scripts now figure out dimension and resolution on their own...
This commit is contained in:
parent
9c35e4e148
commit
282e4a0360
|
@ -46,30 +46,22 @@ Deals with both vector- and tensor-valued fields.
|
|||
)
|
||||
|
||||
|
||||
parser.add_option('-c','--coordinates', dest='coords', type='string',\
|
||||
help='column heading for coordinates [%default]')
|
||||
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', \
|
||||
help='heading of columns containing vector field values')
|
||||
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
||||
help='heading of columns containing tensor field values')
|
||||
parser.add_option('-d','--dimension', dest='dim', type='float', nargs=3, \
|
||||
help='physical dimension of data set in x (fast) y z (slow) [%default]')
|
||||
parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \
|
||||
help='resolution of data set in x (fast) y z (slow)')
|
||||
|
||||
parser.set_defaults(coords = 'ip')
|
||||
parser.set_defaults(vector = [])
|
||||
parser.set_defaults(tensor = [])
|
||||
parser.set_defaults(dim = [])
|
||||
parser.set_defaults(skip = [0,0,0])
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if len(options.vector) + len(options.tensor) == 0:
|
||||
parser.error('no data column specified...')
|
||||
if len(options.dim) < 3:
|
||||
parser.error('improper dimension specification...')
|
||||
if not options.res or len(options.res) < 3:
|
||||
parser.error('improper resolution specification...')
|
||||
|
||||
resSkip = map(lambda (a,b): a+b,zip(options.res,options.skip))
|
||||
datainfo = { # list of requested labels per datatype
|
||||
'vector': {'len':3,
|
||||
'label':[]},
|
||||
|
@ -94,13 +86,40 @@ else:
|
|||
# ------------------------------------------ loop over input files ---------------------------------------
|
||||
|
||||
for file in files:
|
||||
if file['name'] != 'STDIN': print file['name']
|
||||
if file['name'] != 'STDIN': print file['name'],
|
||||
|
||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||
'\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
# --------------- figure out dimension and resolution
|
||||
try:
|
||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||
except ValueError:
|
||||
print 'no coordinate data found...'
|
||||
continue
|
||||
|
||||
grid = [{},{},{}]
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
for j in xrange(3):
|
||||
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
||||
resolution = numpy.array([len(grid[0]),\
|
||||
len(grid[1]),\
|
||||
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
||||
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
|
||||
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
||||
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||
if resolution[2] == 1:
|
||||
dimension[2] = min(dimension[:2]/resolution[:2])
|
||||
|
||||
N = resolution.prod()
|
||||
print '\t%s @ %s'%(dimension,resolution)
|
||||
|
||||
|
||||
# --------------- figure out columns to process
|
||||
active = {}
|
||||
column = {}
|
||||
values = {}
|
||||
|
@ -121,14 +140,10 @@ for file in files:
|
|||
if datatype not in curl: curl[datatype] = {}
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
||||
options.res[0]*options.res[1]*options.res[2])]).\
|
||||
reshape((options.res[0],options.res[1],options.res[2],\
|
||||
datainfo[datatype]['len']//3,3))
|
||||
curl[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
||||
options.res[0]*options.res[1]*options.res[2])]).\
|
||||
reshape((options.res[0],options.res[1],options.res[2],\
|
||||
datainfo[datatype]['len']//3,3))
|
||||
values[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
||||
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
||||
curl[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
||||
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
||||
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
|
||||
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
|
||||
|
||||
|
@ -139,9 +154,11 @@ for file in files:
|
|||
|
||||
# ------------------------------------------ read value field ---------------------------------------
|
||||
|
||||
table.data_rewind()
|
||||
|
||||
idx = 0
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
|
||||
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
|
||||
idx += 1
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested curls
|
||||
|
@ -153,14 +170,14 @@ for file in files:
|
|||
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested curls
|
||||
curl[datatype][label] = damask.core.math.curl_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
|
||||
curl[datatype][label] = damask.core.math.curl_fft(resolution,dimension,datainfo[datatype]['len']//3,values[datatype][label])
|
||||
|
||||
# ------------------------------------------ process data ---------------------------------------
|
||||
|
||||
table.data_rewind()
|
||||
idx = 0
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
|
||||
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
|
||||
idx += 1
|
||||
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
|
|
|
@ -49,32 +49,25 @@ Deals with both vector- and tensor-valued fields.
|
|||
parser.add_option('--fdm', dest='accuracy', action='extend', type='string', \
|
||||
help='degree of central difference accuracy')
|
||||
parser.add_option('--fft', dest='fft', action='store_true', \
|
||||
help='calculate divergence in Fourier space [%default]')
|
||||
help='calculate divergence in Fourier space')
|
||||
parser.add_option('-c','--coordinates', dest='coords', type='string',\
|
||||
help='column heading for coordinates [%default]')
|
||||
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', \
|
||||
help='heading of columns containing vector field values')
|
||||
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
||||
help='heading of columns containing tensor field values')
|
||||
parser.add_option('-d','--dimension', dest='dim', type='float', nargs=3, \
|
||||
help='physical dimension of data set in x (fast) y z (slow) [%default]')
|
||||
parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \
|
||||
help='resolution of data set in x (fast) y z (slow)')
|
||||
|
||||
|
||||
parser.set_defaults(coords = 'ip')
|
||||
parser.set_defaults(accuracy = [])
|
||||
parser.set_defaults(fft = False)
|
||||
parser.set_defaults(vector = [])
|
||||
parser.set_defaults(tensor = [])
|
||||
parser.set_defaults(dim = [])
|
||||
accuracyChoices = [2,4,6,8]
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if len(options.vector) + len(options.tensor) == 0:
|
||||
parser.error('no data column specified...')
|
||||
if len(options.dim) < 3:
|
||||
parser.error('improper dimension specification...')
|
||||
if not options.res or len(options.res) < 3:
|
||||
parser.error('improper resolution specification...')
|
||||
|
||||
for choice in options.accuracy:
|
||||
if int(choice) not in accuracyChoices:
|
||||
|
@ -107,13 +100,40 @@ else:
|
|||
# ------------------------------------------ loop over input files ---------------------------------------
|
||||
|
||||
for file in files:
|
||||
if file['name'] != 'STDIN': print file['name']
|
||||
if file['name'] != 'STDIN': print file['name'],
|
||||
|
||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||
'\t' + ' '.join(sys.argv[1:]))
|
||||
|
||||
# --------------- figure out dimension and resolution
|
||||
try:
|
||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||
except ValueError:
|
||||
print 'no coordinate data found...'
|
||||
continue
|
||||
|
||||
grid = [{},{},{}]
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
for j in xrange(3):
|
||||
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
||||
resolution = numpy.array([len(grid[0]),\
|
||||
len(grid[1]),\
|
||||
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
||||
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
|
||||
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
||||
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||
if resolution[2] == 1:
|
||||
dimension[2] = min(dimension[:2]/resolution[:2])
|
||||
|
||||
N = resolution.prod()
|
||||
print '\t%s @ %s'%(dimension,resolution)
|
||||
|
||||
|
||||
# --------------- figure out columns to process
|
||||
active = {}
|
||||
column = {}
|
||||
values = {}
|
||||
|
@ -135,15 +155,11 @@ for file in files:
|
|||
if label not in divergence[datatype]: divergence[datatype][label] = {}
|
||||
active[datatype].append(label)
|
||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||
values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
||||
options.res[0]*options.res[1]*options.res[2])]).\
|
||||
reshape((options.res[0],options.res[1],options.res[2],\
|
||||
datainfo[datatype]['len']//3,3))
|
||||
values[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
||||
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
||||
for accuracy in options.accuracy:
|
||||
divergence[datatype][label][accuracy] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']//3*\
|
||||
options.res[0]*options.res[1]*options.res[2])]).\
|
||||
reshape((options.res[0],options.res[1],options.res[2],\
|
||||
datainfo[datatype]['len']//3))
|
||||
divergence[datatype][label][accuracy] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len']//3)]).\
|
||||
reshape(list(resolution)+[datainfo[datatype]['len']//3])
|
||||
table.labels_append(['%i_div%s(%s)'%(i+1,accuracy,label)
|
||||
for i in xrange(datainfo[datatype]['len']//3)]) # extend ASCII header with new labels
|
||||
|
||||
|
@ -154,9 +170,11 @@ for file in files:
|
|||
|
||||
# ------------------------------------------ read value field ---------------------------------------
|
||||
|
||||
table.data_rewind()
|
||||
|
||||
idx = 0
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
|
||||
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
|
||||
idx += 1
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
for label in labels: # loop over all requested curls
|
||||
|
@ -169,15 +187,15 @@ for file in files:
|
|||
for label in labels: # loop over all requested divergencies
|
||||
for accuracy in options.accuracy:
|
||||
if accuracy == 'FFT':
|
||||
divergence[datatype][label][accuracy] = damask.core.math.divergence_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
|
||||
divergence[datatype][label][accuracy] = damask.core.math.divergence_fft(resolution,dimension,datainfo[datatype]['len']//3,values[datatype][label])
|
||||
else:
|
||||
divergence[datatype][label][accuracy] = damask.core.math.divergence_fdm(options.res,options.dim,datainfo[datatype]['len']//3,eval(accuracy)//2-1,values[datatype][label])
|
||||
divergence[datatype][label][accuracy] = damask.core.math.divergence_fdm(resolution,dimension,datainfo[datatype]['len']//3,eval(accuracy)//2-1,values[datatype][label])
|
||||
# ------------------------------------------ process data ---------------------------------------
|
||||
|
||||
table.data_rewind()
|
||||
idx = 0
|
||||
while table.data_read(): # read next data line of ASCII table
|
||||
(x,y,z) = location(idx,options.res) # figure out (x,y,z) position from line count
|
||||
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
|
||||
idx += 1
|
||||
|
||||
for datatype,labels in active.items(): # loop over vector,tensor
|
||||
|
|
Loading…
Reference in New Issue