fixed error concerning mixed-up index starts (0 vs 1)

"illegal" mapping functions are not checked anymore, i.e., if you want to average Euler angles you get it..!

sorting is now "natural", i.e., separating or sorting for "x,y,z" returns x varying fast and z slow. "--sort" overrides "--separate" in terms of output sorting (as expected...)
This commit is contained in:
Philip Eisenlohr 2011-04-13 16:31:44 +00:00
parent 349f022100
commit 2a04bfdbba
1 changed files with 51 additions and 58 deletions

View File

@ -134,7 +134,7 @@ class MPIEspectral_result: # mimic py_post result object
self.extrapolate = value self.extrapolate = value
def node_sequence(self,n): def node_sequence(self,n):
return n return n-1
def node_id(self,n): def node_id(self,n):
return n+1 return n+1
@ -148,6 +148,9 @@ class MPIEspectral_result: # mimic py_post result object
self.dimension[2] * ((n/a/b)%c) / self.resolution[2], self.dimension[2] * ((n/a/b)%c) / self.resolution[2],
]) ])
def element_sequence(self,e):
return e-1
def element_id(self,e): def element_id(self,e):
return e+1 return e+1
@ -155,7 +158,7 @@ class MPIEspectral_result: # mimic py_post result object
a = self.resolution[0]+1 a = self.resolution[0]+1
b = self.resolution[1]+1 b = self.resolution[1]+1
c = self.resolution[2]+1 c = self.resolution[2]+1
basenode = e+e/self.resolution[0] + e/self.resolution[0]/self.resolution[1]*a basenode = 1 + e+e/self.resolution[0] + e/self.resolution[0]/self.resolution[1]*a
basenode2 = basenode+a*b basenode2 = basenode+a*b
return (element([basenode ,basenode +1,basenode +a+1,basenode +a, return (element([basenode ,basenode +1,basenode +a+1,basenode +a,
basenode2,basenode2+1,basenode2+a+1,basenode2+a, basenode2,basenode2+1,basenode2+a+1,basenode2+a,
@ -323,21 +326,6 @@ def heading(glue,parts):
return header return header
# -----------------------------
def illegalMap(map, label):
#
# answers whether map is illegal to be applied to data what
# -----------------------------
illegal = {
'eulerangles': ['min','max','avg','sum'],
'defgrad': ['min','max','avg','sum'],
'orientation': ['min','max', 'sum'],
}
return label.lower() in illegal and map in illegal[label.lower()]
# ----------------------------- # -----------------------------
def mapIncremental(label, mapping, N, base, new): def mapIncremental(label, mapping, N, base, new):
# #
@ -346,17 +334,14 @@ def mapIncremental(label, mapping, N, base, new):
# to a list of data # to a list of data
# ----------------------------- # -----------------------------
if illegalMap(mapping,label): # for illegal mappings:... theMap = { 'min': lambda n,b,a: min(b,a),
return ['n/a'*len(base)] # ...return 'n/a'
else:
if mapping in ['min','max','avg','sum']:
mapped = map(
{ 'min': lambda n,b,a: min(b,a),
'max': lambda n,b,a: max(b,a), 'max': lambda n,b,a: max(b,a),
'avg': lambda n,b,a: (n*b+a)/(n+1), 'avg': lambda n,b,a: (n*b+a)/(n+1),
'sum': lambda n,b,a: b+a, 'sum': lambda n,b,a: b+a,
}[mapping],[N]*len(base),base,new) # map one of the standard functions to data 'unique': lambda n,b,a: {True:a,False:'n/a'}[n==0 or b==a]
}
if mapping in theMap:
mapped = map(theMap[mapping],[N]*len(base),base,new) # map one of the standard functions to data
if label.lower() == 'orientation': # orientation is special case:... if label.lower() == 'orientation': # orientation is special case:...
orientationNorm = math.sqrt(sum([q*q for q in mapped])) # ...calc norm of average quaternion orientationNorm = math.sqrt(sum([q*q for q in mapped])) # ...calc norm of average quaternion
mapped = map(lambda x: x/orientationNorm, mapped) # ...renormalize quaternion mapped = map(lambda x: x/orientationNorm, mapped) # ...renormalize quaternion
@ -364,7 +349,7 @@ def mapIncremental(label, mapping, N, base, new):
try: try:
mapped = eval('map(%s,N*len(base),base,new)'%map) # map user defined function to colums in chunks mapped = eval('map(%s,N*len(base),base,new)'%map) # map user defined function to colums in chunks
except: except:
mapped = ['n/a'*len(base)] mapped = ['n/a']*len(base)
return mapped return mapped
@ -685,6 +670,9 @@ if not options.homogenizationResult: options.homogenizationResult = []
if not options.crystalliteResult: options.crystalliteResult = [] if not options.crystalliteResult: options.crystalliteResult = []
if not options.constitutiveResult: options.constitutiveResult = [] if not options.constitutiveResult: options.constitutiveResult = []
options.sort.reverse()
options.separation.reverse()
# --- start background messaging # --- start background messaging
bg = backgroundMessage() bg = backgroundMessage()
@ -797,11 +785,15 @@ if options.nodalScalar:
groups[groupCount] = [[0,0,0,0.0,0.0,0.0]] # initialize with avg location groups[groupCount] = [[0,0,0,0.0,0.0,0.0]] # initialize with avg location
groupCount += 1 groupCount += 1
groups[index[grp]][0] = mapIncremental('','avg', groups[index[grp]][0][:3] = mapIncremental('','unique',
len(groups[index[grp]])-1, len(groups[index[grp]])-1,
groups[index[grp]][0], groups[index[grp]][0][:3],
[myElemID,myNodeID,myGrainID] + myNodeCoordinates) # incrementally update average location [myElemID,myNodeID,myGrainID]) # keep only if unique average location
groups[index[grp]].append([myElemID,myNodeID,myGrainID]) # append a new list defining each group member groups[index[grp]][0][3:] = mapIncremental('','avg',
len(groups[index[grp]])-1,
groups[index[grp]][0][3:],
myNodeCoordinates) # incrementally update average location
groups[index[grp]].append([myElemID,myNodeID,myGrainID,0]) # append a new list defining each group member
memberCount += 1 memberCount += 1
else: else:
@ -830,19 +822,17 @@ else:
groups.append([[0,0,0,0.0,0.0,0.0]]) # initialize with avg location groups.append([[0,0,0,0.0,0.0,0.0]]) # initialize with avg location
groupCount += 1 groupCount += 1
groups[index[grp]][0] = mapIncremental('','avg', groups[index[grp]][0][:3] = mapIncremental('','unique',
len(groups[index[grp]])-1, len(groups[index[grp]])-1,
groups[index[grp]][0], groups[index[grp]][0][:3],
[myElemID,myNodeID,myGrainID] + myIpCoordinates[n]) # incrementally update average location [myElemID,myNodeID,myGrainID]) # keep only if unique average location
groups[index[grp]][0][3:] = mapIncremental('','avg',
len(groups[index[grp]])-1,
groups[index[grp]][0][3:],
myIpCoordinates[n]) # incrementally update average location
groups[index[grp]].append([myElemID,myNodeID,myGrainID,n]) # append a new list defining each group member groups[index[grp]].append([myElemID,myNodeID,myGrainID,n]) # append a new list defining each group member
memberCount += 1 memberCount += 1
# --------------------------- prevent avg of e,n,g --------------------------------
for grp in xrange(len(groups)):
if len(groups[grp]) > 2: # more than one member in group? (avgLoc + 2+ entries?)
groups[grp][0][:3] = ['n/a','n/a','n/a'] # no avg value for elem, ip, or grain meaningful
# --------------------------- sort groups -------------------------------- # --------------------------- sort groups --------------------------------
where = { where = {
@ -855,12 +845,12 @@ where = {
} }
sortProperties = [] sortProperties = []
for item in options.sort: for item in options.separation:
if item not in options.separation: if item not in options.sort:
sortProperties.append(item) sortProperties.append(item)
theKeys = [] theKeys = []
for criterium in options.separation+sortProperties: for criterium in options.sort+sortProperties:
if criterium in where: if criterium in where:
theKeys.append('x[0][%i]'%where[criterium]) theKeys.append('x[0][%i]'%where[criterium])
@ -916,20 +906,22 @@ for incCount,increment in enumerate(increments):
if member%1000 == 0: if member%1000 == 0:
time_delta = ((len(increments)*memberCount)/float(member+incCount*memberCount)-1.0)*(time.time()-time_start) time_delta = ((len(increments)*memberCount)/float(member+incCount*memberCount)-1.0)*(time.time()-time_start)
bg.set_message('(%02i:%02i:%02i) processing point %i of %i from increment %i...'%(time_delta//3600,time_delta%3600//60,time_delta%60,member,memberCount,increment)) bg.set_message('(%02i:%02i:%02i) processing point %i of %i from increment %i...'%(time_delta//3600,time_delta%3600//60,time_delta%60,member,memberCount,increment))
newby = [] # current member's data newby = [] # current member's data
if options.elementalScalar: if options.elementalScalar:
for label in options.elementalScalar: for label in options.elementalScalar:
if assembleHeader: if assembleHeader:
header += [label.replace(' ','')] header += [label.replace(' ','')]
newby.append({'label':label, newby.append({'label':label,
'len':1, 'len':1,
'content':[ p.element_scalar(e,stat['IndexOfLabel'][label])[n_local].value ]}) 'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][label])[n_local].value ]})
if options.elementalTensor: if options.elementalTensor:
for label in options.elementalTensor: for label in options.elementalTensor:
if assembleHeader: if assembleHeader:
header += heading('.',[[label.replace(' ',''),component] for component in ['intensity','t11','t22','t33','t12','t23','t13']]) header += heading('.',[[label.replace(' ',''),component] for component in ['intensity','t11','t22','t33','t12','t23','t13']])
myTensor = p.element_tensor(e,stat['IndexOfLabel'][label])[n_local] myTensor = p.element_tensor(p.element_sequence(e),stat['IndexOfLabel'][label])[n_local]
newby.append({'label':label, newby.append({'label':label,
'len':length, 'len':length,
'content':[ myTensor.intensity, 'content':[ myTensor.intensity,
@ -956,12 +948,13 @@ for incCount,increment in enumerate(increments):
if assembleHeader: header += thisHead if assembleHeader: header += thisHead
newby.append({'label':label, newby.append({'label':label,
'len':length, 'len':length,
'content':[ p.element_scalar(e,stat['IndexOfLabel'][head])[n_local].value 'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][head])[n_local].value
for head in thisHead ]}) for head in thisHead ]})
assembleHeader = False assembleHeader = False
if N == 0: mappedResult = [0.0]*len(header) if N == 0:
mappedResult = [float(x) for x in xrange(len(header))]
pos = 0 pos = 0
for chunk in newby: for chunk in newby: