speed up (x 5 to 10) identification of most frequent microstructure index

This commit is contained in:
Philip Eisenlohr 2016-04-15 18:54:09 -04:00
parent 81f6530f52
commit 24d029c7ed
1 changed files with 5 additions and 9 deletions
processing/pre

View File

@ -6,15 +6,12 @@ import numpy as np
import damask
from scipy import ndimage
from optparse import OptionParser
from collections import defaultdict
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
def mostFrequent(arr):
d = defaultdict(int)
for i in arr: d[i] += 1
return sorted(d.iteritems(), key=lambda x: x[1], reverse=True)[0][0] # return value of most frequent microstructure
return np.argmax(np.bincount(arr))
#--------------------------------------------------------------------------------------------------
@ -43,10 +40,9 @@ parser.set_defaults(stencil = 3,
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
buffered = False,
labeled = False)
try: table = damask.ASCIItable(name = name,
buffered = False,
labeled = False)
except: continue
damask.util.report(scriptName,name)
@ -72,7 +68,7 @@ for name in filenames:
# --- read data ------------------------------------------------------------------------------------
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
microstructure = table.microstructure_read(info['grid']).reshape(info['grid'],order='F') # read microstructure
# --- do work ------------------------------------------------------------------------------------