corrected (probable) bug in disorientation calculation.

This commit is contained in:
Philip Eisenlohr 2014-08-22 15:45:03 +00:00
parent d5e2e42f21
commit 28a7c4c727
1 changed files with 33 additions and 9 deletions

View File

@ -49,6 +49,25 @@ class Quaternion:
return 'Quaternion(real=%+.4f, imag=<%+.4f, %+.4f, %+.4f>)' % \ return 'Quaternion(real=%+.4f, imag=<%+.4f, %+.4f, %+.4f>)' % \
(self.w, self.x, self.y, self.z) (self.w, self.x, self.y, self.z)
def __pow__(self, exponent):
omega = math.acos(self.w)
vRescale = math.sin(exponent*omega)/math.sin(omega)
Q = Quaternion()
Q.x = self.x * vRescale
Q.y = self.y * vRescale
Q.z = self.z * vRescale
Q.w = math.cos(exponent*omega)
return Q
def __ipow__(self, exponent):
omega = math.acos(self.w)
vRescale = math.sin(exponent*omega)/math.sin(omega)
self.x *= vRescale
self.y *= vRescale
self.z *= vRescale
self.w = numpy.cos(exponent*omega)
return self
def __mul__(self, other): def __mul__(self, other):
try: # quaternion try: # quaternion
Ax = self.x Ax = self.x
@ -267,6 +286,9 @@ class Quaternion:
def asList(self): def asList(self):
return [i for i in self] return [i for i in self]
def asM(self): # to find Averaging Quaternions (see F. Landis Markley et al.)
return numpy.outer([i for i in self],[i for i in self])
def asMatrix(self): def asMatrix(self):
return numpy.array([[1.0-2.0*(self.y*self.y+self.z*self.z), 2.0*(self.x*self.y-self.z*self.w), 2.0*(self.x*self.z+self.y*self.w)], return numpy.array([[1.0-2.0*(self.y*self.y+self.z*self.z), 2.0*(self.x*self.y-self.z*self.w), 2.0*(self.x*self.z+self.y*self.w)],
[ 2.0*(self.x*self.y+self.z*self.w), 1.0-2.0*(self.x*self.x+self.z*self.z), 2.0*(self.y*self.z-self.x*self.w)], [ 2.0*(self.x*self.y+self.z*self.w), 1.0-2.0*(self.x*self.x+self.z*self.z), 2.0*(self.y*self.z-self.x*self.w)],
@ -278,7 +300,7 @@ class Quaternion:
angle = 2 * math.acos(self.w) angle = 2 * math.acos(self.w)
s = math.sqrt(1 - self.w ** 2) s = math.sqrt(1 - self.w ** 2)
if s < 0.001: if s < 0.001:
return angle, nunmpy.array([1.0, 0.0, 0.0]) return angle, numpy.array([1.0, 0.0, 0.0])
else: else:
return angle, numpy.array([self.x / s, self.y / s, self.z / s]) return angle, numpy.array([self.x / s, self.y / s, self.z / s])
@ -420,6 +442,8 @@ class Quaternion:
@classmethod @classmethod
def new_interpolate(cls, q1, q2, t): def new_interpolate(cls, q1, q2, t):
# see http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070017872_2007014421.pdf for (another?) way to interpolate quaternions
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion) assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
Q = cls() Q = cls()
@ -757,14 +781,14 @@ class Orientation:
for me in self.symmetry.equivalentQuaternions(self.quaternion): for me in self.symmetry.equivalentQuaternions(self.quaternion):
me.conjugate() me.conjugate()
for they in other.symmetry.equivalentQuaternions(other.quaternion): for they in other.symmetry.equivalentQuaternions(other.quaternion):
theQ = (me * they).homomorph() theQ = me * they
if theQ.x < 0.0 or theQ.y < 0.0 or theQ.z < 0.0: theQ.conjugate() # speed up scanning since minimum angle is usually found for positive x,y,z # if theQ.x < 0.0 or theQ.y < 0.0 or theQ.z < 0.0: theQ.conjugate() # speed up scanning since minimum angle is usually found for positive x,y,z
if lowerSymmetry.inDisorientationSST(theQ.asRodrigues()): breaker = lowerSymmetry.inDisorientationSST(theQ.asRodrigues()) \
breaker = True or lowerSymmetry.inDisorientationSST(theQ.conjugated().asRodrigues())
break if breaker: break
if breaker: break if breaker: break
return Orientation(quaternion=theQ,symmetry=self.symmetry.lattice) return Orientation(quaternion=theQ,symmetry=self.symmetry.lattice) #, me.conjugated(), they
def IPFcolor(self,axis): def IPFcolor(self,axis):