fixed error concerning mixed-up index starts (0 vs 1)
"illegal" mapping functions are not checked anymore, i.e., if you want to average Euler angles you get it..! sorting is now "natural", i.e., separating or sorting for "x,y,z" returns x varying fast and z slow. "--sort" overrides "--separate" in terms of output sorting (as expected...)
This commit is contained in:
parent
349f022100
commit
2a04bfdbba
|
@ -134,7 +134,7 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
self.extrapolate = value
|
||||
|
||||
def node_sequence(self,n):
|
||||
return n
|
||||
return n-1
|
||||
|
||||
def node_id(self,n):
|
||||
return n+1
|
||||
|
@ -148,6 +148,9 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
self.dimension[2] * ((n/a/b)%c) / self.resolution[2],
|
||||
])
|
||||
|
||||
def element_sequence(self,e):
|
||||
return e-1
|
||||
|
||||
def element_id(self,e):
|
||||
return e+1
|
||||
|
||||
|
@ -155,7 +158,7 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
a = self.resolution[0]+1
|
||||
b = self.resolution[1]+1
|
||||
c = self.resolution[2]+1
|
||||
basenode = e+e/self.resolution[0] + e/self.resolution[0]/self.resolution[1]*a
|
||||
basenode = 1 + e+e/self.resolution[0] + e/self.resolution[0]/self.resolution[1]*a
|
||||
basenode2 = basenode+a*b
|
||||
return (element([basenode ,basenode +1,basenode +a+1,basenode +a,
|
||||
basenode2,basenode2+1,basenode2+a+1,basenode2+a,
|
||||
|
@ -323,21 +326,6 @@ def heading(glue,parts):
|
|||
return header
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def illegalMap(map, label):
|
||||
#
|
||||
# answers whether map is illegal to be applied to data what
|
||||
# -----------------------------
|
||||
|
||||
illegal = {
|
||||
'eulerangles': ['min','max','avg','sum'],
|
||||
'defgrad': ['min','max','avg','sum'],
|
||||
'orientation': ['min','max', 'sum'],
|
||||
}
|
||||
|
||||
return label.lower() in illegal and map in illegal[label.lower()]
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def mapIncremental(label, mapping, N, base, new):
|
||||
#
|
||||
|
@ -346,17 +334,14 @@ def mapIncremental(label, mapping, N, base, new):
|
|||
# to a list of data
|
||||
# -----------------------------
|
||||
|
||||
if illegalMap(mapping,label): # for illegal mappings:...
|
||||
return ['n/a'*len(base)] # ...return 'n/a'
|
||||
|
||||
else:
|
||||
if mapping in ['min','max','avg','sum']:
|
||||
mapped = map(
|
||||
{ 'min': lambda n,b,a: min(b,a),
|
||||
theMap = { 'min': lambda n,b,a: min(b,a),
|
||||
'max': lambda n,b,a: max(b,a),
|
||||
'avg': lambda n,b,a: (n*b+a)/(n+1),
|
||||
'sum': lambda n,b,a: b+a,
|
||||
}[mapping],[N]*len(base),base,new) # map one of the standard functions to data
|
||||
'unique': lambda n,b,a: {True:a,False:'n/a'}[n==0 or b==a]
|
||||
}
|
||||
if mapping in theMap:
|
||||
mapped = map(theMap[mapping],[N]*len(base),base,new) # map one of the standard functions to data
|
||||
if label.lower() == 'orientation': # orientation is special case:...
|
||||
orientationNorm = math.sqrt(sum([q*q for q in mapped])) # ...calc norm of average quaternion
|
||||
mapped = map(lambda x: x/orientationNorm, mapped) # ...renormalize quaternion
|
||||
|
@ -364,7 +349,7 @@ def mapIncremental(label, mapping, N, base, new):
|
|||
try:
|
||||
mapped = eval('map(%s,N*len(base),base,new)'%map) # map user defined function to colums in chunks
|
||||
except:
|
||||
mapped = ['n/a'*len(base)]
|
||||
mapped = ['n/a']*len(base)
|
||||
|
||||
return mapped
|
||||
|
||||
|
@ -685,6 +670,9 @@ if not options.homogenizationResult: options.homogenizationResult = []
|
|||
if not options.crystalliteResult: options.crystalliteResult = []
|
||||
if not options.constitutiveResult: options.constitutiveResult = []
|
||||
|
||||
options.sort.reverse()
|
||||
options.separation.reverse()
|
||||
|
||||
# --- start background messaging
|
||||
|
||||
bg = backgroundMessage()
|
||||
|
@ -797,11 +785,15 @@ if options.nodalScalar:
|
|||
groups[groupCount] = [[0,0,0,0.0,0.0,0.0]] # initialize with avg location
|
||||
groupCount += 1
|
||||
|
||||
groups[index[grp]][0] = mapIncremental('','avg',
|
||||
groups[index[grp]][0][:3] = mapIncremental('','unique',
|
||||
len(groups[index[grp]])-1,
|
||||
groups[index[grp]][0],
|
||||
[myElemID,myNodeID,myGrainID] + myNodeCoordinates) # incrementally update average location
|
||||
groups[index[grp]].append([myElemID,myNodeID,myGrainID]) # append a new list defining each group member
|
||||
groups[index[grp]][0][:3],
|
||||
[myElemID,myNodeID,myGrainID]) # keep only if unique average location
|
||||
groups[index[grp]][0][3:] = mapIncremental('','avg',
|
||||
len(groups[index[grp]])-1,
|
||||
groups[index[grp]][0][3:],
|
||||
myNodeCoordinates) # incrementally update average location
|
||||
groups[index[grp]].append([myElemID,myNodeID,myGrainID,0]) # append a new list defining each group member
|
||||
memberCount += 1
|
||||
|
||||
else:
|
||||
|
@ -830,19 +822,17 @@ else:
|
|||
groups.append([[0,0,0,0.0,0.0,0.0]]) # initialize with avg location
|
||||
groupCount += 1
|
||||
|
||||
groups[index[grp]][0] = mapIncremental('','avg',
|
||||
groups[index[grp]][0][:3] = mapIncremental('','unique',
|
||||
len(groups[index[grp]])-1,
|
||||
groups[index[grp]][0],
|
||||
[myElemID,myNodeID,myGrainID] + myIpCoordinates[n]) # incrementally update average location
|
||||
groups[index[grp]][0][:3],
|
||||
[myElemID,myNodeID,myGrainID]) # keep only if unique average location
|
||||
groups[index[grp]][0][3:] = mapIncremental('','avg',
|
||||
len(groups[index[grp]])-1,
|
||||
groups[index[grp]][0][3:],
|
||||
myIpCoordinates[n]) # incrementally update average location
|
||||
groups[index[grp]].append([myElemID,myNodeID,myGrainID,n]) # append a new list defining each group member
|
||||
memberCount += 1
|
||||
|
||||
# --------------------------- prevent avg of e,n,g --------------------------------
|
||||
|
||||
for grp in xrange(len(groups)):
|
||||
if len(groups[grp]) > 2: # more than one member in group? (avgLoc + 2+ entries?)
|
||||
groups[grp][0][:3] = ['n/a','n/a','n/a'] # no avg value for elem, ip, or grain meaningful
|
||||
|
||||
# --------------------------- sort groups --------------------------------
|
||||
|
||||
where = {
|
||||
|
@ -855,12 +845,12 @@ where = {
|
|||
}
|
||||
|
||||
sortProperties = []
|
||||
for item in options.sort:
|
||||
if item not in options.separation:
|
||||
for item in options.separation:
|
||||
if item not in options.sort:
|
||||
sortProperties.append(item)
|
||||
|
||||
theKeys = []
|
||||
for criterium in options.separation+sortProperties:
|
||||
for criterium in options.sort+sortProperties:
|
||||
if criterium in where:
|
||||
theKeys.append('x[0][%i]'%where[criterium])
|
||||
|
||||
|
@ -916,20 +906,22 @@ for incCount,increment in enumerate(increments):
|
|||
if member%1000 == 0:
|
||||
time_delta = ((len(increments)*memberCount)/float(member+incCount*memberCount)-1.0)*(time.time()-time_start)
|
||||
bg.set_message('(%02i:%02i:%02i) processing point %i of %i from increment %i...'%(time_delta//3600,time_delta%3600//60,time_delta%60,member,memberCount,increment))
|
||||
|
||||
newby = [] # current member's data
|
||||
|
||||
if options.elementalScalar:
|
||||
for label in options.elementalScalar:
|
||||
if assembleHeader:
|
||||
header += [label.replace(' ','')]
|
||||
newby.append({'label':label,
|
||||
'len':1,
|
||||
'content':[ p.element_scalar(e,stat['IndexOfLabel'][label])[n_local].value ]})
|
||||
'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][label])[n_local].value ]})
|
||||
|
||||
if options.elementalTensor:
|
||||
for label in options.elementalTensor:
|
||||
if assembleHeader:
|
||||
header += heading('.',[[label.replace(' ',''),component] for component in ['intensity','t11','t22','t33','t12','t23','t13']])
|
||||
myTensor = p.element_tensor(e,stat['IndexOfLabel'][label])[n_local]
|
||||
myTensor = p.element_tensor(p.element_sequence(e),stat['IndexOfLabel'][label])[n_local]
|
||||
newby.append({'label':label,
|
||||
'len':length,
|
||||
'content':[ myTensor.intensity,
|
||||
|
@ -956,12 +948,13 @@ for incCount,increment in enumerate(increments):
|
|||
if assembleHeader: header += thisHead
|
||||
newby.append({'label':label,
|
||||
'len':length,
|
||||
'content':[ p.element_scalar(e,stat['IndexOfLabel'][head])[n_local].value
|
||||
'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][head])[n_local].value
|
||||
for head in thisHead ]})
|
||||
|
||||
assembleHeader = False
|
||||
|
||||
if N == 0: mappedResult = [0.0]*len(header)
|
||||
if N == 0:
|
||||
mappedResult = [float(x) for x in xrange(len(header))]
|
||||
|
||||
pos = 0
|
||||
for chunk in newby:
|
||||
|
|
Loading…
Reference in New Issue