cleaning 2
This commit is contained in:
parent
c191336045
commit
23cf134d6c
|
@ -940,8 +940,6 @@ end function crystallite_push33ToRef
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
function crystallite_postResults(ipc, ip, el)
|
||||
use math, only: &
|
||||
math_qToEuler, &
|
||||
math_qToEulerAxisAngle, &
|
||||
math_det33, &
|
||||
math_I3, &
|
||||
inDeg
|
||||
|
|
|
@ -940,7 +940,7 @@ subroutine material_populateGrains
|
|||
material_texture(c,i,e) = microstructure_texture(c,micro)
|
||||
material_EulerAngles(1:3,c,i,e) = texture_Gauss(1:3,1,material_texture(c,i,e))
|
||||
material_EulerAngles(1:3,c,i,e) = math_RtoEuler( & ! translate back to Euler angles
|
||||
math_mul33x33( & ! pre-multiply
|
||||
matmul( & ! pre-multiply
|
||||
math_EulertoR(material_EulerAngles(1:3,c,i,e)), & ! face-value orientation
|
||||
texture_transformation(1:3,1:3,material_texture(c,i,e)) & ! and transformation matrix
|
||||
) &
|
||||
|
|
243
src/math.f90
243
src/math.f90
|
@ -96,10 +96,6 @@ module math
|
|||
math_mul33xx33, &
|
||||
math_mul3333xx33, &
|
||||
math_mul3333xx3333, &
|
||||
math_mul33x33, &
|
||||
math_mul33x3, &
|
||||
math_mul33x3_complex, &
|
||||
math_mul66x6 , &
|
||||
math_exp33 , &
|
||||
math_transpose33, &
|
||||
math_inv33, &
|
||||
|
@ -134,20 +130,13 @@ module math
|
|||
math_RtoEuler, &
|
||||
math_RtoQ, &
|
||||
math_EulerToR, &
|
||||
math_EulerToQ, &
|
||||
math_EulerAxisAngleToR, &
|
||||
math_axisAngleToR, &
|
||||
math_EulerAxisAngleToQ, &
|
||||
math_axisAngleToQ, &
|
||||
math_qToRodrig, &
|
||||
math_qToEuler, &
|
||||
math_qToEulerAxisAngle, &
|
||||
math_qToAxisAngle, &
|
||||
math_qToR, &
|
||||
math_EulerMisorientation, &
|
||||
math_sampleRandomOri, &
|
||||
math_sampleGaussOri, &
|
||||
math_sampleFiberOri, &
|
||||
math_sampleGaussVar, &
|
||||
math_symmetricEulers, &
|
||||
math_eigenvectorBasisSym33, &
|
||||
|
@ -226,7 +215,7 @@ subroutine math_check
|
|||
character(len=64) :: error_msg
|
||||
|
||||
real(pReal), dimension(3,3) :: R,R2
|
||||
real(pReal), dimension(3) :: Eulers,v
|
||||
real(pReal), dimension(3) :: Eulers
|
||||
real(pReal), dimension(4) :: q,q2,axisangle
|
||||
|
||||
! --- check rotation dictionary ---
|
||||
|
@ -243,26 +232,6 @@ subroutine math_check
|
|||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ q -> R -> q +++
|
||||
R = math_qToR(q)
|
||||
q2 = math_RtoQ(R)
|
||||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) &
|
||||
'quat -> R -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ q -> euler -> q +++
|
||||
Eulers = math_qToEuler(q)
|
||||
q2 = math_EulerToQ(Eulers)
|
||||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||||
any(abs(-q-q2) > tol_math_check) ) then
|
||||
write (error_msg, '(a,e14.6)' ) &
|
||||
'quat -> euler -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ R -> euler -> R +++
|
||||
Eulers = math_RtoEuler(R)
|
||||
R2 = math_EulerToR(Eulers)
|
||||
|
@ -272,14 +241,6 @@ subroutine math_check
|
|||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ check rotation sense of q and R +++
|
||||
v = halton([2,8,5]) ! random vector
|
||||
R = math_qToR(q)
|
||||
if (any(abs(matmul(R,v) - math_qRot(q,v)) > tol_math_check)) then
|
||||
write (error_msg, '(a)' ) 'R(q)*v has different sense than q*v'
|
||||
call IO_error(401,ext_msg=error_msg)
|
||||
endif
|
||||
|
||||
! +++ check vector expansion +++
|
||||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - &
|
||||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2,3,0])) > tol_math_check)) then
|
||||
|
@ -1486,35 +1447,6 @@ pure function math_EulerToR(Euler)
|
|||
end function math_EulerToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from Bunge-Euler (3-1-3) angles (in radians)
|
||||
!> @details rotation matrix is meant to represent a PASSIVE rotation, composed of INTRINSIC
|
||||
!> @details rotations around the axes of the details rotating reference frame.
|
||||
!> @details similar to eu2qu from "D Rowenhorst et al. Consistent representations of and
|
||||
!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)", but
|
||||
!> @details Q is conjucated and Q is not reversed for Q(0) < 0.
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_EulerToQ(eulerangles)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3), intent(in) :: eulerangles
|
||||
real(pReal), dimension(4) :: math_EulerToQ
|
||||
real(pReal) :: c, s, sigma, delta
|
||||
|
||||
c = cos(0.5_pReal * eulerangles(2))
|
||||
s = sin(0.5_pReal * eulerangles(2))
|
||||
sigma = 0.5_pReal * (eulerangles(1)+eulerangles(3))
|
||||
delta = 0.5_pReal * (eulerangles(1)-eulerangles(3))
|
||||
|
||||
math_EulerToQ= [c * cos(sigma), &
|
||||
s * cos(delta), &
|
||||
s * sin(delta), &
|
||||
c * sin(sigma) ]
|
||||
math_EulerToQ = math_qConj(math_EulerToQ) ! convert to passive rotation
|
||||
|
||||
end function math_EulerToQ
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotation matrix from axis and angle (in radians)
|
||||
!> @details rotation matrix is meant to represent a ACTIVE rotation
|
||||
|
@ -1558,25 +1490,6 @@ pure function math_axisAngleToR(axis,omega)
|
|||
end function math_axisAngleToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief rotation matrix from axis and angle (in radians)
|
||||
!> @details rotation matrix is meant to represent a PASSIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!> @details eq-uivalent to eu2qu (P=+1) from "D Rowenhorst et al. Consistent representations of and
|
||||
!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)"
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_EulerAxisAngleToR(axis,omega)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3) :: math_EulerAxisAngleToR
|
||||
real(pReal), dimension(3), intent(in) :: axis
|
||||
real(pReal), intent(in) :: omega
|
||||
|
||||
math_EulerAxisAngleToR = transpose(math_axisAngleToR(axis,omega)) ! convert to passive rotation
|
||||
|
||||
end function math_EulerAxisAngleToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion (w+ix+jy+kz) from Euler axis and angle (in radians)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation
|
||||
|
@ -1625,30 +1538,6 @@ pure function math_axisAngleToQ(axis,omega)
|
|||
end function math_axisAngleToQ
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief orientation matrix from quaternion (w+ix+jy+kz)
|
||||
!> @details taken from http://arxiv.org/pdf/math/0701759v1.pdf
|
||||
!> @details see also http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToR(q)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(4), intent(in) :: q
|
||||
real(pReal), dimension(3,3) :: math_qToR, T,S
|
||||
integer :: i, j
|
||||
|
||||
forall(i = 1:3, j = 1:3) T(i,j) = q(i+1) * q(j+1)
|
||||
|
||||
S = reshape( [0.0_pReal, -q(4), q(3), &
|
||||
q(4), 0.0_pReal, -q(2), &
|
||||
-q(3), q(2), 0.0_pReal],[3,3]) ! notation is transposed
|
||||
|
||||
math_qToR = (2.0_pReal * q(1)*q(1) - 1.0_pReal) * math_I3 &
|
||||
+ 2.0_pReal * T - 2.0_pReal * q(1) * S
|
||||
|
||||
end function math_qToR
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation,
|
||||
|
@ -1707,24 +1596,6 @@ pure function math_qToAxisAngle(Q)
|
|||
end function math_qToAxisAngle
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Euler axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
||||
!> @details quaternion is meant to represent a PASSIVE rotation
|
||||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure function math_qToEulerAxisAngle(qPassive)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(4), intent(in) :: qPassive
|
||||
real(pReal), dimension(4) :: q
|
||||
real(pReal), dimension(4) :: math_qToEulerAxisAngle
|
||||
|
||||
q = math_qConj(qPassive) ! convert to active rotation
|
||||
math_qToEulerAxisAngle = math_qToAxisAngle(q)
|
||||
|
||||
end function math_qToEulerAxisAngle
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -1760,118 +1631,6 @@ real(pReal) pure function math_EulerMisorientation(EulerA,EulerB)
|
|||
end function math_EulerMisorientation
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief draw a random sample from Euler space
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_sampleRandomOri()
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
||||
|
||||
rnd = halton([1,7,3])
|
||||
math_sampleRandomOri = [rnd(1)*2.0_pReal*PI, &
|
||||
acos(2.0_pReal*rnd(2)-1.0_pReal), &
|
||||
rnd(3)*2.0_pReal*PI]
|
||||
|
||||
end function math_sampleRandomOri
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief draw a sample from an Gaussian distribution around given orientation and Full Width
|
||||
! at Half Maximum (FWHM)
|
||||
!> @details: A uniform misorientation (limited to 2*FWHM) is sampled followed by convolution with
|
||||
! a Gausian distribution
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function math_sampleGaussOri(center,FWHM)
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in) :: FWHM
|
||||
real(pReal), dimension(3), intent(in) :: center
|
||||
real(pReal) :: angle
|
||||
real(pReal), dimension(3) :: math_sampleGaussOri, axis
|
||||
real(pReal), dimension(4) :: rnd
|
||||
real(pReal), dimension(3,3) :: R
|
||||
|
||||
if (FWHM < 0.1_pReal*INRAD) then
|
||||
math_sampleGaussOri = center
|
||||
else
|
||||
GaussConvolution: do
|
||||
rnd = halton([8,3,6,11])
|
||||
axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
|
||||
axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
|
||||
sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] ! random axis
|
||||
angle = (rnd(3)-0.5_pReal)*4.0_pReal*FWHM ! rotation by [0, +-2 FWHM]
|
||||
R = math_axisAngleToR(axis,angle)
|
||||
angle = math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],math_RtoEuler(R))
|
||||
if (rnd(4) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal)) exit ! rejection sampling (Gaussian)
|
||||
enddo GaussConvolution
|
||||
math_sampleGaussOri = math_RtoEuler(matmul(R,math_EulerToR(center)))
|
||||
endif
|
||||
|
||||
end function math_sampleGaussOri
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width
|
||||
! at Half Maximum (FWHM)
|
||||
!-------------------------------------------------------------------------------------------------
|
||||
function math_sampleFiberOri(alpha,beta,FWHM)
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(2), intent(in) :: alpha,beta
|
||||
real(pReal), intent(in) :: FWHM
|
||||
real(pReal), dimension(3) :: math_sampleFiberOri, &
|
||||
fInC,& !< fiber axis in crystal coordinate system
|
||||
fInS,& !< fiber axis in sample coordinate system
|
||||
u
|
||||
real(pReal), dimension(3) :: rnd
|
||||
real(pReal), dimension(:),allocatable :: a !< 2D vector to tilt
|
||||
integer, dimension(:),allocatable :: idx !< components of 2D vector
|
||||
real(pReal), dimension(3,3) :: R !< Rotation matrix (composed of three components)
|
||||
real(pReal):: angle,c
|
||||
integer:: j,& !< index of smallest component
|
||||
i
|
||||
|
||||
allocate(a(0))
|
||||
allocate(idx(0))
|
||||
fInC = [sin(alpha(1))*cos(alpha(2)), sin(alpha(1))*sin(alpha(2)), cos(alpha(1))]
|
||||
fInS = [sin(beta(1))*cos(beta(2)), sin(beta(1))*sin(beta(2)), cos(beta(1))]
|
||||
|
||||
R = math_EulerAxisAngleToR(math_crossproduct(fInC,fInS),-acos(dot_product(fInC,fInS))) !< rotation to align fiber axis in crystal and sample system
|
||||
|
||||
rnd = halton([7,10,3])
|
||||
R = matmul(R,math_EulerAxisAngleToR(fInS,rnd(1)*2.0_pReal*PI)) !< additional rotation (0..360deg) perpendicular to fiber axis
|
||||
|
||||
if (FWHM > 0.1_pReal*INRAD) then
|
||||
reducedTo2D: do i=1,3
|
||||
if (i /= minloc(abs(fInS),1)) then
|
||||
a=[a,fInS(i)]
|
||||
idx=[idx,i]
|
||||
else
|
||||
j = i
|
||||
endif
|
||||
enddo reducedTo2D
|
||||
GaussConvolution: do
|
||||
angle = (rnd(2)-0.5_pReal)*4.0_pReal*FWHM ! rotation by [0, +-2 FWHM]
|
||||
! solve cos(angle) = dot_product(fInS,u) under the assumption that their smallest component is the same
|
||||
c = cos(angle)-fInS(j)**2
|
||||
u(idx(2)) = -(2.0_pReal*c*a(2) + sqrt(4*((c*a(2))**2-sum(a**2)*(c**2-a(1)**2*(1-fInS(j)**2)))))/&
|
||||
(2*sum(a**2))
|
||||
u(idx(1)) = sqrt(1-u(idx(2))**2-fInS(j)**2)
|
||||
u(j) = fInS(j)
|
||||
|
||||
rejectionSampling: if (rnd(3) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal)) then
|
||||
R = matmul(R,math_EulerAxisAngleToR(math_crossproduct(u,fInS),angle)) ! tilt around direction of smallest component
|
||||
exit
|
||||
endif rejectionSampling
|
||||
rnd = halton([7,10,3])
|
||||
enddo GaussConvolution
|
||||
endif
|
||||
math_sampleFiberOri = math_RtoEuler(R)
|
||||
|
||||
end function math_sampleFiberOri
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief draw a random sample from Gauss variable
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue