annihilate only part of the screw dipoles (specified by minimumDipoleHeight), not all; moved annihilation of screws from deltaState back to dotState
This commit is contained in:
parent
a815d85f1f
commit
29618df550
|
@ -162,7 +162,8 @@ constitutive_nonlocal_interactionMatrixSlipSlip ! interacti
|
|||
|
||||
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
||||
constitutive_nonlocal_lattice2slip, & ! orthogonal transformation matrix from lattice coordinate system to slip coordinate system (passive rotation !!!)
|
||||
constitutive_nonlocal_accumulatedShear ! accumulated shear per slip system up to the start of the FE increment
|
||||
constitutive_nonlocal_accumulatedShear, & ! accumulated shear per slip system up to the start of the FE increment
|
||||
constitutive_nonlocal_rhoDotEdgeJogs
|
||||
|
||||
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
|
||||
constitutive_nonlocal_Cslip_3333, & ! elasticity matrix for each instance
|
||||
|
@ -715,11 +716,13 @@ allocate(constitutive_nonlocal_rhoDotMultiplication(maxTotalNslip, 2, homogeniza
|
|||
allocate(constitutive_nonlocal_rhoDotSingle2DipoleGlide(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
|
||||
allocate(constitutive_nonlocal_rhoDotAthermalAnnihilation(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
|
||||
allocate(constitutive_nonlocal_rhoDotThermalAnnihilation(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
|
||||
allocate(constitutive_nonlocal_rhoDotEdgeJogs(maxTotalNslip, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
|
||||
constitutive_nonlocal_rhoDotFlux = 0.0_pReal
|
||||
constitutive_nonlocal_rhoDotMultiplication = 0.0_pReal
|
||||
constitutive_nonlocal_rhoDotSingle2DipoleGlide = 0.0_pReal
|
||||
constitutive_nonlocal_rhoDotAthermalAnnihilation = 0.0_pReal
|
||||
constitutive_nonlocal_rhoDotThermalAnnihilation = 0.0_pReal
|
||||
constitutive_nonlocal_rhoDotEdgeJogs = 0.0_pReal
|
||||
|
||||
allocate(constitutive_nonlocal_compatibility(2,maxTotalNslip, maxTotalNslip, FE_maxNipNeighbors, mesh_maxNips, mesh_NcpElems))
|
||||
constitutive_nonlocal_compatibility = 0.0_pReal
|
||||
|
@ -1863,16 +1866,14 @@ integer(pInt) myInstance, & ! current
|
|||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),10) :: &
|
||||
deltaRho, & ! density increment
|
||||
deltaRhoRemobilization, & ! density increment by remobilization
|
||||
deltaRhoDipole2SingleStress, & ! density increment by dipole dissociation (by stress change)
|
||||
deltaRhoScrewDipoleAnnihilation ! density incrmeent by annihilation of screw dipoles
|
||||
deltaRhoDipole2SingleStress ! density increment by dipole dissociation (by stress change)
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
|
||||
rhoSgl ! current single dislocation densities (positive/negative screw and edge without dipoles)
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
|
||||
v ! dislocation glide velocity
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
|
||||
tau, & ! current resolved shear stress
|
||||
tauBack, & ! current back stress from pileups on same slip system
|
||||
rhoForest
|
||||
tauBack ! current back stress from pileups on same slip system
|
||||
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
|
||||
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
|
||||
dLower, & ! minimum stable dipole distance for edges and screws
|
||||
|
@ -1904,7 +1905,6 @@ forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
|
|||
rhoSgl(s,t) = state(g,ip,el)%p((t-1_pInt)*ns+s)
|
||||
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
|
||||
rhoDip(s,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+s), 0.0_pReal)
|
||||
rhoForest = state(g,ip,el)%p(10_pInt*ns+1:11_pInt*ns)
|
||||
tauBack = state(g,ip,el)%p(12_pInt*ns+1:13_pInt*ns)
|
||||
forall (t = 1_pInt:4_pInt) &
|
||||
v(1_pInt:ns,t) = state(g,ip,el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
|
||||
|
@ -1959,15 +1959,17 @@ dUpper = max(dUpper,dLower)
|
|||
deltaDUpper = dUpper - dUpperOld
|
||||
|
||||
|
||||
!*** dissociation by stress increase (only edge dipoles)
|
||||
!*** dissociation by stress increase
|
||||
|
||||
deltaRhoDipole2SingleStress = 0.0_pReal
|
||||
forall (s=1_pInt:ns, deltaDUpper(s,1) < 0.0_pReal) &
|
||||
deltaRhoDipole2SingleStress(s,9) = rhoDip(s,1) * deltaDUpper(s,1) / (dUpperOld(s,1) - dLower(s,1))
|
||||
forall (t=1_pInt:2_pInt) &
|
||||
forall (c=1_pInt:2_pInt, s=1_pInt:ns, deltaDUpper(s,c) < 0.0_pReal) &
|
||||
deltaRhoDipole2SingleStress(s,8_pInt+c) = rhoDip(s,c) * deltaDUpper(s,c) / (dUpperOld(s,c) - dLower(s,c))
|
||||
|
||||
forall (t=1_pInt:4_pInt) &
|
||||
deltaRhoDipole2SingleStress(1_pInt:ns,t) = -0.5_pReal * deltaRhoDipole2SingleStress(1_pInt:ns,(t-1_pInt)/2_pInt+9_pInt)
|
||||
|
||||
|
||||
|
||||
!*** store new maximum dipole height in state
|
||||
|
||||
forall (c = 1_pInt:2_pInt) &
|
||||
|
@ -1975,28 +1977,12 @@ forall (c = 1_pInt:2_pInt) &
|
|||
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
!*** annihilation of screw dipoles
|
||||
! we assume that all screws annihilate instantaneously by cross-slipping on the colinear system
|
||||
! (so right now this is actually an athermal process, could be enriched by a thermally activated probability for cross-slip)
|
||||
! annihilated screw dipoles leave edge jogs behind on the colinear system
|
||||
|
||||
deltaRhoScrewDipoleAnnihilation = 0.0_pReal
|
||||
if (myStructure == 1_pInt) then ! only fcc
|
||||
deltaRhoScrewDipoleAnnihilation(1:ns,10) = -rhoDip(1:ns,2)
|
||||
forall (s = 1:ns, constitutive_nonlocal_colinearSystem(s,myInstance) > 0_pInt) &
|
||||
deltaRhoScrewDipoleAnnihilation(constitutive_nonlocal_colinearSystem(s,myInstance),1:2) = rhoDip(s,2) &
|
||||
* 0.25_pReal * sqrt(rhoForest(s)) * (dUpperOld(s,2) + dLower(s,2))
|
||||
endif
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
!*** assign the changes in the dislocation densities to deltaState
|
||||
|
||||
deltaRho = 0.0_pReal
|
||||
deltaRho = deltaRhoRemobilization &
|
||||
+ deltaRhoDipole2SingleStress &
|
||||
+ deltaRhoScrewDipoleAnnihilation
|
||||
+ deltaRhoDipole2SingleStress
|
||||
|
||||
deltaState%p = reshape(deltaRho,(/10_pInt*ns/))
|
||||
|
||||
|
@ -2008,7 +1994,6 @@ deltaState%p = reshape(deltaRho,(/10_pInt*ns/))
|
|||
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
|
||||
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation remobilization', deltaRhoRemobilization(1:ns,1:8)
|
||||
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole dissociation by stress increase', deltaRhoDipole2SingleStress
|
||||
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> screw dipole annihilation', deltaRhoScrewDipoleAnnihilation
|
||||
write(6,*)
|
||||
endif
|
||||
#endif
|
||||
|
@ -2496,13 +2481,21 @@ do c = 1_pInt,2_pInt
|
|||
enddo
|
||||
|
||||
|
||||
!*** athermal annihilation (only edge dipoles)
|
||||
!*** athermal annihilation
|
||||
|
||||
rhoDotAthermalAnnihilation = 0.0_pReal
|
||||
rhoDotAthermalAnnihilation(1:ns,9) = -2.0_pReal * dLower(1:ns,1) / constitutive_nonlocal_burgers(1:ns,myInstance) &
|
||||
* ( 2.0_pReal * (rhoSgl(1:ns,1) * abs(gdot(1:ns,2)) + rhoSgl(1:ns,2) * abs(gdot(1:ns,1))) & ! was single hitting single
|
||||
+ 2.0_pReal * (abs(rhoSgl(1:ns,5)) * abs(gdot(1:ns,2)) + abs(rhoSgl(1:ns,6)) * abs(gdot(1:ns,1))) & ! was single hitting immobile single or was immobile single hit by single
|
||||
+ rhoDip(1:ns,1) * (abs(gdot(1:ns,1)) + abs(gdot(1:ns,2)))) ! single knocks dipole constituent
|
||||
|
||||
forall (c=1_pInt:2_pInt) &
|
||||
rhoDotAthermalAnnihilation(1:ns,c+8_pInt) = -2.0_pReal * dLower(1:ns,c) / constitutive_nonlocal_burgers(1:ns,myInstance) &
|
||||
* ( 2.0_pReal * (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) + rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1))) & ! was single hitting single
|
||||
+ 2.0_pReal * (abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c)) + abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
|
||||
+ rhoDip(1:ns,c) * (abs(gdot(1:ns,2*c-1)) + abs(gdot(1:ns,2*c)))) ! single knocks dipole constituent
|
||||
! annihilated screw dipoles leave edge jogs behind on the colinear system
|
||||
if (myStructure == 1_pInt) then ! only fcc
|
||||
forall (s = 1:ns, constitutive_nonlocal_colinearSystem(s,myInstance) > 0_pInt) &
|
||||
rhoDotAthermalAnnihilation(constitutive_nonlocal_colinearSystem(s,myInstance),1:2) = -rhoDotAthermalAnnihilation(s,10) &
|
||||
* 0.25_pReal * sqrt(rhoForest(s)) * (dUpper(s,2) + dLower(s,2))
|
||||
endif
|
||||
|
||||
|
||||
!*** thermally activated annihilation of edge dipoles by climb
|
||||
|
@ -2516,8 +2509,6 @@ forall (s = 1_pInt:ns, dUpper(s,1) > dLower(s,1)) &
|
|||
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pReal * rhoDip(s,1) * vClimb(s) / (dUpper(s,1) - dLower(s,1)), &
|
||||
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) - rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
|
||||
|
||||
! annihilation of screw dipoles: we assume that all screws annihilate instantaneously by cross-slipping on the colinear system
|
||||
! so this mechanism is modeled in the deltaState
|
||||
|
||||
|
||||
!****************************************************************************
|
||||
|
@ -2537,6 +2528,7 @@ if (numerics_integrationMode == 1_pInt) then
|
|||
constitutive_nonlocal_rhoDotSingle2DipoleGlide(1:ns,1:2,g,ip,el) = rhoDotSingle2DipoleGlide(1:ns,9:10)
|
||||
constitutive_nonlocal_rhoDotAthermalAnnihilation(1:ns,1:2,g,ip,el) = rhoDotAthermalAnnihilation(1:ns,9:10)
|
||||
constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,1:2,g,ip,el) = rhoDotThermalAnnihilation(1:ns,9:10)
|
||||
constitutive_nonlocal_rhoDotEdgeJogs(1:ns,g,ip,el) = 2.0_pReal * rhoDotThermalAnnihilation(1:ns,1)
|
||||
endif
|
||||
|
||||
|
||||
|
@ -2547,8 +2539,8 @@ endif
|
|||
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> dislocation multiplication', rhoDotMultiplication(1:ns,1:4) * timestep
|
||||
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation flux', rhoDotFlux(1:ns,1:8) * timestep
|
||||
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole formation by glide', rhoDotSingle2DipoleGlide * timestep
|
||||
write(6,'(a,/,2(12x,12(e12.5,1x),/))') '<< CONST >> athermal dipole annihilation', &
|
||||
rhoDotAthermalAnnihilation(1:ns,9:10) * timestep
|
||||
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> athermal dipole annihilation', &
|
||||
rhoDotAthermalAnnihilation * timestep
|
||||
write(6,'(a,/,2(12x,12(e12.5,1x),/))') '<< CONST >> thermally activated dipole annihilation', &
|
||||
rhoDotThermalAnnihilation(1:ns,9:10) * timestep
|
||||
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> total density change', rhoDot * timestep
|
||||
|
@ -3518,6 +3510,10 @@ do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
|
|||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,2,g,ip,el)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_dot_edgejogs')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotEdgeJogs(1:ns,g,ip,el)
|
||||
cs = cs + ns
|
||||
|
||||
case ('rho_dot_flux')
|
||||
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(constitutive_nonlocal_rhoDotFlux(1:ns,1:4,g,ip,el),2) &
|
||||
+ sum(abs(constitutive_nonlocal_rhoDotFlux(1:ns,5:8,g,ip,el)),2)
|
||||
|
|
Loading…
Reference in New Issue