Merge branch 'universal-table.set' into 'development'
universal Table.set See merge request damask/DAMASK!576
This commit is contained in:
commit
236a009e2b
|
@ -363,14 +363,14 @@ class Table:
|
|||
data: np.ndarray,
|
||||
info: str = None) -> 'Table':
|
||||
"""
|
||||
Set column data.
|
||||
Add new or replace existing column data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : str
|
||||
Column label.
|
||||
data : numpy.ndarray
|
||||
Replacement data.
|
||||
Column data.
|
||||
info : str, optional
|
||||
Human-readable information about the modified data.
|
||||
|
||||
|
@ -382,49 +382,32 @@ class Table:
|
|||
"""
|
||||
dup = self.copy()
|
||||
dup._add_comment(label, data.shape[1:], info)
|
||||
|
||||
if m := re.match(r'(.*)\[((\d+,)*(\d+))\]',label):
|
||||
key = m.group(1)
|
||||
idx = np.ravel_multi_index(tuple(map(int,m.group(2).split(","))),
|
||||
self.shapes[key])
|
||||
iloc = dup.data.columns.get_loc(key).tolist().index(True) + idx
|
||||
dup.data.iloc[:,iloc] = data
|
||||
else:
|
||||
dup.data[label] = data.reshape(dup.data[label].shape)
|
||||
return dup
|
||||
key = label
|
||||
|
||||
if key in dup.shapes:
|
||||
|
||||
def add(self,
|
||||
label: str,
|
||||
data: np.ndarray,
|
||||
info: str = None) -> 'Table':
|
||||
"""
|
||||
Add column data.
|
||||
if m:
|
||||
idx = np.ravel_multi_index(tuple(map(int,m.group(2).split(","))),
|
||||
self.shapes[key])
|
||||
iloc = dup.data.columns.get_loc(key).tolist().index(True) + idx
|
||||
dup.data.iloc[:,iloc] = data
|
||||
else:
|
||||
dup.data[label] = data.reshape(dup.data[label].shape)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : str
|
||||
Column label.
|
||||
data : numpy.ndarray
|
||||
New data.
|
||||
info : str, optional
|
||||
Human-readable information about the new data.
|
||||
else:
|
||||
|
||||
Returns
|
||||
-------
|
||||
updated : damask.Table
|
||||
Updated table.
|
||||
dup.shapes[label] = data.shape[1:] if len(data.shape) > 1 else (1,)
|
||||
size = np.prod(data.shape[1:],dtype=int)
|
||||
new = pd.DataFrame(data=data.reshape(-1,size),
|
||||
columns=[label]*size,
|
||||
)
|
||||
new.index = dup.data.index
|
||||
dup.data = pd.concat([dup.data,new],axis=1)
|
||||
|
||||
"""
|
||||
dup = self.copy()
|
||||
dup._add_comment(label,data.shape[1:],info)
|
||||
|
||||
dup.shapes[label] = data.shape[1:] if len(data.shape) > 1 else (1,)
|
||||
size = np.prod(data.shape[1:],dtype=int)
|
||||
new = pd.DataFrame(data=data.reshape(-1,size),
|
||||
columns=[label]*size,
|
||||
)
|
||||
new.index = dup.data.index
|
||||
dup.data = pd.concat([dup.data,new],axis=1)
|
||||
return dup
|
||||
|
||||
|
||||
|
|
|
@ -441,7 +441,7 @@ class TestGrid:
|
|||
z = np.ones(cells.prod())
|
||||
z[cells[:2].prod()*int(cells[2]/2):] = 0
|
||||
t = Table({'coords':3,'z':1},np.column_stack((coords,z)))
|
||||
t = t.add('indicator',t.get('coords')[:,0])
|
||||
t = t.set('indicator',t.get('coords')[:,0])
|
||||
g = Grid.from_table(t,'coords',['indicator','z'])
|
||||
assert g.N_materials == g.cells[0]*2 and (g.material[:,:,-1]-g.material[:,:,0] == cells[0]).all()
|
||||
|
||||
|
|
|
@ -176,7 +176,7 @@ class TestOrientation:
|
|||
def test_from_directions(self,kwargs):
|
||||
for a,b in np.random.random((10,2,3)):
|
||||
c = np.cross(b,a)
|
||||
if np.all(np.isclose(c,0)): continue
|
||||
if np.allclose(c,0): continue
|
||||
o = Orientation.from_directions(uvw=a,hkl=c,**kwargs)
|
||||
x = o.to_pole(uvw=a)
|
||||
z = o.to_pole(hkl=c)
|
||||
|
|
|
@ -51,7 +51,7 @@ class TestTable:
|
|||
|
||||
def test_add(self,default):
|
||||
d = np.random.random((5,9))
|
||||
assert np.allclose(d,default.add('nine',d,'random data').get('nine'))
|
||||
assert np.allclose(d,default.set('nine',d,'random data').get('nine'))
|
||||
|
||||
def test_isclose(self,default):
|
||||
assert default.isclose(default).all()
|
||||
|
@ -200,6 +200,6 @@ class TestTable:
|
|||
t = Table({'v':(2,)},
|
||||
np.array([[0,1,],[2,1,]]),
|
||||
['test data'])\
|
||||
.add('s',np.array(['b','a']))\
|
||||
.set('s',np.array(['b','a']))\
|
||||
.sort_by('s')
|
||||
assert np.all(t.get('v')[:,0] == np.array([2,0]))
|
||||
|
|
Loading…
Reference in New Issue