ! enforce cutback
|
||||||
return
|
return
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue