From 296a75d452741386ff1c5710eadae60ddfcf130d Mon Sep 17 00:00:00 2001 From: Martin Diehl Date: Sat, 11 Apr 2020 17:58:15 +0200 Subject: [PATCH] where not needed --- python/damask/_rotation.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/python/damask/_rotation.py b/python/damask/_rotation.py index 42b097a78..e728ab6ed 100644 --- a/python/damask/_rotation.py +++ b/python/damask/_rotation.py @@ -501,7 +501,7 @@ class Rotation: np.block([np.arctan2( 2.0*qu[...,1:2]*qu[...,2:3],qu[...,1:2]**2-qu[...,2:3]**2), np.ones( qu.shape[:-1]+(1,))*np.pi, np.zeros(qu.shape[:-1]+(1,))]), - eu) # TODO: Where not needed + eu) # TODO: Where can be nested # reduce Euler angles to definition range, i.e a lower limit of 0.0 eu[np.abs(eu)<1.e-6] = 0.0 eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu) @@ -515,7 +515,7 @@ class Rotation: Modified version of the original formulation, should be numerically more stable """ if len(qu.shape) == 1: - if iszero(np.sum(qu[1:4]**2)): # set axis to [001] if the angle is 0/360 + if np.abs(np.sum(qu[1:4]**2)) < 1.e-6: # set axis to [001] if the angle is 0/360 ax = np.array([ 0.0, 0.0, 1.0, 0.0 ]) elif np.abs(qu[0]) > 1.e-6: s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2) @@ -546,14 +546,13 @@ class Rotation: else: with np.errstate(invalid='ignore',divide='ignore'): s = np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True) - ro = np.where(np.abs(s) < 1.0e-12, - [0.0,0.0,P,0.0], + ro = np.where(np.broadcast_to(np.abs(qu[...,0:1]) < 1.0e-12,qu.shape), + np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.ones(qu.shape[:-1]+(1,))*np.inf]), np.block([qu[...,1:2]/s,qu[...,2:3]/s,qu[...,3:4]/s, np.tan(np.arccos(np.clip(qu[...,0:1],-1.0,1.0))) ]) ) - ro = np.where(np.abs(qu[...,0:1]) < 1.0e-12, - np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.ones(qu.shape[:-1]+(1,))*np.inf]),ro) # TODO: Where not needed + ro[np.abs(s).squeeze(-1) < 1.0e-12] = [0.0,0.0,P,0.0] return ro @staticmethod @@ -1033,4 +1032,7 @@ class Rotation: @staticmethod def cu2ho(cu): """Cubochoric vector to homochoric vector.""" - return cube_to_ball(cu) + if len(cu.shape) == 1: + return cube_to_ball(cu) + else: + raise NotImplementedError