Merge remote-tracking branch 'origin/development' into keyword-view
This commit is contained in:
commit
25ab62402a
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit 2ad27552c43316735b6ef425737fe3c8a5231598
|
||||
Subproject commit 96c32ba4237a51eaad92cd139e1a716ee5b32493
|
|
@ -1 +1 @@
|
|||
v3.0.0-alpha5-283-gdacd08f39
|
||||
v3.0.0-alpha5-297-g5ecfba1e5
|
||||
|
|
|
@ -6,6 +6,10 @@ from pathlib import Path
|
|||
from typing import Sequence, Union, TextIO
|
||||
|
||||
import numpy as np
|
||||
try:
|
||||
from numpy.typing import ArrayLike
|
||||
except ImportError:
|
||||
ArrayLike = Union[np.ndarray,Sequence[float]] # type: ignore
|
||||
import scipy.interpolate as interp
|
||||
import matplotlib as mpl
|
||||
if os.name == 'posix' and 'DISPLAY' not in os.environ:
|
||||
|
@ -78,8 +82,8 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
|
||||
@staticmethod
|
||||
def from_range(low: Sequence[float],
|
||||
high: Sequence[float],
|
||||
def from_range(low: ArrayLike,
|
||||
high: ArrayLike,
|
||||
name: str = 'DAMASK colormap',
|
||||
N: int = 256,
|
||||
model: str = 'rgb') -> 'Colormap':
|
||||
|
@ -129,7 +133,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
if model.lower() not in toMsh:
|
||||
raise ValueError(f'Invalid color model: {model}.')
|
||||
|
||||
low_high = np.vstack((low,high))
|
||||
low_high = np.vstack((low,high)).astype(float)
|
||||
out_of_bounds = np.bool_(False)
|
||||
|
||||
if model.lower() == 'rgb':
|
||||
|
@ -142,7 +146,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
out_of_bounds = np.any(low_high[:,0]<0)
|
||||
|
||||
if out_of_bounds:
|
||||
raise ValueError(f'{model.upper()} colors {low} | {high} are out of bounds.')
|
||||
raise ValueError(f'{model.upper()} colors {low_high[0]} | {low_high[1]} are out of bounds.')
|
||||
|
||||
low_,high_ = map(toMsh[model.lower()],low_high)
|
||||
msh = map(functools.partial(Colormap._interpolate_msh,low=low_,high=high_),np.linspace(0,1,N))
|
||||
|
@ -225,7 +229,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
def shade(self,
|
||||
field: np.ndarray,
|
||||
bounds: Sequence[float] = None,
|
||||
bounds: ArrayLike = None,
|
||||
gap: float = None) -> Image:
|
||||
"""
|
||||
Generate PIL image of 2D field using colormap.
|
||||
|
@ -235,7 +239,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
field : numpy.array, shape (:,:)
|
||||
Data to be shaded.
|
||||
bounds : sequence of float, len (2), optional
|
||||
Value range (low,high) spanned by colormap.
|
||||
Value range (left,right) spanned by colormap.
|
||||
gap : field.dtype, optional
|
||||
Transparent value. NaN will always be rendered transparent.
|
||||
|
||||
|
@ -248,17 +252,17 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
mask = np.logical_not(np.isnan(field) if gap is None else \
|
||||
np.logical_or (np.isnan(field), field == gap)) # mask NaN (and gap if present)
|
||||
|
||||
lo,hi = (field[mask].min(),field[mask].max()) if bounds is None else \
|
||||
(min(bounds[:2]),max(bounds[:2]))
|
||||
l,r = (field[mask].min(),field[mask].max()) if bounds is None else \
|
||||
np.array(bounds,float)[:2]
|
||||
|
||||
delta,avg = hi-lo,0.5*(hi+lo)
|
||||
delta,avg = r-l,0.5*abs(r+l)
|
||||
|
||||
if delta * 1e8 <= avg: # delta is similar to numerical noise
|
||||
hi,lo = hi+0.5*avg,lo-0.5*avg # extend range to have actual data centered within
|
||||
if abs(delta) * 1e8 <= avg: # delta is similar to numerical noise
|
||||
l,r = l-0.5*avg*np.sign(delta),r+0.5*avg*np.sign(delta), # extend range to have actual data centered within
|
||||
|
||||
return Image.fromarray(
|
||||
(np.dstack((
|
||||
self.colors[(np.round(np.clip((field-lo)/(hi-lo),0.0,1.0)*(self.N-1))).astype(np.uint16),:3],
|
||||
self.colors[(np.round(np.clip((field-l)/delta,0.0,1.0)*(self.N-1))).astype(np.uint16),:3],
|
||||
mask.astype(float)
|
||||
)
|
||||
)*255
|
||||
|
|
65
src/math.f90
65
src/math.f90
|
@ -961,39 +961,36 @@ pure function math_3333toVoigt66(m3333)
|
|||
end function math_3333toVoigt66
|
||||
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief draw a random sample from Gauss variable
|
||||
!> @brief Draw a sample from a normal distribution.
|
||||
!> @details https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
|
||||
!> https://masuday.github.io/fortran_tutorial/random.html
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
real(pReal) function math_sampleGaussVar(mu, sigma, width)
|
||||
impure elemental subroutine math_normal(x,mu,sigma)
|
||||
|
||||
real(pReal), intent(in) :: mu, & !< mean
|
||||
sigma !< standard deviation
|
||||
real(pReal), intent(in), optional :: width !< cut off as multiples of standard deviation
|
||||
real(pReal), intent(out) :: x
|
||||
real(pReal), intent(in), optional :: mu, sigma
|
||||
|
||||
real(pReal), dimension(2) :: rnd ! random numbers
|
||||
real(pReal) :: scatter, & ! normalized scatter around mean
|
||||
width_
|
||||
real(pReal) :: sigma_, mu_
|
||||
real(pReal), dimension(2) :: rnd
|
||||
|
||||
if (abs(sigma) < tol_math_check) then
|
||||
math_sampleGaussVar = mu
|
||||
|
||||
if (present(mu)) then
|
||||
mu_ = mu
|
||||
else
|
||||
if (present(width)) then
|
||||
width_ = width
|
||||
else
|
||||
width_ = 3.0_pReal ! use +-3*sigma as default scatter
|
||||
endif
|
||||
mu_ = 0.0_pReal
|
||||
end if
|
||||
|
||||
if (present(sigma)) then
|
||||
sigma_ = sigma
|
||||
else
|
||||
sigma_ = 1.0_pReal
|
||||
end if
|
||||
|
||||
do
|
||||
call random_number(rnd)
|
||||
scatter = width_ * (2.0_pReal * rnd(1) - 1.0_pReal)
|
||||
if (rnd(2) <= exp(-0.5_pReal * scatter**2)) exit ! test if scattered value is drawn
|
||||
enddo
|
||||
x = mu_ + sigma_ * sqrt(-2.0_pReal*log(1.0_pReal-rnd(1)))*cos(2.0_pReal*PI*(1.0_pReal - rnd(2)))
|
||||
|
||||
math_sampleGaussVar = scatter * sigma
|
||||
endif
|
||||
|
||||
end function math_sampleGaussVar
|
||||
end subroutine math_normal
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -1434,6 +1431,26 @@ subroutine selfTest
|
|||
if (dNeq0(math_LeviCivita(ijk(1),ijk(2),ijk(3)))) &
|
||||
error stop 'math_LeviCivita'
|
||||
|
||||
normal_distribution: block
|
||||
real(pReal), dimension(500000) :: r
|
||||
real(pReal) :: mu, sigma
|
||||
|
||||
call random_number(mu)
|
||||
call random_number(sigma)
|
||||
|
||||
sigma = 1.0_pReal + sigma*5.0_pReal
|
||||
mu = (mu-0.5_pReal)*10_pReal
|
||||
|
||||
call math_normal(r,mu,sigma)
|
||||
|
||||
if (abs(mu -sum(r)/real(size(r),pReal))>5.0e-2_pReal) &
|
||||
error stop 'math_normal(mu)'
|
||||
|
||||
mu = sum(r)/real(size(r),pReal)
|
||||
if (abs(sigma**2 -1.0_pReal/real(size(r)-1,pReal) * sum((r-mu)**2))/sigma > 5.0e-2_pReal) &
|
||||
error stop 'math_normal(sigma)'
|
||||
end block normal_distribution
|
||||
|
||||
end subroutine selfTest
|
||||
|
||||
end module math
|
||||
|
|
|
@ -1592,21 +1592,15 @@ subroutine stateInit(ini,phase,Nentries)
|
|||
stt%rhoSglMobile(s,e) = densityBinning
|
||||
end do
|
||||
else ! homogeneous distribution with noise
|
||||
do e = 1, Nentries
|
||||
do f = 1,size(ini%N_sl,1)
|
||||
from = 1 + sum(ini%N_sl(1:f-1))
|
||||
upto = sum(ini%N_sl(1:f))
|
||||
do s = from,upto
|
||||
noise = [math_sampleGaussVar(0.0_pReal, ini%sigma_rho_u), &
|
||||
math_sampleGaussVar(0.0_pReal, ini%sigma_rho_u)]
|
||||
stt%rho_sgl_mob_edg_pos(s,e) = ini%rho_u_ed_pos_0(f) + noise(1)
|
||||
stt%rho_sgl_mob_edg_neg(s,e) = ini%rho_u_ed_neg_0(f) + noise(1)
|
||||
stt%rho_sgl_mob_scr_pos(s,e) = ini%rho_u_sc_pos_0(f) + noise(2)
|
||||
stt%rho_sgl_mob_scr_neg(s,e) = ini%rho_u_sc_neg_0(f) + noise(2)
|
||||
end do
|
||||
stt%rho_dip_edg(from:upto,e) = ini%rho_d_ed_0(f)
|
||||
stt%rho_dip_scr(from:upto,e) = ini%rho_d_sc_0(f)
|
||||
end do
|
||||
call math_normal(stt%rho_sgl_mob_edg_pos(from:upto,:),ini%rho_u_ed_pos_0(f),ini%sigma_rho_u)
|
||||
call math_normal(stt%rho_sgl_mob_edg_neg(from:upto,:),ini%rho_u_ed_neg_0(f),ini%sigma_rho_u)
|
||||
call math_normal(stt%rho_sgl_mob_scr_pos(from:upto,:),ini%rho_u_sc_pos_0(f),ini%sigma_rho_u)
|
||||
call math_normal(stt%rho_sgl_mob_scr_neg(from:upto,:),ini%rho_u_sc_neg_0(f),ini%sigma_rho_u)
|
||||
stt%rho_dip_edg(from:upto,:) = ini%rho_d_ed_0(f)
|
||||
stt%rho_dip_scr(from:upto,:) = ini%rho_d_sc_0(f)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
|
Loading…
Reference in New Issue