pInt not needed
This commit is contained in:
parent
0503a80943
commit
27da4b2b7a
|
@ -19,8 +19,8 @@ module spectral_utilities
|
|||
include 'fftw3-mpi.f03'
|
||||
|
||||
logical, public :: cutBack = .false. !< cut back of BVP solver in case convergence is not achieved or a material point is terminally ill
|
||||
integer(pInt), public, parameter :: maxPhaseFields = 2_pInt
|
||||
integer(pInt), public :: nActiveFields = 0_pInt
|
||||
integer, public, parameter :: maxPhaseFields = 2
|
||||
integer, public :: nActiveFields = 0
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! field labels information
|
||||
|
@ -38,7 +38,7 @@ module spectral_utilities
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! variables storing information for spectral method and FFTW
|
||||
integer(pInt), public :: grid1Red !< grid(1)/2
|
||||
integer, public :: grid1Red !< grid(1)/2
|
||||
real (C_DOUBLE), public, dimension(:,:,:,:,:), pointer :: tensorField_real !< real representation (some stress or deformation) of field_fourier
|
||||
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:,:), pointer :: tensorField_fourier !< field on which the Fourier transform operates
|
||||
real(C_DOUBLE), public, dimension(:,:,:,:), pointer :: vectorField_real !< vector field real representation for fftw
|
||||
|
@ -71,15 +71,16 @@ module spectral_utilities
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! derived types
|
||||
type, public :: tSolutionState !< return type of solution from spectral solver variants
|
||||
logical :: converged = .true.
|
||||
logical :: stagConverged = .true.
|
||||
logical :: termIll = .false.
|
||||
integer(pInt) :: iterationsNeeded = 0_pInt
|
||||
logical :: &
|
||||
converged = .true., &
|
||||
stagConverged = .true., &
|
||||
termIll = .false.
|
||||
integer :: iterationsNeeded = 0
|
||||
end type tSolutionState
|
||||
|
||||
type, public :: tBoundaryCondition !< set of parameters defining a boundary condition
|
||||
real(pReal), dimension(3,3) :: values = 0.0_pReal
|
||||
real(pReal), dimension(3,3) :: maskFloat = 0.0_pReal
|
||||
real(pReal), dimension(3,3) :: values = 0.0_pReal, &
|
||||
maskFloat = 0.0_pReal
|
||||
logical, dimension(3,3) :: maskLogical = .false.
|
||||
character(len=64) :: myType = 'None'
|
||||
end type tBoundaryCondition
|
||||
|
@ -89,10 +90,10 @@ module spectral_utilities
|
|||
type(tBoundaryCondition) :: stress, & !< stress BC
|
||||
deformation !< deformation BC (Fdot or L)
|
||||
real(pReal) :: time = 0.0_pReal !< length of increment
|
||||
integer(pInt) :: incs = 0_pInt, & !< number of increments
|
||||
outputfrequency = 1_pInt, & !< frequency of result writes
|
||||
restartfrequency = 0_pInt, & !< frequency of restart writes
|
||||
logscale = 0_pInt !< linear/logarithmic time inc flag
|
||||
integer :: incs = 0, & !< number of increments
|
||||
outputfrequency = 1, & !< frequency of result writes
|
||||
restartfrequency = 0, & !< frequency of restart writes
|
||||
logscale = 0 !< linear/logarithmic time inc flag
|
||||
logical :: followFormerTrajectory = .true. !< follow trajectory of former loadcase
|
||||
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
|
||||
end type tLoadCase
|
||||
|
@ -195,9 +196,9 @@ subroutine utilities_init
|
|||
|
||||
implicit none
|
||||
PetscErrorCode :: ierr
|
||||
integer(pInt) :: i, j, k, &
|
||||
integer :: i, j, k, &
|
||||
FFTW_planner_flag
|
||||
integer(pInt), dimension(3) :: k_s
|
||||
integer, dimension(3) :: k_s
|
||||
type(C_PTR) :: &
|
||||
tensorField, & !< field containing data for FFTW in real and fourier space (in place)
|
||||
vectorField, & !< field containing data for FFTW in real space when debugging FFTW (no in place)
|
||||
|
@ -256,7 +257,7 @@ subroutine utilities_init
|
|||
num%FFTW_plan_mode = config_numerics%getString('fftw_plan_mode', defaultVal='FFTW_PATIENT')
|
||||
|
||||
if (num%divergence_correction < 0 .or. num%divergence_correction > 2) &
|
||||
call IO_error(301_pInt,ext_msg='divergence_correction')
|
||||
call IO_error(301,ext_msg='divergence_correction')
|
||||
|
||||
select case (num%spectral_derivative)
|
||||
case ('continuous')
|
||||
|
@ -266,19 +267,19 @@ subroutine utilities_init
|
|||
case ('fwbw_difference')
|
||||
spectral_derivative_ID = DERIVATIVE_FWBW_DIFF_ID
|
||||
case default
|
||||
call IO_error(892_pInt,ext_msg=trim(num%spectral_derivative))
|
||||
call IO_error(892,ext_msg=trim(num%spectral_derivative))
|
||||
end select
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! scale dimension to calculate either uncorrected, dimension-independent, or dimension- and
|
||||
! resolution-independent divergence
|
||||
if (num%divergence_correction == 1) then
|
||||
do j = 1_pInt, 3_pInt
|
||||
do j = 1, 3
|
||||
if (j /= minloc(geomSize,1) .and. j /= maxloc(geomSize,1)) &
|
||||
scaledGeomSize = geomSize/geomSize(j)
|
||||
enddo
|
||||
elseif (num%divergence_correction == 2) then
|
||||
do j = 1_pInt, 3_pInt
|
||||
do j = 1, 3
|
||||
if ( j /= int(minloc(geomSize/real(grid,pReal),1),pInt) &
|
||||
.and. j /= int(maxloc(geomSize/real(grid,pReal),1),pInt)) &
|
||||
scaledGeomSize = geomSize/geomSize(j)*real(grid(j),pReal)
|
||||
|
@ -290,18 +291,25 @@ subroutine utilities_init
|
|||
|
||||
select case(IO_lc(num%FFTW_plan_mode)) ! setting parameters for the plan creation of FFTW. Basically a translation from fftw3.f
|
||||
case('estimate','fftw_estimate') ! ordered from slow execution (but fast plan creation) to fast execution
|
||||
FFTW_planner_flag = 64_pInt
|
||||
FFTW_planner_flag = 64
|
||||
case('measure','fftw_measure')
|
||||
FFTW_planner_flag = 0_pInt
|
||||
FFTW_planner_flag = 0
|
||||
case('patient','fftw_patient')
|
||||
FFTW_planner_flag= 32_pInt
|
||||
FFTW_planner_flag= 32
|
||||
case('exhaustive','fftw_exhaustive')
|
||||
FFTW_planner_flag = 8_pInt
|
||||
FFTW_planner_flag = 8
|
||||
case default
|
||||
call IO_warning(warning_ID=47_pInt,ext_msg=trim(IO_lc(num%FFTW_plan_mode)))
|
||||
FFTW_planner_flag = 32_pInt
|
||||
call IO_warning(warning_ID=47,ext_msg=trim(IO_lc(num%FFTW_plan_mode)))
|
||||
FFTW_planner_flag = 32
|
||||
end select
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! general initialization of FFTW (see manual on fftw.org for more details)
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(0,ext_msg='Fortran to C') ! check for correct precision in C
|
||||
call fftw_set_timelimit(num%FFTW_timelimit) ! set timelimit for plan creation
|
||||
|
||||
if (debugGeneral) write(6,'(/,a)') ' FFTW initialized'; flush(6)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! MPI allocation
|
||||
gridFFTW = int(grid,C_INTPTR_T)
|
||||
|
@ -367,23 +375,16 @@ subroutine utilities_init
|
|||
PETSC_COMM_WORLD, FFTW_planner_flag) ! use all processors, planer precision
|
||||
if (.not. C_ASSOCIATED(planScalarBack)) call IO_error(810, ext_msg='planScalarBack')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! general initialization of FFTW (see manual on fftw.org for more details)
|
||||
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(0_pInt,ext_msg='Fortran to C') ! check for correct precision in C
|
||||
call fftw_set_timelimit(num%FFTW_timelimit) ! set timelimit for plan creation
|
||||
|
||||
if (debugGeneral) write(6,'(/,a)') ' FFTW initialized'; flush(6)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
||||
do k = grid3Offset+1_pInt, grid3Offset+grid3
|
||||
k_s(3) = k - 1_pInt
|
||||
if(k > grid(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - grid(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
|
||||
do j = 1_pInt, grid(2)
|
||||
k_s(2) = j - 1_pInt
|
||||
if(j > grid(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - grid(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
|
||||
do i = 1_pInt, grid1Red
|
||||
k_s(1) = i - 1_pInt ! symmetry, junst running from 0,1,...,N/2,N/2+1
|
||||
do k = grid3Offset+1, grid3Offset+grid3
|
||||
k_s(3) = k - 1
|
||||
if(k > grid(3)/2 + 1) k_s(3) = k_s(3) - grid(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
|
||||
do j = 1, grid(2)
|
||||
k_s(2) = j - 1
|
||||
if(j > grid(2)/2 + 1) k_s(2) = k_s(2) - grid(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
|
||||
do i = 1, grid1Red
|
||||
k_s(1) = i - 1 ! symmetry, junst running from 0,1,...,N/2,N/2+1
|
||||
xi2nd(1:3,i,j,k-grid3Offset) = utilities_getFreqDerivative(k_s)
|
||||
where(mod(grid,2)==0 .and. [i,j,k] == grid/2+1 .and. &
|
||||
spectral_derivative_ID == DERIVATIVE_CONTINUOUS_ID) ! for even grids, set the Nyquist Freq component to 0.0
|
||||
|
@ -435,7 +436,7 @@ subroutine utilities_updateGamma(C,saveReference)
|
|||
|
||||
C_ref = C
|
||||
if (saveReference) then
|
||||
if (worldrank == 0_pInt) then
|
||||
if (worldrank == 0) then
|
||||
write(6,'(/,a)') ' writing reference stiffness to file'
|
||||
flush(6)
|
||||
fileUnit = IO_open_jobFile_binary('C_ref','w')
|
||||
|
@ -625,11 +626,11 @@ subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT)
|
|||
real(pReal), dimension(3,3), intent(in) :: D_ref
|
||||
real(pReal), intent(in) :: mobility_ref, deltaT
|
||||
complex(pReal) :: GreenOp_hat
|
||||
integer(pInt) :: i, j, k
|
||||
integer :: i, j, k
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! do the actual spectral method calculation
|
||||
do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red
|
||||
do k = 1, grid3; do j = 1, grid(2) ;do i = 1, grid1Red
|
||||
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal)/ &
|
||||
(cmplx(mobility_ref,0.0_pReal,pReal) + cmplx(deltaT,0.0_pReal)*&
|
||||
sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) ! why not use dot_product
|
||||
|
@ -651,7 +652,7 @@ real(pReal) function utilities_divergenceRMS()
|
|||
grid3
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i, j, k, ierr
|
||||
integer :: i, j, k, ierr
|
||||
complex(pReal), dimension(3) :: rescaledGeom
|
||||
|
||||
write(6,'(/,a)') ' ... calculating divergence ................................................'
|
||||
|
@ -662,8 +663,8 @@ real(pReal) function utilities_divergenceRMS()
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! calculating RMS divergence criterion in Fourier space
|
||||
utilities_divergenceRMS = 0.0_pReal
|
||||
do k = 1_pInt, grid3; do j = 1_pInt, grid(2)
|
||||
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
do k = 1, grid3; do j = 1, grid(2)
|
||||
do i = 2, grid1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
utilities_divergenceRMS = utilities_divergenceRMS &
|
||||
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
||||
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
||||
|
@ -680,9 +681,9 @@ real(pReal) function utilities_divergenceRMS()
|
|||
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
|
||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal)
|
||||
enddo; enddo
|
||||
if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
|
||||
if(grid(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
|
||||
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
|
||||
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_divergenceRMS')
|
||||
if(ierr /=0) call IO_error(894, ext_msg='utilities_divergenceRMS')
|
||||
utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
|
||||
|
||||
|
||||
|
@ -701,7 +702,7 @@ real(pReal) function utilities_curlRMS()
|
|||
grid3
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i, j, k, l, ierr
|
||||
integer :: i, j, k, l, ierr
|
||||
complex(pReal), dimension(3,3) :: curl_fourier
|
||||
complex(pReal), dimension(3) :: rescaledGeom
|
||||
|
||||
|
@ -714,9 +715,9 @@ real(pReal) function utilities_curlRMS()
|
|||
! calculating max curl criterion in Fourier space
|
||||
utilities_curlRMS = 0.0_pReal
|
||||
|
||||
do k = 1_pInt, grid3; do j = 1_pInt, grid(2);
|
||||
do i = 2_pInt, grid1Red - 1_pInt
|
||||
do l = 1_pInt, 3_pInt
|
||||
do k = 1, grid3; do j = 1, grid(2);
|
||||
do i = 2, grid1Red - 1
|
||||
do l = 1, 3
|
||||
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
|
||||
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
|
||||
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3) &
|
||||
|
@ -727,7 +728,7 @@ real(pReal) function utilities_curlRMS()
|
|||
utilities_curlRMS = utilities_curlRMS &
|
||||
+2.0_pReal*sum(real(curl_fourier)**2.0_pReal+aimag(curl_fourier)**2.0_pReal)! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
enddo
|
||||
do l = 1_pInt, 3_pInt
|
||||
do l = 1, 3
|
||||
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) &
|
||||
-tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3))
|
||||
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3) &
|
||||
|
@ -737,7 +738,7 @@ real(pReal) function utilities_curlRMS()
|
|||
enddo
|
||||
utilities_curlRMS = utilities_curlRMS &
|
||||
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
|
||||
do l = 1_pInt, 3_pInt
|
||||
do l = 1, 3
|
||||
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
|
||||
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
|
||||
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
|
||||
|
@ -750,9 +751,9 @@ real(pReal) function utilities_curlRMS()
|
|||
enddo; enddo
|
||||
|
||||
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
|
||||
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_curlRMS')
|
||||
if(ierr /=0) call IO_error(894, ext_msg='utilities_curlRMS')
|
||||
utilities_curlRMS = sqrt(utilities_curlRMS) * wgt
|
||||
if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
|
||||
if(grid(1) == 1) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
|
||||
|
||||
end function utilities_curlRMS
|
||||
|
||||
|
@ -777,10 +778,10 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
|||
real(pReal), intent(in) , dimension(3,3,3,3) :: C !< current average stiffness
|
||||
real(pReal), intent(in) , dimension(3,3) :: rot_BC !< rotation of load frame
|
||||
logical, intent(in), dimension(3,3) :: mask_stress !< mask of stress BC
|
||||
integer(pInt) :: j, k, m, n
|
||||
integer :: j, k, m, n
|
||||
logical, dimension(9) :: mask_stressVector
|
||||
real(pReal), dimension(9,9) :: temp99_Real
|
||||
integer(pInt) :: size_reduced = 0_pInt
|
||||
integer :: size_reduced = 0
|
||||
real(pReal), dimension(:,:), allocatable :: &
|
||||
s_reduced, & !< reduced compliance matrix (depending on number of stress BC)
|
||||
c_reduced, & !< reduced stiffness (depending on number of stress BC)
|
||||
|
@ -790,7 +791,7 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
|||
|
||||
mask_stressVector = reshape(transpose(mask_stress), [9])
|
||||
size_reduced = int(count(mask_stressVector), pInt)
|
||||
if(size_reduced > 0_pInt )then
|
||||
if(size_reduced > 0 )then
|
||||
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
||||
allocate (sTimesC(size_reduced,size_reduced), source =0.0_pReal)
|
||||
|
@ -802,37 +803,37 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
|||
transpose(temp99_Real)*1.0e-9_pReal
|
||||
flush(6)
|
||||
endif
|
||||
k = 0_pInt ! calculate reduced stiffness
|
||||
do n = 1_pInt,9_pInt
|
||||
k = 0 ! calculate reduced stiffness
|
||||
do n = 1,9
|
||||
if(mask_stressVector(n)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do m = 1_pInt,9_pInt
|
||||
k = k + 1
|
||||
j = 0
|
||||
do m = 1,9
|
||||
if(mask_stressVector(m)) then
|
||||
j = j + 1_pInt
|
||||
j = j + 1
|
||||
c_reduced(k,j) = temp99_Real(n,m)
|
||||
endif; enddo; endif; enddo
|
||||
|
||||
call math_invert2(s_reduced, errmatinv, c_reduced) ! invert reduced stiffness
|
||||
if (any(IEEE_is_NaN(s_reduced))) errmatinv = .true.
|
||||
if (errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance')
|
||||
if (errmatinv) call IO_error(error_ID=400,ext_msg='utilities_maskedCompliance')
|
||||
temp99_Real = 0.0_pReal ! fill up compliance with zeros
|
||||
k = 0_pInt
|
||||
do n = 1_pInt,9_pInt
|
||||
k = 0
|
||||
do n = 1,9
|
||||
if(mask_stressVector(n)) then
|
||||
k = k + 1_pInt
|
||||
j = 0_pInt
|
||||
do m = 1_pInt,9_pInt
|
||||
k = k + 1
|
||||
j = 0
|
||||
do m = 1,9
|
||||
if(mask_stressVector(m)) then
|
||||
j = j + 1_pInt
|
||||
j = j + 1
|
||||
temp99_Real(n,m) = s_reduced(k,j)
|
||||
endif; enddo; endif; enddo
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! check if inversion was successful
|
||||
sTimesC = matmul(c_reduced,s_reduced)
|
||||
do m=1_pInt, size_reduced
|
||||
do n=1_pInt, size_reduced
|
||||
do m=1, size_reduced
|
||||
do n=1, size_reduced
|
||||
errmatinv = errmatinv &
|
||||
.or. (m==n .and. abs(sTimesC(m,n)-1.0_pReal) > 1.0e-12_pReal) & ! diagonal elements of S*C should be 1
|
||||
.or. (m/=n .and. abs(sTimesC(m,n)) > 1.0e-12_pReal) ! off-diagonal elements of S*C should be 0
|
||||
|
@ -844,7 +845,7 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
|||
write(6,trim(formatString),advance='no') ' C * S (load) ', &
|
||||
transpose(matmul(c_reduced,s_reduced))
|
||||
write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced)
|
||||
if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance')
|
||||
if(errmatinv) call IO_error(error_ID=400,ext_msg='utilities_maskedCompliance')
|
||||
endif
|
||||
else
|
||||
temp99_real = 0.0_pReal
|
||||
|
@ -868,10 +869,10 @@ subroutine utilities_fourierScalarGradient()
|
|||
grid
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i, j, k
|
||||
integer :: i, j, k
|
||||
|
||||
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
|
||||
forall(k = 1:grid3, j = 1:grid(2), i = 1:grid1Red) &
|
||||
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k)
|
||||
|
||||
end subroutine utilities_fourierScalarGradient
|
||||
|
@ -886,10 +887,10 @@ subroutine utilities_fourierVectorDivergence()
|
|||
grid
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i, j, k
|
||||
integer :: i, j, k
|
||||
|
||||
scalarField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
|
||||
forall(k = 1:grid3, j = 1:grid(2), i = 1:grid1Red) &
|
||||
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k) + &
|
||||
sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
|
||||
|
||||
|
@ -905,11 +906,11 @@ subroutine utilities_fourierVectorGradient()
|
|||
grid
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i, j, k, m, n
|
||||
integer :: i, j, k, m, n
|
||||
|
||||
tensorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
|
||||
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
|
||||
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red
|
||||
do m = 1, 3; do n = 1, 3
|
||||
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
|
||||
enddo; enddo
|
||||
enddo; enddo; enddo
|
||||
|
@ -926,11 +927,11 @@ subroutine utilities_fourierTensorDivergence()
|
|||
grid
|
||||
|
||||
implicit none
|
||||
integer(pInt) :: i, j, k, m, n
|
||||
integer :: i, j, k, m, n
|
||||
|
||||
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
|
||||
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
|
||||
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
|
||||
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid1Red
|
||||
do m = 1, 3; do n = 1, 3
|
||||
vectorField_fourier(m,i,j,k) = &
|
||||
vectorField_fourier(m,i,j,k) + &
|
||||
tensorField_fourier(m,n,i,j,k)*conjg(-xi1st(n,i,j,k))
|
||||
|
@ -973,7 +974,7 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
real(pReal), intent(in), dimension(3,3) :: rotation_BC !< rotation of load frame
|
||||
|
||||
|
||||
integer(pInt) :: &
|
||||
integer :: &
|
||||
i,ierr
|
||||
real(pReal), dimension(3,3,3,3) :: dPdF_max, dPdF_min
|
||||
real(pReal) :: dPdF_norm_max, dPdF_norm_min
|
||||
|
@ -1002,7 +1003,7 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
dPdF_norm_max = 0.0_pReal
|
||||
dPdF_min = huge(1.0_pReal)
|
||||
dPdF_norm_min = huge(1.0_pReal)
|
||||
do i = 1_pInt, product(grid(1:2))*grid3
|
||||
do i = 1, product(grid(1:2))*grid3
|
||||
if (dPdF_norm_max < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)) then
|
||||
dPdF_max = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)
|
||||
dPdF_norm_max = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,i)**2.0_pReal)
|
||||
|
@ -1015,15 +1016,15 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
|
||||
valueAndRank = [dPdF_norm_max,real(worldrank,pReal)]
|
||||
call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, PETSC_COMM_WORLD, ierr)
|
||||
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce max')
|
||||
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Allreduce max')
|
||||
call MPI_Bcast(dPdF_max,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr)
|
||||
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Bcast max')
|
||||
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Bcast max')
|
||||
|
||||
valueAndRank = [dPdF_norm_min,real(worldrank,pReal)]
|
||||
call MPI_Allreduce(MPI_IN_PLACE,valueAndRank,1, MPI_2DOUBLE_PRECISION, MPI_MINLOC, PETSC_COMM_WORLD, ierr)
|
||||
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce min')
|
||||
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Allreduce min')
|
||||
call MPI_Bcast(dPdF_min,81,MPI_DOUBLE,int(valueAndRank(2)),PETSC_COMM_WORLD, ierr)
|
||||
if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Bcast min')
|
||||
if (ierr /= 0) call IO_error(894, ext_msg='MPI_Bcast min')
|
||||
|
||||
C_minmaxAvg = 0.5_pReal*(dPdF_max + dPdF_min)
|
||||
|
||||
|
@ -1113,7 +1114,7 @@ pure function utilities_getFreqDerivative(k_s)
|
|||
grid
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in), dimension(3) :: k_s !< indices of frequency
|
||||
integer, intent(in), dimension(3) :: k_s !< indices of frequency
|
||||
complex(pReal), dimension(3) :: utilities_getFreqDerivative
|
||||
|
||||
select case (spectral_derivative_ID)
|
||||
|
@ -1175,7 +1176,7 @@ subroutine utilities_updateIPcoords(F)
|
|||
implicit none
|
||||
|
||||
real(pReal), dimension(3,3,grid(1),grid(2),grid3), intent(in) :: F
|
||||
integer(pInt) :: i, j, k, m, ierr
|
||||
integer :: i, j, k, m, ierr
|
||||
real(pReal), dimension(3) :: step, offset_coords
|
||||
real(pReal), dimension(3,3) :: Favg
|
||||
|
||||
|
@ -1186,7 +1187,7 @@ subroutine utilities_updateIPcoords(F)
|
|||
call utilities_FFTtensorForward()
|
||||
call utilities_fourierTensorDivergence()
|
||||
|
||||
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red
|
||||
do k = 1, grid3; do j = 1, grid(2); do i = 1, grid1Red
|
||||
if (any(cNeq(xi1st(1:3,i,j,k),cmplx(0.0,0.0,pReal)))) &
|
||||
vectorField_fourier(1:3,i,j,k) = vectorField_fourier(1:3,i,j,k)/ &
|
||||
sum(conjg(-xi1st(1:3,i,j,k))*xi1st(1:3,i,j,k))
|
||||
|
@ -1196,23 +1197,23 @@ subroutine utilities_updateIPcoords(F)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! average F
|
||||
if (grid3Offset == 0_pInt) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt
|
||||
if (grid3Offset == 0) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt
|
||||
call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
|
||||
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='update_IPcoords')
|
||||
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords')
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! add average to fluctuation and put (0,0,0) on (0,0,0)
|
||||
step = geomSize/real(grid, pReal)
|
||||
if (grid3Offset == 0_pInt) offset_coords = vectorField_real(1:3,1,1,1)
|
||||
if (grid3Offset == 0) offset_coords = vectorField_real(1:3,1,1,1)
|
||||
call MPI_Bcast(offset_coords,3,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
|
||||
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='update_IPcoords')
|
||||
if(ierr /=0) call IO_error(894, ext_msg='update_IPcoords')
|
||||
offset_coords = math_mul33x3(Favg,step/2.0_pReal) - offset_coords
|
||||
m = 1_pInt
|
||||
do k = 1_pInt,grid3; do j = 1_pInt,grid(2); do i = 1_pInt,grid(1)
|
||||
m = 1
|
||||
do k = 1,grid3; do j = 1,grid(2); do i = 1,grid(1)
|
||||
mesh_ipCoordinates(1:3,1,m) = vectorField_real(1:3,i,j,k) &
|
||||
+ offset_coords &
|
||||
+ math_mul33x3(Favg,step*real([i,j,k+grid3Offset]-1_pInt,pReal))
|
||||
m = m+1_pInt
|
||||
+ math_mul33x3(Favg,step*real([i,j,k+grid3Offset]-1,pReal))
|
||||
m = m+1
|
||||
enddo; enddo; enddo
|
||||
|
||||
end subroutine utilities_updateIPcoords
|
||||
|
|
Loading…
Reference in New Issue